matlab习题及答案

合集下载

matlab考试题库及答案大学

matlab考试题库及答案大学

matlab考试题库及答案大学# MATLAB考试题库及答案大学一、选择题1. MATLAB中用于生成0到1之间均匀分布随机数的函数是: - A. rand- B. randi- C. randperm- D. randn答案:A2. 下列哪个命令可以用于绘制函数图像?- A. plot- B. text- C. title- D. xlabel答案:A3. MATLAB中,以下哪个不是矩阵的属性?- A. size- B. length- C. rank- D. transpose答案:D4. 以下哪个函数可以用于求解线性方程组?- A. solve- B. linsolve- C. linprog- D. fsolve答案:A5. MATLAB中,用于计算矩阵特征值的函数是:- A. eig- B. eign- C. eigen- D. eigenvalue答案:A二、填空题1. MATLAB的基本数据单位是________。

答案:矩阵2. 使用MATLAB进行数值计算时,可以利用________来存储数据。

答案:变量3. MATLAB中的向量可以是________或________。

- 答案:行向量;列向量4. 矩阵的转置可以通过________操作实现。

答案:.'5. MATLAB中,使用________函数可以计算矩阵的行列式。

答案:det三、简答题1. 简述MATLAB中使用循环结构的注意事项。

答案:在MATLAB中使用循环结构时,应注意以下几点:确保循环体内部逻辑正确,避免无限循环;使用for循环时,循环变量的初始化和步长设置要合理;使用while循环时,循环条件要明确,确保循环能够正常退出。

2. 描述MATLAB中如何实现数组的多维索引。

答案:在MATLAB中,多维数组的索引可以通过使用圆括号来实现,每个维度的索引用逗号分隔。

例如,对于一个三维数组A,可以使用A(i,j,k)来访问第i行、第j列、第k层的元素。

大学matlab考试题及答案

大学matlab考试题及答案

大学matlab考试题及答案大学MATLAB考试题及答案一、选择题1. MATLAB的全称是什么?A. Matrix LaboratoryB. Microprocessor Application Tool SetC. Microsoft Advanced Tool SetD. Microprocessor Application Test System答案:A2. 在MATLAB中,以下哪个命令用于绘制三维图形?A. plotB. scatterC. surfD. bar答案:C3. MATLAB中用于求解线性方程组的函数是?A. solveB. linsolveC. linprogD. fsolve答案:A二、简答题1. 简述MATLAB的基本数据类型有哪些,并给出至少两个每种类型的示例。

答案:MATLAB的基本数据类型包括数值数组、字符数组和单元数组。

数值数组可以是向量、矩阵或多维数组。

例如,向量 `v = [1 2 3]`,矩阵 `M = [1 2; 3 4]`。

字符数组是由单引号或双引号括起来的字符序列,如 `C = 'Hello'`。

单元数组可以包含不同类型的数据,如`{1, 'text', [1; 2; 3]}`。

2. 描述如何在MATLAB中实现矩阵的转置和翻转。

答案:矩阵的转置可以通过 `'T'` 来实现,例如 `A'` 表示矩阵A 的转置。

矩阵的翻转可以通过 `flip` 函数实现,例如 `flip(A)` 可以翻转矩阵A的所有行和列,`flipud(A)` 仅翻转矩阵A的行,而`fliplr(A)` 仅翻转矩阵A的列。

三、编程题1. 编写一个MATLAB函数,该函数接受一个向量作为输入,并返回向量中所有元素的和以及平均值。

```matlabfunction [sumVal, avgVal] = calculateSumAndAverage(V)sumVal = sum(V);avgVal = mean(V);end```2. 设计一个MATLAB脚本来解决以下问题:给定一个3x3的矩阵,找出其中最大的元素,并显示其位置。

matlab习题及答案

matlab习题及答案

习题:1, 计算⎥⎦⎤⎢⎣⎡=572396a 与⎥⎦⎤⎢⎣⎡=864142b 的数组乘积。

2, 对于B AX =,如果⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=753467294A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=282637B ,求解X 。

3, 已知:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=987654321a ,分别计算a 的数组平方和矩阵平方,并观察其结果。

4, 角度[]604530=x ,求x 的正弦、余弦、正切和余切。

(应用sin,cos,tan.cot)5, 将矩阵⎥⎦⎤⎢⎣⎡=7524a 、⎥⎦⎤⎢⎣⎡=3817b 和⎥⎦⎤⎢⎣⎡=2695c 组合成两个新矩阵: (1)组合成一个4⨯3的矩阵,第一列为按列顺序排列的a 矩阵元素,第二列为按列顺序排列的b 矩阵元素,第三列为按列顺序排列的c 矩阵元素,即 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡237912685574(2)按照a 、b 、c 的列顺序组合成一个行矢量,即 []2965318772546, 将(x -6)(x -3)(x -8)展开为系数多项式的形式。

(应用poly,polyvalm)7, 求解多项式x 3-7x 2+2x +40的根。

(应用roots)8, 求解在x =8时多项式(x -1)(x -2) (x -3)(x -4)的值。

(应用poly,polyvalm)9, 计算多项式9514124234++--x x x x 的微分和积分。

(应用polyder,polyint ,poly2sym)10, 解方程组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡66136221143092x 。

(应用x=a\b)11, 求欠定方程组⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡5865394742x 的最小范数解。

(应用pinv) 12, 矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=943457624a ,计算a 的行列式和逆矩阵。

(应用det,inv)13, y =sin(x ),x 从0到2π,∆x =0.02π,求y 的最大值、最小值、均值和标准差。

matlab习题及答案

matlab习题及答案

matlab习题及答案2. ⽤MATLAB 语句输⼊矩阵A 和B3.假设已知矩阵A ,试给出相应的MATLAB 命令,将其全部偶数⾏提取出来,赋给B 矩阵,⽤magic(8)A =命令⽣成A 矩阵,⽤上述命令检验⼀下结果是不是正确。

4.⽤数值⽅法可以求出∑=++++++==6363622284212i i S ,试不采⽤循环的形式求出和式的数值解。

由于数值⽅法是采⽤double 形式进⾏计算的,难以保证有效位数字,所以结果不⼀定精确。

试采⽤运算的⽅法求该和式的精确值。

5.选择合适的步距绘制出下⾯的图形。

(1))/1sin(t ,其中)1,1(-∈t ;(2))tan(sin )sin(tan t t -,其中),(ππ-∈t6. 试绘制出⼆元函数2222)1(1)1(1),(yx yx y x f z ++++-==的三维图和三视图7. 试求出如下极限。

(1)xxxx 1)93(lim +∞→;(2)11lim0-+→→xy xy y x ;(3)22)()cos(1lim222200y x y x ey x y x +→→++-8. 已知参数⽅程-==tt t y t x sin cos cos ln ,试求出x y d d 和3/22d d π=t x y9. 假设?-=xyt t e y x f 0d ),(2,试求222222y fy x f x f y x ??+-?? 10. 试求出下⾯的极限。

(1)-++-+-+-∞→1)2(1161141121lim 2222n n ;(2))131211(lim 2222ππππn n n n n n n ++++++++∞→ 11. 试求出以下的曲线积分。

(1)?+ls y x d )(22,l 为曲线)sin (cos t t t a x +=,)cos (sin t t t a y -=,)20(π≤≤t 。

(2)?-+++ly y y xe x e yx )dy 2(xy d )(33,其中l 为22222c y b x a =+正向上半椭圆。

matlab课后习题答案(附图)

matlab课后习题答案(附图)

matlab课后习题答案(附图)习题2.1画出下列常见曲线的图形y (1)⽴⽅抛物线3x命令:syms x y;ezplot('x.^(1/3)')(2)⾼斯曲线y=e^(-X^2);命令:clearsyms x y;ezplot('exp(-x*x)')(3)笛卡尔曲线命令:>> clear>> syms x y;>> a=1;>> ezplot(x^3+y^3-3*a*x*y)(4)蔓叶线命令:>> clear>> syms x y;>> a=1ezplot(y^2-(x^3)/(a-x))(5)摆线:()()tsin-=,=-by1命令:>> clear>> t=0:0.1:2*pi;>> x=t-sin(t);>>y=2*(1-cos(t)); >> plot(x,y)7螺旋线命令:>> clear >> t=0:0.1:2*pi; >> x=cos(t); >> y=sin(t); >> z=t;>>plot3(x,y,z)(8)阿基⽶德螺线命令:clear>> theta=0:0.1:2*pi;>> rho1=(theta);>> subplot(1,2,1),polar(theta,rho1)(9) 对数螺线命令:cleartheta=0:0.1:2*pi;rho1=exp(theta);subplot(1,2,1),polar(theta,rho1)(12)⼼形线命令:>> clear >> theta=0:0.1:2*pi; >> rho1=1+cos(theta); >> subplot(1,2,1),polar(theta,rho1)练习2.21. 求出下列极限值(1)nnn n3→命令:>>syms n>>limit((n^3+3^n)^(1/n)) ans = 3(2))121(lim n n n n ++-+∞→命令:>>syms n>>limit((n+2)^(1/2)-2*(n+1)^(1/2)+n^(1/2),n,inf) ans = 0(3)x x x 2cot lim 0→命令:syms x ;>> limit(x*cot(2*x),x,0) ans = 1/2 (4))(coslimcm xx ∞→命令:syms x m ; limit((cos(m/x))^x,x,inf) ans = 1(5))111(lim 1--→exx x命令:syms x>> limit(1/x-1/(exp(x)-1),x,1) ans =(exp(1)-2)/(exp(1)-1) (6))(2lim x x xx -+∞>> limit((x^2+x)^(1/2)-x,x,inf)ans = 1/2练习2.41. 求下列不定积分,并⽤diff 验证:(1)+x dxcos 1>>Clear >> syms x y >> y=1/(1+cos(x)); >> f=int(y,x) f =tan(1/2*x) >> y=tan(1/2*x); >> yx=diff(y ,x); >> y1=simple(yx) y1 =1/2+1/2*tan(1/2*x)^2 (2)+exdx1clear syms x yy=1/(1+exp(x));f=int(y,x) f =-log(1+exp(x))+log(exp(x)) syms x yy=-log(1+exp(x))+log(exp(x)); yx=diff(y,x); y1=simple(yx) y1 = 1/(1+exp(x)) (3)dx x x ?sin 2syms x yy=x*sin(x)^2; >> f=int(y,x) f =x*(-1/2*cos(x)*sin(x)+1/2*x)-1/4*cos(x)^2-1/4*x^2 clearsyms x y y=x*(-1/2*cos(x)*sin(x)+1/2*x)-1/4*cos(x)^2-1/4*x^2; yx=diff(y,x); >> y1=simple(yx) y1 = x*sin(x)^2 (4)xdx ?sec3syms x y y=sec(x)^3;f=int(y,x) f =1/2/cos(x)^2*sin(x)+1/2*log(sec(x)+tan(x)) clear syms x yy=1/2/cos(x)^2*sin(x)+1/2*log(sec(x)+tan(x)); yx=diff(y,x); y1=simple(yx) y1 =1/cos(x)^32. 求下列积分的数值解 1)dx x-10clearsyms xy=int(x^(-x),x,0,1) y =int(x^(-x),x = 0 .. 1) vpa(y,10) ans =1.291285997 2)xdx e x cos3202?πclearsyms xy=int(exp(2*x)*cos(x)^3,x, clear syms xy=int((1/(2*pi)^(1/2))*exp(-x^2/2),x,0,1) y =7186705221432913/36028797018963968*erf(1/2*2^(1/2))*2^(1/2)*pi^(1/0,2*pi) y =22/65*exp(pi)^4-22/65vpa(ans,10)(3)dx xe21221-π>> clear >> syms x>> y=int(1/(2*pi)^(1/2)*exp(-x^2/2),0,1); >> vpa(y,14) ans =.341344746068552(4)>> clear >> syms x>> y=int(x*log(x^4)*asin(1/x^2),1,3); Warning: Explicit integral could not be found. > In sym.int at 58 >> vpa(y,14) ans = 2.45977212823752(5) >> clear >> syms x1判断下列级数的收敛性,若收敛,求出其收敛值。

matlab试题及答案

matlab试题及答案

matlab试题及答案# MATLAB试题及答案一、选择题1. MATLAB的基本数据单位是:A. 矩阵B. 向量C. 标量D. 数组答案:A2. 下列哪个命令可以用来绘制函数图形?A. `plot`B. `graph`C. `draw`D. `chart`答案:A3. MATLAB中,以下哪个是正确的矩阵转置操作?A. `transpose(A)`B. `A'`C. `A^T`D. `flip(A)`答案:B二、简答题1. 简述MATLAB中矩阵的基本操作。

答案:在MATLAB中,矩阵是最基本的数据结构,可以进行加、减、乘、除等基本运算。

矩阵的创建可以使用方括号`[]`,例如`A = [1 2;3 4]`。

矩阵的转置使用单引号`'`,例如`A'`。

矩阵的求逆使用`inv`函数,例如`inv(A)`。

2. MATLAB中如何实现循环结构?答案:MATLAB中实现循环结构主要有两种方式:`for`循环和`while`循环。

`for`循环用于已知迭代次数的情况,例如:```matlabfor i = 1:5disp(i);end````while`循环用于迭代次数未知的情况,例如:```matlabi = 1;while i <= 5disp(i);i = i + 1;end```三、计算题1. 给定矩阵A和B,请计算它们的乘积C,并求C的行列式。

A = [1 2; 3 4]B = [5 6; 7 8]答案:首先计算矩阵乘积C:```matlabC = A * B;```然后计算C的行列式:```matlabdetC = det(C);```结果为:```matlabC = [19 22; 43 50]detC = -16```2. 编写一个MATLAB函数,计算并返回一个向量的范数。

答案:```matlabfunction norm_value = vector_norm(v)norm_value = norm(v);end```四、编程题1. 编写一个MATLAB脚本,实现以下功能:- 随机生成一个3x3的矩阵。

matlab简单编程21个题目及答案

matlab简单编程21个题目及答案

1、设⎥⎦⎤⎢⎣⎡++=)1(sin35.0cos2xxxy,把x=0~2π间分为101点,画出以x为横坐标,y为纵坐标的曲线。

第一题的matlab源程序:①考虑cos(x)为一个整体,然后乘以中括号里面的全部x=0:2*pi/100:2*pi; %x的步长以及范围从0到2*pi y=cos(x).*(0.5+3*sin(x)./(1+x.^2)); %y的表达式plot(x,y)%画出图形图如下:②考虑对整体求解cos,先求x乘以括号中的部分x=0:2*pi/100:2*pi; %x的步长以及范围从0到2*pi y=cos(x.*(0.5+3*sin(x)./(1+x.^2))); %y的表达式plot(x,y) %画出图形图如下:2、产生8×6阶的正态分布随机数矩阵R1, 求其各列的平均值和均方差。

并求该矩阵全体数的平均值和均方差。

第二题的matlab源程序如下:R1=randn(8,6) %产生正态分布随机矩阵R1 =1.0933 -0.7697 1.5442 -0.1924 1.4193 0.21571.1093 0.3714 0.0859 0.8886 0.2916 -1.1658-0.8637 -0.2256 -1.4916 -0.7648 0.1978 -1.14800.0774 1.1174 -0.7423 -1.4023 1.5877 0.1049-1.2141 -1.0891 -1.0616 -1.4224 -0.8045 0.7223-1.1135 0.0326 2.3505 0.4882 0.6966 2.5855-0.0068 0.5525 -0.6156 -0.1774 0.8351 -0.66691.5326 1.1006 0.7481 -0.1961 -0.2437 0.1873aver=(sum(R1(1:end,1:end)))./8 %产生各行的平均值aver =0.0768 0.1363 0.1022 -0.3473 0.4975 0.1044a=std(R1(1:end,1:end)) %产生各行的均方差也就是标准差a =1.0819 0.8093 1.3456 0.8233 0.8079 1.2150aver1=(sum(R1(:)))./48 %全体数的平均值aver1 =0.0950b=std(R1(:)) %全体数的均方差即标准差b =1.01033、设x=rcost+3t,y=rsint+3,分别令r=2,3,4,画出参数t=0~10区间生成的x~y 曲线。

matlab期末考试题目及答案

matlab期末考试题目及答案

matlab期末考试题目及答案1. 题目:编写一个MATLAB函数,实现矩阵的转置操作。

答案:可以使用`transpose`函数或`.'`操作符来实现矩阵的转置。

例如,对于一个矩阵`A`,其转置可以通过`A'`或`transpose(A)`来获得。

2. 题目:使用MATLAB求解线性方程组Ax=b,其中A是一个3x3的矩阵,b是一个3x1的向量。

答案:可以使用MATLAB内置的`\`操作符来求解线性方程组。

例如,如果`A`和`b`已经定义,求解方程组的代码为`x = A\b`。

3. 题目:编写MATLAB代码,计算并绘制函数f(x) = sin(x)在区间[0, 2π]上的图像。

答案:首先定义x的范围,然后计算对应的函数值,并使用`plot`函数绘制图像。

代码示例如下:```matlabx = linspace(0, 2*pi, 100); % 定义x的范围y = sin(x); % 计算函数值plot(x, y); % 绘制图像xlabel('x'); % x轴标签ylabel('sin(x)'); % y轴标签title('Plot of sin(x)'); % 图像标题```4. 题目:使用MATLAB编写一个脚本,实现对一个给定的二维数组进行排序,并输出排序后的结果。

答案:可以使用`sort`函数对数组进行排序。

如果需要对整个数组进行排序,可以使用`sort`函数的两个输出参数来获取排序后的索引和值。

代码示例如下:```matlabA = [3, 1, 4; 1, 5, 9; 2, 6, 5]; % 给定的二维数组[sortedValues, sortedIndices] = sort(A(:)); % 对数组进行排序sortedMatrix = reshape(sortedValues, size(A)); % 将排序后的值重新构造成矩阵disp(sortedMatrix); % 显示排序后的结果```5. 题目:编写MATLAB代码,实现对一个字符串进行加密,加密规则为将每个字符的ASCII码值增加3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.对下列的函数 进行Laplace变换。
Hale Waihona Puke (1) ;(2) ;(3)2.对下面的 式进行Laplace反变换。
(1) ;(2) ;
(3) 。
3.试求出下面函数的Fourier变换,对得出的结果再进行Fourier反变换,观察是否能得出原来函数。
(1) ;(2) 。
4.请将下述时域序列函数 进行Z变换,并对结果进行反变换检验。
第三题
>> A=magic(8);
>> B=A(2:2:end,:)
B =
9 55 54 12 13 51 50 16
40 26 27 37 36 30 31 33
41 23 22 44 45 19 18 48
8 58 59 5 4 62 63 1
第四题
>> i=0:63;s=sum(2.^i)
s =
4.0000 + 1.0000i 3.0000 + 2.0000i 2.0000 + 3.0000i 1.0000 + 4.0000i
2.0000 + 3.0000i 3.0000 + 2.0000i 4.0000 + 1.0000i 1.0000 + 4.0000i
3.0000 + 2.0000i 2.0000 + 3.0000i 4.0000 + 1.0000i 1.0000 + 4.0000i
>> subplot(222),surf(x,y,z),view(90,0)
>> subplot(223),surf(x,y,z),view(0,0)
第七题
(1)>> syms x;f=(3^x+9^x)^(1/x);l=limit(f,x,inf)
l =
9
(2)>> syms x y;f=x*y/(sqrt(x*y+1)-1);limit(limit(f,x,0),y,0)
(1) ;(2) ;(3)
5.用数值求解函数求解下述一元和二元方程的根,并对得出的结果进行检验。
(1) ;(2)
6.试求出使得 取得极小值的 值。
7.试求解下面的非线性规划问题。
8.求解下面的整数线性规划问题。
9.试求出微分方程 的解析解通解,并求出满足边界条件 的解析解。
10.试求出下面微分方程的通解。
>> y=sin(tan(t))-tan(sin(t));
>> plot(t,y)
第六题
>> xx=[-2:0.1:-1.2,-1.1:0.02:-0.9,-0.8:0.1:0.8,0.9:0.02:1.1,1.2:0.1:2];
>> yy=[-1:0.1:-0.2,-0.1:0.02:0.1,0.2:0.1:1];[x,y]=meshgrid(xx,yy);
>> z=1./(sqrt((1-x).^2+y.^2))+1./(sqrt((1+x).^2+y.^2));
Warning: Divide by zero.
Warning: Divide by zero.
>> subplot(224),surf(x,y,z)
>> subplot(221),surf(x,y,z),view(0,90)
12.试求出Vandermonde矩阵 的行列式,并以最简的形式显示结果。
13.试对矩阵 进行Jordan变换,并得出变换矩阵。
14.试用数值方法和解析方法求取下面的Sylvester方程,并验证得出的结果。
15.假设已知矩阵 如下,试求出 , , 。
第二部分数学问题求解与数据处理(4学时)
主要问题:掌握代数方程与最优化问题、微分方程问题、数据处理问题的MATLAB求解方法。
1.8447e+019
第五题
(1)
>> t=[-1:0.001:1];
>> y=sin(1./t);
Warning: Divide by zero.
>> plot(t,y)
(2)
t=[-pi:0.05:-1.8,-1.799:0.001:-1.2,-1.2:0.05:1.2,1.201:0.001:1.8,1.81:0.05:pi];
5.选择合适的步距绘制出下面的图形。
(1) ,其中 ;(2) ,其中
6.试绘制出二元函数 的三维图和三视图
7.试求出如下极限。
(1) ;(2) ;(3)
8.已知参数方程 ,试求出 和
9.假设 ,试求
10.试求出下面的极限。
(1) ;
(2)
11.试求出以下的曲线积分。
(1) , 为曲线 , ,

(2) ,其中 为 正向上半椭圆。
2.用MATLAB语句输入矩阵 和
3.假设已知矩阵 ,试给出相应的MATLAB命令,将其全部偶数行提取出来,赋给 矩阵,用 命令生成 矩阵,用上述命令检验一下结果是不是正确。
4.用数值方法可以求出 ,试不采用循环的形式求出和式的数值解。由于数值方法是采用double形式进行计算的,难以保证有效位数字,所以结果不一定精确。试采用运算的方法求该和式的精确值。
ans =
2
(3)>> syms x y;f=(1-cos(x^2+y^2))*exp(x^2+y^2)/(x^2+y^2);limit(limit(f,x,0),y,0)
A =
1 2 3 4
4 3 2 1
2 3 4 1
3 2 4 1
(2)
>> B=[1+4j,2+3j,3+2j,4+1j;4+1j,3+2j,2+3j,1+4j;2+3j,3+2j,4+1j,1+4j;3+2j,2+3j,4+1j,1+4j]
B =
1.0000 + 4.0000i 2.0000 + 3.0000i 3.0000 + 2.0000i 4.0000 + 1.0000i
(1) ;(2)
11.考虑著名的 化学反应方程组 ,选定 , ,且 ,绘制仿真结果的三维相轨迹,并得出其在x-y平面上的投影。在实际求解中建议将 作为附加参数,同样的方程若设 , , 时,绘制出状态变量的二维图和三维图。
12.试选择状态变量,将下面的非线性微分方程组转换成一阶显式微分方程组,并用MATLAB对其求解,绘制出解的相平面或相空间曲线。
13.考虑简单的线性微分方程 ,且方程的初值为 , , ,试用Simulink搭建起系统的仿真模型,并绘制出仿真结果曲线。
14.用 生成一组较稀疏的数据,并用一维数据插值的方法对给出的数据进行曲线拟合,并将结果与理论曲线相比较。
第一部分
第二题
(1)
>> A=[1,2,3,4;4,3,2,1;2,3,4,1;3,2,4,1]
相关文档
最新文档