通过经纬度来计算两站距离(公式)

合集下载

根据经纬度算两点距离

根据经纬度算两点距离

根据两点经纬度计算距离这些经纬线是怎样定出来的呢?地球是在不停地绕地轴旋转(地轴是一根通过地球南北两极和地球中心的假想线),在地球中腰画一个与地轴垂直的大圆圈,使圈上的每一点都和南北两极的距离相等,这个圆圈就叫作“赤道”。

在赤道的南北两边,画出许多和赤道平行的圆圈,就是“纬圈”;构成这些圆圈的线段,叫做纬线。

我们把赤道定为纬度零度,向南向北各为90度,在赤道以南的叫南纬,在赤道以北的叫北纬。

北极就是北纬90度,南极就是南纬90度。

纬度的高低也标志着气候的冷热,如赤道和低纬度地地区无冬,两极和高纬度地区无夏,中纬度地区四季分明。

其次,从北极点到南极点,可以画出许多南北方向的与地球赤道垂直的大圆圈,这叫作“经圈”;构成这些圆圈的线段,就叫经线。

公元1884平面坐标图年,国际上规定以通过英国伦敦近郊的格林尼治天文台的经线作为计算经度的起点,即经度零度零分零秒,也称“本初子午线”。

在它东面的为东经,共180度;在它西面的为西经,共180度。

因为地球是圆的,所以东经180度和西经180度的经线是同一条经线。

各国公定180度经线为“国际日期变更线”。

为了避免同一地区使用两个不同的日期,国际日期变线在遇陆地时略有偏离。

每一经度和纬度还可以再细分为60分,每一分再分为60秒以及秒的小数。

利用经纬线,我们就可以确定地球上每一个地方的具体位置,并且把它在地图或地球仪上表示出来。

例如问北京的经纬度是多少?我们很容易从地图上查出来是东经116度24分,北纬39度54分。

在大海中航行的船只,只要把所在地的经度测出来,就可以确定船在海洋中的位置和前进方向。

纬度共有90度。

赤道为0度,向两极排列,圈子越小,度数越大。

横线是纬度,竖线是经度。

当然可以计算,四元二次方程。

经度和纬度都是一种角度。

经度是个两面角,是两个经线平面的夹角。

因所有经线都是一样长,为了度量经度选取一个起点面,经1884年国际会议协商,决定以通过英国伦敦近郊、泰晤士河南岸的格林尼治皇家天文台(旧址)的一台主要子午仪十字丝的那条经线为起始经线,称为本初子午线。

怎么用经纬度计算两地之间的距离

怎么用经纬度计算两地之间的距离

怎么用经纬度计算两地之间的距离?1、地球赤道上环绕地球一周走一圈共40075.04公里,而@一圈分成360°,而每1°(度)有60,每一度一秒在赤道上的长度计算如下:40075.04km/360°=111.31955km111.31955km/60=1.8553258km=1855.3m而每一分又有60秒,每一秒就代表1855.3m/60=30.92m任意两点距离计算公式为d=111.12cos{1/[sinΦAsinΦB十cosΦAcosΦBcos(λB—λA)]}其中A点经度,纬度分别为λA和ΦA,B点的经度、纬度分别为λB和ΦB,d为距离。

2、分为3步计算:第1步分别将两点经纬度转换为三维直角坐标:假设地球球心为三维直角坐标系的原点,球心与赤道上0经度点的连线为X轴,球心与赤道上东经90度点的连线为Y轴,球心与北极点的连线为Z轴,则地面上点的直角坐标与其经纬度的关系为:x=R×cosα×cosβy=R×cosα×sinβz=R×sinαR为地球半径,约等于6400km;α为纬度,北纬取+,南纬取-;β为经度,东经取+,西经取-。

第2步根据直角坐标求两点间的直线距离(即弦长):如果两点的直角坐标分别为(x1,y1,z1)和(x2,y2,z2),则它们之间的直线距离为:L=[(x1-x2)^2+(y1-y2)^2+(z1-z2)^2]^0.5上式为三维勾股定理,L为直线距离。

第3步根据弦长求两点间的距离(即弧长):由平面几何知识可知弧长与弦长的关系为:S=R×π×2[arc sin(0.5L/R)]/180上式中角的单位为度,1度=π/180弧度,S为弧长。

3、1度的实际长度是111公里。

但纬线的距离会越考两端越小,他的距离就会变成111乘COS纬度数,经度不变。

4、南北方向算出两点纬度差,一度等于60海里,1分等于1海里,海里与公里换算关系1海里等于1.852公里。

已知经纬度,求两地的距离 - 附“两地距离计算器”

已知经纬度,求两地的距离 - 附“两地距离计算器”

已知经纬度,求两地的距离 - 附“两地距离计算器”2011-07-26 11:01式中:α和θ分别是两地的纬度,北纬记为正,南纬记为负;β是两地的经度差;r是地球半径。

忽略各地海拔高度差异,认为地球是理想的球面。

求出的L 是两地的直线距离(地球的一条弦长),l 是两地的球面距离(沿地球表面的弧长)。

线性文本:k=√((sin⁡θ-sin⁡α )^2+(cos⁡θ-cos⁡α cos⁡β )^2+(cos ⁡α sin⁡β )^2;L=rk,l=2r sin^(-1)⁡〖k/2〗公式注:arcsin得弧度值公式是我自己推导的。

式中的α和θ地位等价。

公式应用举例:求北京和悉尼之间的距离。

北京:39°54′57″N , 116°23′26″E悉尼:33°51′35.9″S , 151°12′40″E则:α=39°54′57″θ=-33°51′35.9″β=116°23′26″-151°12′40″=-34°49′14″代入公式中,查三角函数表,r取地球平均半径6371.004 千米,即可求得L = 8231.403 km l = 8949.214 km注意经度差的算法。

116°E和151°E相差151°-116°=35°,116°E和151°W相差360°-151°-116°=93°经度差35°或-35°或325°是等价的。

附两地距离计算器:此UI延续我造某的一贯风格。

比较易懂,操作说明我就不写了;如有问题可在本文下留言或联系我li.zaodie@。

下载地址:Distance.exe /self.aspx/z aodiesoft/distance.exe。

计算经纬度两点之间距离的差多少米

计算经纬度两点之间距离的差多少米

计算经纬度两点之间距离的差多少米原文地址:计算经纬度两点之间距离的差多少米作者:一网情深先计算沿纬度距离,在计算沿经度距离,具体如下:求出纬度差,将差换算成距离,1度=60海里=60*1852米求出经度差,将其换算成距离,1度=60海里*cos纬度=60海里*1852米*cos纬度对沿纬度距离和沿经度距离进行平方求和再开方,可以得到两点间的距离。

同纬度不同经度 (赤道除外)h X 111 X COSD=G (h=两地经度差 D=当地的地理纬度 G=实际距离)跨纬度的需要构造个三角比如说AB两点不同经纬度(A经B纬)那就先算出与A点共线的那条纬度B'的距离,在算A到B'的距离,在用勾股定理就可以得出简单的说可用以下通用公式:地球上任两点间距离公式:地球上任两点,其经度分别为A1、A2(E正,W负),纬度分别为B1、B2(N正,S负)。

令A0=(A1-A2)÷2,B0=(BI-B2)÷2f=√sinB0×sinB0+cosB1×cosB2×sinA0×sinA0则1、两点间空间直线距离=2fR2、两点间最小球面距离=arcsinf÷90°×∏R(角度)3、两点间最小球面距离=arcsinf×2R(弧度)说明:E、W、N、S=东西南北;R=地球半径;√=根号;∏=圆周率。

代入公式自己算吧create or replace function xp_2pointdistance(x1 float, --起始点xx2 float, --起始点yy1 float, --终点xy2 float--终点y)return floatisResult float;pPI float := 0.0;pPIval float := 0.0;earth_radius float := 6378.137;radlat1 float := 0.0;radlat2 float := 0.0;a float := 0.0;b float := 0.0;s float := 0.0;begin-- cos(-1) = 0.54030230586814-- 弧度cos1 = 0.54030230586814-- 角度cos1°=0.999847695pPI := acos(-1);pPIval := pPI/180.0;radlat1 := y1*pPIval;radlat2 := y2*pPIval;a := radlat1 - radlat2; --两点间的纬度弧度差b := x1*pPIval - x2*pPIval; --两点间的经度弧度差-- ASIN(number)Number角度的正弦值,必须介于-1到1之间。

84经纬度距离计算公式

84经纬度距离计算公式

84经纬度距离计算公式经度和纬度可以用球面坐标系来表示,因此距离计算可以采用大圆距离公式(Haversine公式),其计算公式为:d = 2 * R * arcsin(sqrt(sin²((lat₂-lat₁)/2) +cos(lat₁) * cos(lat₂) * sin²((lon₂-lon₁)/2)))其中,d表示两个点之间的距离,lat₁和lon₁表示第一个点的纬度和经度,lat₂和lon₂表示第二个点的纬度和经度。

R表示地球的平均半径,取值为6371公里。

该公式可以用多种编程语言实现,如Python:import mathR = 6371.0 # 地球平均半径,单位为千米def distance(lat1, lon1, lat2, lon2):lat1_r = math.radians(lat1)lon1_r = math.radians(lon1)lat2_r = math.radians(lat2)lon2_r = math.radians(lon2)d_lat = lat2_r - lat1_rd_lon = lon2_r - lon1_ra = math.sin(d_lat/2)**2 + math.cos(lat1_r) *math.cos(lat2_r) * math.sin(d_lon/2)**2c = 2 * math.atan2(math.sqrt(a), math.sqrt(1-a))return R * c# 示例lat1, lon1 = 39.9087, 116.3975 # 北京天安门lat2, lon2 = 31.2304, 121.4737 # 上海外滩d = distance(lat1, lon1, lat2, lon2)print(d) # 输出约为1068.941千米。

计算两经纬度之间的距离的公式

计算两经纬度之间的距离的公式

计算两经纬度之间的距离的公式在地理学中,经度和纬度是用来描述地球表面位置的两个重要参数。

经度是指从地球中心到地球表面某一点的线段与本初子午线的夹角,通常用度数来表示;纬度是指从地球中心到地球表面某一点的线段与赤道面的夹角,也通常用度数来表示。

在实际应用中,我们经常需要计算两个地点之间的距离,这时就需要用到计算两经纬度之间的距离的公式。

计算两经纬度之间的距离的公式是基于球面三角学的原理,其基本思想是将地球看作一个球体,然后通过计算球面上两点之间的弧长来确定它们之间的距离。

这个公式的具体形式如下:d = R * arccos(sin(lat1) * sin(lat2) + cos(lat1) * cos(lat2) * cos(lon2 - lon1))其中,d表示两点之间的距离,R表示地球的半径,lat1和lat2分别表示两点的纬度,lon1和lon2分别表示两点的经度。

需要注意的是,这个公式中的经纬度需要用弧度来表示,而不是度数。

因此,在计算之前需要将经纬度转换为弧度。

在实际应用中,我们可以使用各种编程语言来实现这个公式,例如Python、Java、C++等。

下面是一个使用Python实现计算两经纬度之间距离的示例代码:import mathdef distance(lat1, lon1, lat2, lon2):R = 6371 # 地球半径,单位为千米lat1, lon1, lat2, lon2 = map(math.radians, [lat1, lon1, lat2, lon2])dlat = lat2 - lat1dlon = lon2 - lon1a = math.sin(dlat / 2) ** 2 + math.cos(lat1) * math.cos(lat2) * math.sin(dlon / 2) ** 2c = 2 * math.atan2(math.sqrt(a), math.sqrt(1 - a))d = R * creturn d# 示例lat1, lon1 = 39.9, 116.3 # 北京的经纬度lat2, lon2 = 31.2, 121.5 # 上海的经纬度print(distance(lat1, lon1, lat2, lon2)) # 输出北京和上海之间的距离,单位为千米通过这个示例代码,我们可以很方便地计算出两个地点之间的距离。

两个经纬度之间的距离公式

两个经纬度之间的距离公式

两个经纬度之间的距离公式两个经纬度之间的距离可以通过计算两个点之间的直线距离来确定。

这个距离可以使用经纬度之间的差值计算出来。

经度是指地球表面上某一点与本初子午线之间的角度差,而纬度是指地球表面上某一点与赤道之间的角度差。

我们需要知道两个经纬度点的具体数值。

假设经度和纬度分别表示为:经度1、纬度1和经度2、纬度2。

这些数值可以通过卫星导航系统(如GPS)或者在线地图服务(如谷歌地图)获得。

接下来,我们可以使用以下公式来计算两点之间的距离:距离 = arccos(sin(纬度1) * sin(纬度2) + cos(纬度1) * cos(纬度2) * cos(经度1 - 经度2)) * 地球半径在这个公式中,地球半径是一个常数,表示地球的平均半径。

它通常被取为6,371公里。

公式中的其他函数,如sin、cos和arccos,是三角函数,可以在数学函数库中找到相应的实现。

值得注意的是,这个公式计算的是两个点之间的直线距离,而不是实际的路程。

如果需要考虑实际的路程,还需要考虑地球表面的曲率和地形等因素。

此外,这个公式假设地球是一个完美的球体,而实际上地球是稍微扁平的。

因此,在极高纬度或极低纬度的情况下,这个公式可能会有一定的误差。

为了更好地理解这个公式,我们可以通过一个例子来说明。

假设我们有两个点的经纬度分别为:点A的经度为116.4074°,纬度为39.9042°;点B的经度为121.4737°,纬度为31.2304°。

我们可以使用上述公式来计算这两个点之间的距离。

将这些经纬度转换为弧度,即将度数乘以π/180:经度1 = 116.4074° * π/180 ≈ 2.0313弧度,纬度1 = 39.9042° * π/180 ≈ 0.6964弧度;经度2 = 121.4737°* π/180 ≈ 2.1189弧度,纬度2 = 31.2304° * π/180 ≈ 0.5453弧度。

excel经纬度距离计算公式

excel经纬度距离计算公式

excel经纬度距离计算公式经纬度距离计算公式是一种用于计算地球上两点之间距离的公式。

在Excel中,我们可以使用该公式来计算两个经纬度坐标之间的距离,这对于地理信息系统(GIS) 和其他需要计算地理距离的应用程序非常有用。

该公式基于海卫一号卫星计算公式,其核心思想是根据两个经纬度坐标之间的球面距离来计算两点之间的距离。

由于地球是一个略微扁平的球体,球面距离比直线距离更准确。

该公式的基本形式如下:距离= 6371.01 * ACOS(COS(RADIANS(90 - 纬度1)) * COS(RADIANS(90 - 纬度2)) + SIN(RADIANS(90 - 纬度1)) * SIN(RADIANS(90 - 纬度2)) * COS(RADIANS(经度1 - 经度2)))其中,6371.01是地球半径(单位是千米),纬度和经度是以度为单位的坐标值,RADIANS是将角度转换为弧度的函数,ACOS是反余弦函数,COS和SIN是余弦和正弦函数。

在Excel中,我们可以使用以下公式来计算两点之间的距离:= 6371.01 * ACOS(COS(RADIANS(90 - 纬度1)) * COS(RADIANS(90 - 纬度2)) + SIN(RADIANS(90 - 纬度1)) * SIN(RADIANS(90 - 纬度2)) * COS(RADIANS(经度1 - 经度2)))其中,纬度1和经度1是第一个点的坐标,纬度2和经度2是第二个点的坐标。

当我们输入这个公式后,Excel会自动计算出两个经纬度坐标之间的距离,并将结果显示在单元格中。

该公式可以用于计算任意两个地点之间的距离,无论它们位于世界的哪个角落。

需要注意的是,该公式仅适用于计算球面距离,而不考虑地球表面的复杂形状和地形。

在实际应用中,我们可能需要考虑其他因素,例如海拔高度、地形等,以更准确地计算地球上两点之间的实际距离。

经纬度距离计算公式是一种非常有用的工具,它可以帮助我们快速、准确地计算地球上任意两点之间的距离。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档