材料力学B试题6弯曲变形
材料力学—弯曲变形

判断方法:(两种方法)
左上右下为正
使研究对象顺时针转动为正
具体计算时:(黑色表示外力,蓝色表示内力)
S
F
S
F
S
F
S
F
F
判断方法:(两种方法)
左顺右逆为正 上凹下凸为正
具体计算时:(黑色表示外力,红色表示内力)
正: 负:
M
直接求解剪力和弯矩的法则:
1、 任意截面上的剪力=[∑一侧横向力代数值] 横向力:包含载荷、约束力、分布力、集中力 代数值:左上右下为正,反之为负
2、 任意截面上的弯矩=[∑一侧外力对截面形心之矩的代数值] 外力:包含载荷、约束力、分布力、集中力、集中力偶 代数值:左顺右逆为正,反之为负 截面形心:所求截面的截面形心
绘制剪力弯矩图的方法(从左往右绘制):
q F F S s +=12所围成的面积 S F M M +=12所围成的面积。
材料力学B作业

第一章 绪 论一、选择题1、构件的强度是指_________,刚度是指_________,稳定性是指_________。
A. 在外力作用下构件抵抗变形的能力B. 在外力作用下构件保持其原有的平衡状态的能力C. 在外力作用下构件抵抗破坏的能力2、根据均匀性假设,可认为构件的________在各点处相同。
A. 应力B. 应变C. 材料的弹性常数D. 位移3、下列结论中正确的是________ 。
A. 内力是应力的代数和B. 应力是内力的平均值C. 应力是内力的集度D. 内力必大于应力4、下列说法中,正确的是________ 。
A. 内力随外力的改变而改变。
B. 内力与外力无关。
C. 内力在任意截面上都均匀分布。
D. 内力在各截面上是不变的。
5、图示两单元体虚线表示其受力后的变形情况,两单元体的切应变γ分别为________ 。
A. α,αB. 0,αC. 0,-2αD. α,2α二、计算题1、如图所示,在杆件的斜截面m-m上,任一点A处的应力p=120 MPa,其方位角θ=20°,试求该点处的正应力σ与切应力τ。
2、已知杆内截面上的内力主矢为F R与主矩M如图所示,且均位于x-y平面内。
试问杆件截面上存在哪种内力分量,并确定其大小。
图中之C点为截面形心。
3、板件ABCD的变形如图中虚线A’B’C’D’所示。
试求棱边AB与AD的平均正应变以及A点处直角BAD的切应变。
第二章 拉伸与压缩一、选择题和填空题1、轴向拉伸杆件如图所示,关于应力分布正确答案是_________。
A 1-1、2-2面上应力皆均匀分布;B 1-1面上应力非均匀分布,2-2面上应力均匀分布;C 1-1面上应力均匀分布,2-2面上应力非均匀分布;D 1-1、2-2面上应力皆非均匀分布。
2、图示阶梯杆AD 受三个集中力作用,设AB 、BC 、CD 段的横截面积分别为3A 、2A 、A ,则三段的横截面上 。
A 轴力和应力都相等B 轴力不等,应力相等C 轴力相等,应力不等D 轴力和应力都不等3、在低碳钢拉伸曲线中,其变形破坏全过程可分为4个变形阶段,它们依次是 、 、 、 。
第6节(弯曲变形)

Mechanics of Materials
中南大学土木建筑学院力学系
Department of Mechanics of School of Civil Engineering and Architecture of Central South University
第六章 弯曲变形 第一节 概述
Fx Fl
转角方程
EI(x)1Fx2FlxC
2 挠度方程
E Iv(x)1F x31F lx2C xD 62
EI
d2v dx2
Fx Fl
EI(x)1Fx2FlxC
2
E Iv(x)1F x31F lx2C xD 62
⑶ 确定积分常数
EI(0)1F02Fl0C0
2 E Iv(0 )1F 0 31F l0 2 C 0D 0
EI(x)b2F l x2C1
E I(x)b 2 F l x2F 2(xa)2C 2
挠度方程
EIv(x)b6F l x3C1xD1 E Iw (x ) b 6 F lx 3F 6(x a )3 C 2xD 2
⑶ 确定积分常数
v(0)E 1 I(b 6 F l03C 10D 1)0
v (l) E 1 I[ b 6 F ll3 F 6(l a )3 C 2 l D 2 ] 0
max
(0)
Fl2 3EI
(x) 0
x (3 3)l 3
(33)l F l3
F l3
vm a xv(
) 0 .0 6 4 2
3 93E I
E I
例:简支梁AB如图所示(图中a > b),承受集中载荷F作 用,梁的弯曲刚度为EI。求此梁的挠曲轴方程和转角方程, 并确定挠度的最大值。
材料力学第六章 弯曲变形

4
2
C
B
)
=
A
( A)q C
l q
( B )q
(b)
B
( wC )q
l
θ B ( θ B )q ( θ B ) M e
+
Me
(c)
Mel ql 24 EI 6 EI
3
A
B
( B ) M e
( A ) MC ( wC ) M
e
e
l
例题3
AB梁的EI为已知,求梁中间C截面挠度.
F1l 2 F2 la 0.4 400 200 B ( ) 16 EI 3 EI 210 1880 16 3 +0.423 10-4 (rad)
F1l a F2a F2a l wC 5.19 106 m 16 EI 3 EI 3 EI wmax w (3)校核刚度: l l
x A
dx
F
x
C' dω
B
d tg dx
二、挠曲线的微分方程
1.纯弯曲时曲率与弯矩的关系
M EI
1
横力弯曲时, M 和 都是x的函数.略去剪力对梁的位移的影 响, 则
1 M ( x) ( x) EI
2.由数学得到平面曲线的曲率
F
1 | w | 3 2 2 ( x) (1 w )
q
A x B
w w F wq
+
w wF wq
例1 已知:EI, F,q .求C点挠度 F q
A
C a a
B
Fa 3 ( wC )F 6 EI
材料力学第6章弯曲变形

M1 EIw1
Fb x1 l
2 x1
" EIw2
Fb M2 x2 F ( x2 a ) l
2 x2 2
EIw1
Fb C1 l 2
x2 a Fb F C2 (i) EIw2 l 2 2
工学院
§6.2 挠曲线的微分方程
纯弯曲情况下,弯矩与曲率 间的关系(5.1):
M EI
1
--(a)
横力弯曲时,梁截面上有弯矩也有剪力,对于跨 度远大于截面高度的梁,剪力对弯曲变形的影响可以 省略,(a)式便可以作为横力弯曲变形的基本方程。其 中,M和1/ρ都是x的函数。
工学院
§6.2 挠曲线的微分方程
(o) (p)
CB段 (a x2 l )
Fb 2 3l 2 2 2 l b 3 x ( x a ) 2 2 6l b Fb 2 l 2 2 3 EIw2 l b x x ( x a ) 2 2 6l b 2 EIw2
车床主轴的变形过大会影响 齿轮的啮合和轴承的配合, 造成磨损不匀,产生噪音, 降低寿命以及影响加工精度。
工学院
§6.1 工程中的弯曲变形问题
吊车梁的变形过大,会 使梁上小车行走困难, 出现爬坡现象,还会引 起较严重的振动。
变形超过允许数值,即 使在弹性范围内,也被 认为是一种失效现象。
工学院
§6.1 工程中的弯曲变形问题
l
2
b
2
3
工学院
§6.3 用积分法求弯曲变形—实例3
7). 讨论
上面得到最大挠度表达式为: 3 1 Fb 2 2 wmax l b 9 3 EIl
材料力学B试题6弯曲变形

弯曲变形1. 已知梁的弯曲刚度EI 为常数,今欲使梁的挠曲线在x =l /3处出现一拐点,则比值M e1/M e2为:(A) M e1/M e2=2; (B) M e1/M e2=3; (C) M e1/M e2=1/2; (D) M e1/M e2=1/3。
答:(C)2. 外伸梁受载荷如图状有下列(A)、(B)、(C)(D)四种: 答:(B)3. 简支梁受载荷并取坐标系如图示,则弯矩M 、剪力F S 与分布载荷q 之间的关系以及挠曲线近似微分方程为:(A)EI x M xw q xF F xM)(d d ,d d ,dd 22SS ===; (B)EI x M xw q x F F x M)(d d ,d d ,d d 22SS =-=-=; (C)EI x M xw q x F F x M)(d d ,d d ,d d 22SS -==-=; (D)EI x M xw q xF F xM)(d d ,d d ,d d 22SS -=-==。
答:(B)4. 弯曲刚度为EI 的悬臂梁受载荷如图示,自由端的挠度EIl M EI Fl w B 232e 3+=(↓) 则截面C 处挠度为:(A)2e 3322323⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛l EI M l EI F (↓); (B)233223/323⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛l EI Fl l EI F (↓);(C)2e 3322)3/(323⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛l EI Fl M l EI F (↓);(D)2e 3322)3/(323⎪⎭⎫ ⎝⎛-+⎪⎭⎫⎝⎛l EI Fl M l EI F (↓)。
答:(C)5. 画出(a)、(b)、(c)三种梁的挠曲线大致形状。
答:6.7.、(b)两种(A) (a)>(b); (B) (a)<(b); (C) (a)=(b); (D) 不一定。
答:(C)8. 试写出图示等截面梁的位移边界条件,并定性地画出梁的挠曲线大致形状。
材料力学习题册答案_第6章_弯曲变形

得 x=0.519l
所以
W
m
ax
=0.00652
ql 4 EI
3 用叠加法求如图 7 所示各梁截面 A 的挠度和转角。EI 为已知常数。
解 A 截面的挠度为 P 单独作用与 M 0 单独作用所产生的挠度之和。 查表得:
y AP
Pl 3 24 EI
y = M 0l 2 Pl 3
AM 0
8EI
度 y = Fl 3 。 C 32 EI
4. 如图 4 所示两梁的横截面大小形状均相同,跨度为 l , 则两梁的力 图 相同 ,两梁的变形 不同 。(填“相同”或“不同”)
5. 提高梁的刚度措施有 提高Wz 、 降低 M MAX 等。 四、计算题 1 用积分法求图 5 所示梁 A 截面的挠度和 B 截面的转角。
8EI
y y 则 y A
AP
= Pl 3
AM0 12 EI
同理,A 截面的转角为 P 单独作用与 M 0 单独作用所产生的转角之和。
查表得
AP
Pl 2 8EI
对于 AM0 可求得该转角满足方程 EI =-Plx+C 边界条件 x=0 0 可得 C=0
现 4 个积分常数,这些积分常数需要用梁的 边界 条件和 光滑连
续 条件来确定。
2. 用积分法求图 2 所示梁变形法时,边界条件为:YA 0,A 0,YD 0 ;
连续条件为:
YA
1
YA
2
,
B
1
B
2
,
YC3.
如图
3
所示的外伸梁,已知
B
截面转角
B
=
Fl 2 16 EI
,则 C 截面的挠
于零的截面处。
材料力学弯曲变形

压杆稳定计算 1)根据压杆的约束条件确定长度系数 )根据压杆的约束条件确定长度系数µ 2)计算杆件自身的柔度 )计算杆件自身的柔度λ(10.7),判断发生弯曲的平面 , 也可由惯性矩来判断最大、最小刚度平面) (也可由惯性矩来判断最大、最小刚度平面) 3)通过比较 的大小,判断计算临界压力的公式 的大小, )通过比较λ的大小
1. λ1与材料的性能有关,材料不同,λ1的数 与材料的性能有关,材料不同, 值也就不同; 越大,杆件越容易弯曲。 值也就不同;λ越大,杆件越容易弯曲。 2. 满足 1条件的杆件称为细长杆或大柔度杆; 满足λ≥λ 条件的杆件称为细长杆 大柔度杆; 细长杆或 也叫大柔度杆的分界条件。 也叫大柔度杆的分界条件。其临界应力可用欧 拉公式计算。 拉公式计算。 3. λ越大杆件越容易弯曲。 越大杆件越容易弯曲。 越大杆件越容易弯曲 解题步骤: 解题步骤: 1)由截面形状确定最大、最小刚度平面 )由截面形状确定最大、 2)计算柔度,判断欧拉公式是否适用 )计算柔度, 3)计算临界压力和临界应力 )
σ =
P ≤ [σ ] st A
14
图示结构中, 为圆截面杆 直径d=80 mm,A端固 为圆截面杆, 例10.4 图示结构中,AB为圆截面杆,直径 , 端固 端铰支; 是正方形截面杆 边长a=70 mm,C端也为 是正方形截面杆, 定,B端铰支;BC是正方形截面杆,边长 端铰支 , 端也为 铰支; 和 杆可以独自发生弯曲变形而互不影响 杆可以独自发生弯曲变形而互不影响; 铰支;AB和BC杆可以独自发生弯曲变形而互不影响;两杆 的材料是A3钢 的材料是 钢,其λp=104 ,l=3 m,稳定安全系数 st=2.5 ; ,稳定安全系数n 求结构的许可载荷P。 求结构的许可载荷 。
π 2E Pcr = σ cr A = 2 ⋅ A = 269kN λ
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
弯曲变形1. 已知梁的弯曲刚度EI 为常数,今欲使梁的挠曲线在x =l /3处出现一拐点,则比值M e1/M e2为:(A) M e1/M e2=2; (B) M e1/M e2=3; (C) M e1/M e2=1/2; (D) M e1/M e2=1/3。
答:(C)2. 外伸梁受载荷如致形状有下列(A)(B)、(C),(D)四种:答:(B)3. 简支梁受载荷并取坐标系如图示,则弯矩M 、剪力F S 与分布载荷q 之间的关系以及挠曲线近似微分方程为: (A)EI x M x w q xF F x M )(d d ,d d ,d d 22SS ===;(B)EI x M xw q x F F xM)(d d ,d d ,d d 22SS =-=-=; (C)EI x M x w q x F F x M )(d d ,d d ,d d 22SS -==-=;(D)EI x M x w q xF F x M )(d d ,d d ,d d 22SS -=-==。
答:(B)4. 弯曲刚度为EI 的悬臂梁受载荷如图示,自由端的挠度EIl M EI Fl w B 232e 3+=(↓)则截面C 处挠度为:(A)2e 3322323⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛l EI M l EI F (↓);(B)233223/323⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛l EI Fl l EI F (↓); (C)2e 3322)3/(323⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛l EI Fl M l EI F (↓);(D)2e 3322)3/(323⎪⎭⎫ ⎝⎛-+⎪⎭⎫⎝⎛l EI Fl M l EI F (↓)。
答:(C)5. 画出(a)、(b)、(c)三种梁的挠曲线大致形状。
答:6.7.(a)、(b)刚度关系为下列中的哪一种: (A) (a)>(b); (B) (a)<(b);(C) (a)=(b); (D) 不一定。
答:(C)8. 试写出图示等截面梁的位移边界条件,并定性地画出梁的挠曲线大致形状。
答:x =0, w 1=0,1w '=0;x =2a ,w 2w 2;x =2a ,32w w '='。
9. 试画出图示静定组合梁在集中力F 作用下挠曲线的大致形状。
(a)(b)(c)w ===θw w10. 画出图示各梁的挠曲线大致形状。
答:11.12.l。
⎢⎣⎡提示证:令外伸端长度为a,内跨长度为得b3 = 0即13. 等截面悬臂梁弯曲刚度EI为已知,梁下有一曲面,方程为w= -Ax3。
欲使梁变形后与该曲面密合(曲面不受力),试求梁的自由端处应施加的载荷。
解:EIAxwEIxM6)(-=''=F S(x)=-6EIAx=l,M=-6EIAlF=6EIA(↑),M e=6EIAl)14. 变截面悬臂梁受均布载荷ql 及弹性模量E 。
试求截面A 的挠度w A 解:x lhb h x b x I 1212)()(303== 由边界条件0,='==w w l x 得C3042h Eb ql w A -=(↓) ,30338h Eb ql C =θ()15. 在刚性圆柱上放置一长2R 、宽b 、厚h 的钢板,已知钢板的弹性模量为E 。
试确定在铅垂载荷q 作用下,钢板不与圆柱接触部分的长度l 及其中之最大应力。
解:钢板与圆柱接触处有 EIql R 2/12= 故qREbh RqEI l 623==16. 弯曲刚度为EI的最大挠度及其挠曲线方程。
解:30)(6)(x l lq x M w EI --==''12024)(12043050lq x l q x l l q EIw -+--=w 17. 图示梁的左端可以自由上下移动,但不能左右移动及转动。
试用积分法求力F 作用处点A解:Fx Fl w EI -=''EIFl w A 33-=(↓)18. 简支梁上自A 至B 的分布载荷q (x )=-Kx 2,K 为常数。
试求挠曲线方程。
解:2)(Kx q x M -=='' 二次积分B Ax x K x M ++=412)( x =0, M =0, B =0 x =l , M =0,123Kl A -=x =0, w =0, D =0 x =l , w =0, 36045Kl C -=)45(3605336x l x l x EIKw +--=(↓) 19. 弯曲刚度为EI 的悬臂梁原有微小初曲率,其方程为y =Kx 3。
现在梁B 端作用一集中力,如图示。
当F 力逐渐增加接触。
若作用力为F ,试求: (1)梁与水平面的接触长度; (2)梁B 端与水平面的垂直距离。
解:(1) 受力前C 处曲率Ka a 6)(11=ρ,弯矩M (a )1 = 0受力后C 处曲率0)(12=a ρ,弯矩M (a )2 = -F (l - a ) (2)同理,受力前x 1截面处0)(),(6d d )(111122111=+=⎪⎪⎭⎫ ⎝⎛=+=x M x a K x y x xa x ρ受力后x 1截面处 )()(,d d )(1121211221x b F x M x y x --==ρ 积分二次D Cx EIFx EI Fbx Kx Kax y +++-+=132131211623C =0,D =020. 图示弯曲刚度为EI 的两端固定梁,其挠度方程为 式中A 、B 、C 、D 为积分常数。
试根据边界条件确定常数A 、B 、C 、D ,并绘制梁的剪力F S 、弯矩M 图。
解:x = 0,w = 0,D = 00,='=w l x 代入w '方程242ql B -=21. 已知承受均布载荷q 0图示受三角形分布载荷作用为w C = 。
答:EIl q 768540(↓)22. 试用叠加法计算图示梁A 点的挠度A 解:22)2/(3)2/(3)2/(233aEI a F EI a F EI a F w A ++= EIFa 48133=(↓)23. 试求图示梁BC 段中点的挠度。
解:EI a q EI a qa EI a qa w 384)2(53)3(3)(21433+⎪⎪⎭⎫ ⎝⎛+=EIqa8394=(↓)24. 已知梁的弯曲刚度EI 。
试用叠加法求图示梁截面C 的挠度w C 。
解:EIa a l q EI al q EI l a l q EI ql w C 96)2(256)2(96)2(76853434⋅-+-+--=EIa l qa 96)23(222-=(↓)25. 已知梁的弯曲刚度EI 为常数。
试用叠加法求图示梁B 截面的挠度和转角。
ql解: EI l q EI l q EI l q w B 12011308404040=-=(↓)EIl q EI l q EI l q B 8246303030=-=θ26. 试用叠加法求图示简支梁跨度中点C 的挠度。
解:+27. 试用叠加法求图示简支梁集中载荷作用点C 的挠度。
解:EIFlEI l F EI l F w w B B C 483)4/(413414333====(↓)28. 已知简支梁在均布载荷作用下跨中的挠度为EIql w C 38454=,用叠加法求图示梁中点C 的挠度。
解:()EIl q EI l q w C 76853842/54040=⋅=(↓)29.A解:A d θEI l q x x EIlq lA 10d 2304020==⎰θ)30. 弯曲刚度为EI 的等截面梁受载荷如图示,试用叠加法计算截面C 的挠度w C 。
解:EIl q q EI l q q w C 768)(53842/)(5421421+=⋅+⋅=q /23q 231. 如图所示两个转子,重量分别为P 1和P 2,安装在刚度分别为EI 1及EI 2的两个轴上,支承轴是A 、B 、C 、D 四个轴承。
B 、C 两轴承靠得极近以便于用轴套将此两轴连接在一起。
如果四个轴承的高度相同,两根轴在B 、C 处连接时将出现“蹩劲”现象。
为消除此现象可将A 处轴承抬高,试求抬高的高度。
解:121116EI l P B ⋅=θ, 222216EI l P C ⋅=θ点A 抬高的高度为131116EI l P +32. 图示梁AB 的左端固定,梁的横截面高度为h 膨胀系数为l α,若梁在安装后,顶面温度为t 1,底面温度为t 2(t 2>t 1),试求此梁的约束力。
解:因温度变化而弯曲的挠曲线微分方程为ht t x w x l )(d d d d 1222-==αθ由A 处边界条件得 2122)(x ht t w l -=α而EIl F w B BF B33=33. 图示温度继电器中两种金属片粘结的组合梁,左端固定,右端自由。
两种材料的弹性模量分别为E 1与E 2。
线膨胀系数分别为1l α与2l α,并且1l α>2l α起的挠度。
解:1l α>2l α,梁上凸下凹弯曲平衡条件 F N1 = F N2 = F N M 1 + M 2 = F N h 变形协调 θ1 =θ2,2211E M E M =ε1 =ε2,即ε1N +ε1M +ε1t =ε2N +ε2M +ε2t 得t I E hM A E F t I E h M A E F l l 222222N21111111N 22αα+-=+- 其中 A 1 = A 2 = bh ,I 1 = I 2 =123bh则 F N1 = F N2 =21222121212114)()(E E E E E E E tbhE l l +++-αα M 1 =21222122122114)(E E E E E E tbh l l ++-ααM 2 =21222122122114)(E E E E E E tbh l l ++-αα故)14()(222122212212122221121E E E E h l E tE b I E l M I E l M w l l B ++-===αα 34. 单位长度重量为q ,弯曲刚度为EI 的均匀钢条放置在刚性平面上,钢条的一端伸出水平面一小段CD ,若伸出段的长度为a ,试求钢条抬高水平面BC 段的长度b 。
解:()062/2423=-=EIbqa EI qb B θ35. 图示将厚为h = 3 mm 的带钢围卷在半径R = 1.2 m 的刚性圆弧上,试求此时带钢所产生的最大弯曲正应力。
已知钢的弹性模量E = 210 GPa ,屈服极限s σ= 280 MPa ,为避免带钢产生塑性变形,圆弧面的半径R 应不小于多少?解:262maxmax ==ρσEy MPa ,hR Eh+=2s σ, R = 1.12 m 36. 一悬臂梁受分布载荷作用如图示,荷载集度x l q x q 2πcos )(0=,试用叠加原理求自由端处截面B 的挠度w B ,梁弯曲刚度EI 为常量。