近世代数模拟试题2
近世代数期末考试题(卷)库

{ 1、设置换σ 和τ 分别为:σ = ⎡⎢ ,τ = ⎡⎢⎥ ,判断 和 的奇偶性,并把 和12345678 ⎤ 12345678 ⎤⎣64173528⎦⎣23187654⎦矩阵,且 A = B + C 。
若令有 A = B + C ,这里 B 和 C 分别为对称矩阵和反对称矩阵,则 2 2 ..世代数模拟试题一一、单项选择题(本大题共 5 小题,每小题 3 分,共 15 分)在每小题列出的四个备选项中 只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无 分。
1、设 A =B =R(实数集),如果 A 到 B 的映射 ϕ :x→x +2,∀ x∈R ,则 ϕ 是从 A 到 B 的( c ) A 、满射而非单射 B 、单射而非满射 C 、一一映射 D 、既非单射也非满射2、设集合 A 中含有 5 个元素,集合 B 中含有 2 个元素,那么,A 与 B 的积集合 A×B 中含有( d )个元素。
A 、2 B 、5 C 、7 D 、103、在群 G 中方程 ax=b ,ya=b , a,b∈G 都有解,这个解是(b )乘法来说 A 、不是唯一 B 、唯一的 C 、不一定唯一的 D 、相同的(两方程解一样)4、当 G 为有限群,子群 H 所含元的个数与任一左陪集 aH 所含元的个数(c ) A 、不相等 B 、0 C 、相等 D 、不一定相等。
5、n 阶有限群 G 的子群 H 的阶必须是 n 的(d ) A 、倍数 B 、次数 C 、约数 D 、指数二、填空题(本大题共 10 小题,每空 3 分,共 30 分)请在每小题的空格中填上正确答案。
错填、不填均无分。
1、设集合 A = {- 1,0,1}; B = 1,2},则有 B ⨯ A = 。
2、若有元素 e∈R 使每 a∈A ,都有 ae=ea=a ,则 e 称为环 R 的单位元。
3、环的乘法一般不交换。
如果环 R 的乘法交换,则称 R 是一个交换环。
近世代数复习

世代数模拟试题一一、单项选择题(本大题共5小题,每小题3分,共15分)1、设人=B=R (实数集),如果A 到B 的映射:x-x+2,xCR,则是从A 到B 的() A 、满射而非单射B 、单射而非满射C 、一一映射D 、既非单射也非满射2、设集合A 中含有5个元素,集合B 中含有2个元素,那么,A 与B 的积集合AXB 中含有()个元素。
A 、2B 、5C 、7D 、103、在群G 中方程ax=b,ya=b,a,bCG 都有解,这个解是()乘法来说 A 、不是唯一B 、唯一的C 、不一定唯一的D 、相同的(两方程解一样)4、当G 为有限群,子群H 所含元的个数与任一左陪集aH 所含元的个数() A 、不相等B 、0C 、相等D 、不一定相等。
5、n 阶有限群G 的子群H 的阶必须是门的() A 、倍数B 、次数C 、约数D 、指数二、填空题(本大题共10小题,每空3分,共30分) 1、设集合A1,0,1;B1,2,则有BA 。
2、若有元素eCR 使每aCA,都有ae=ea=a,则e 称为环R 的。
3、环的乘法一般不交换。
如果环R 的乘法交换,则称R 是一个。
4、偶数环是的子环。
5、一个集合A 的若干个--变换的乘法作成的群叫做A 的一个。
6、每一个有限群都有与一个置换群。
7、全体不等于0的有理数对于普通乘法来说作成一个群,则这个群的单位元是,元a 的逆元是。
8、设I 和S 是环R 的理想且ISR,如果I 是R 的最大理想,那么 9、一个除环的中心是一个。
三、解答题(本大题共3小题,每小题10分,共30分)并把和写成对换的乘积。
2、证明:任何方阵都可唯一地表示成一个对称矩阵与一个反对称矩阵之和。
3、设集合M m {0,1,2,,m1,m}(m1),定义M m 中运算“m ”为a m b=(a+b)(modm),则(M m,m)是不是群,为什么?四、证明题(本大题共2小题,第1题10分,第2小题15分,共25分)1、设G 是群。
近世代数模拟试题及答案

近世代数模拟试题二一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1、设G 有6个元素的循环群,a 是生成元,则G 的子集( )是子群。
A 、{}aB 、{}e a ,C 、{}3,a eD 、{}3,,a a e 2、下面的代数系统(G ,*)中,( )不是群A 、G 为整数集合,*为加法B 、G 为偶数集合,*为加法C 、G 为有理数集合,*为加法D 、G 为有理数集合,*为乘法3、在自然数集N 上,下列哪种运算是可结合的?( )A 、a*b=a-bB 、a*b=max{a,b}C 、 a*b=a+2bD 、a*b=|a-b|4、设1σ、2σ、3σ是三个置换,其中1σ=(12)(23)(13),2σ=(24)(14),3σ=(1324),则3σ=( )A 、12σB 、1σ2σC 、22σD 、2σ1σ5、任意一个具有2个或以上元的半群,它( )。
A 、不可能是群B 、不一定是群C 、一定是群D 、 是交换群二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。
错填、不填均无分。
1、凯莱定理说:任一个子群都同一个----------同构。
2、一个有单位元的无零因子-----称为整环。
3、已知群G 中的元素a 的阶等于50,则4a 的阶等于------。
4、a 的阶若是一个有限整数n ,那么G 与-------同构。
5、A={∩B=-----。
6、若映射ϕ既是单射又是满射,则称ϕ为-----------------。
7、α叫做域F 的一个代数元,如果存在F 的-----n a a a ,,,10 使得010=+++n n a a a αα 。
8、a 是代数系统)0,(A 的元素,对任何A x ∈均成立x a x = ,则称a 为---------。
9、有限群的另一定义:一个有乘法的有限非空集合G 作成一个群,如果满足G 对于乘法封闭;结合律成立、---------。
近世代数初步模拟试卷2(参考答案)[1]
![近世代数初步模拟试卷2(参考答案)[1]](https://img.taocdn.com/s3/m/ec5db9b669dc5022aaea00a8.png)
试题(2)的参考答案一、填空题(27分)1、7阶群的子群共有 2 个。
2、“圆规直尺作图的三大难题”是三等分任意角问题 、 化圆为方问题 、 倍立方问题 。
3、把置换ρ=(1365)(3457)(7215)表示为不相交的轮换的乘积是 (17234)(56) 。
4、如果域E 的乘法群恰好包含f (x ) = x 124-1的所有根,则E 的特征是 5 。
5、剩余类加法群Z 8的生成元有 4 个,它们是 [1], [3], [5], [7] 。
6、除环的理想有 2 个。
7、实数32在有理域上的极小多项式是 x 3-2 。
8、20042005≡ 1 (mod 5).9、复数域C 作为实数域R 的扩域,指数[C : R ]= 2 .二、选择题 10、(D) 11、(B) 12、(C) 13、(A) 14、(B).三、计算题15、解: 如果域E 的乘法子群E*=E\{0}有一个13阶子群H, 且[E*:H]=2, 则|E*|=2|H|=26,进而,|E|=27=33,域E 的特征是3。
………………………10分16、解:32+在有理数域Q 上的极小多项式为f (x ) = x 4-10x 2+1。
………2分因为, (1) 32+∉Q (2) . 假设32+∈Q (2),则3∈Q (2),设3= a+b 2,a , b ∈Q ,且a ≠ 0 ≠ b ,两边平方得3 - a 2-2b 2 = 2 ab 2, 等式左边是有理数,而右边是无理数,矛盾。
………………………2分(2) 2∈Q (32+) . 因为 2=21[(32+-(3-2)]=21[32+-(32+)-1]. ………2分(3) [Q (32+):Q ] = 4. 由(1)和(2)知, Q (2)是Q (32+)的真子域,显然,32+在Q (2)上的极小多项式为x 2-22x -1,进而, [Q (32+):Q (2)]=2,所以,[Q (32+):Q ]= [Q (32+):Q (2)][Q (2):Q]=4. ………2分 (3)说明,32+在Q 上的极小多项式的次数是4。
近世代数模拟试题2

近世代数模拟试题二一、填空题(每空3分,共30分)1、设A 是n 元集,B 是m 元集,那么A 到B 的映射共有____________个.2、环的中心是一个 。
3、环Z8的零因子有4、S3的真子群有5、平凡理想是指------------和---------------。
6、除环、域皆无--------------因子。
7、设A={x,y}则2A={ }8、从同构的意义上讲,一个群只能与其 同态。
9、给出一个5-循环置换)31425(=π,那么=-1π 。
二、选择题(每小题3分,共15分)1、设21:G G f →是一个群同态映射,那么下列错误的命题是( )A 、f 的同态核是1G 的不变子群;B 、2G 的不变子群的逆象是1G 的不变子群;C 、1G 的子群的象是2G 的子群;D 、1G 的不变子群的象是2G 的不变子群。
2、整数环Z 中,可逆元的个数是( )。
A.1个B.2个C.4个D.无限个3、设c b a ,,和x 都是群G 中的元素且xac acx bxc a x ==-,12,那么=x ( ) A 、11--a bc ; B 、11--a c ; C 、11--bc a ; D 、ca b 1-。
4、在群G 中方程ax=b ,ya=b , a,b ∈G 都有解,这个解是( )乘法来说A 、不是唯一B 、唯一的C 、不一定唯一的D 、相同的(两方程解一样)5、设(G ,·)为半群,如果方程ax=b 与ya=b a,b ∈G 在G 中有解,(不要求唯一性)则G ( )。
A 、也作成群B 、还是半群C 、不一定是群D 、不是群三、简答题(每小题8分,共40分。
下列题正确错误均需说明,正确的,予以证明;错误的,给出反例。
判断3分,说明5分,判断错误,全题无分。
)1、群G 的中心是G 的一个不变子群。
2、只要f 是A 到A 的一一映射,那么必有唯一的逆映射1-f 。
3、如果循环群()a G =中生成元a 的阶是无限的,则G 与整数加群同构。
近世代数模拟试题及答案

近世代数模拟试题一、单项选择题每题5分,共25分1、在整数加群Z,+中,下列那个是单位元;A 0B 1C -1D 1/n,n是整数2、下列说法不正确的是;A G只包含一个元g,乘法是gg=g;G对这个乘法来说作成一个群B G是全体整数的集合,G对普通加法来说作成一个群C G是全体有理数的集合,G对普通加法来说作成一个群D G是全体自然数的集合,G对普通加法来说作成一个群3、下列叙述正确的是;A 群G是指一个集合B 环R是指一个集合C 群G是指一个非空集合和一个代数运算,满足结合律,并且单位元,逆元存在D 环R是指一个非空集合和一个代数运算,满足结合律,并且单位元,逆元存在4、如果集合M的一个关系是等价关系,则不一定具备的是;A 反身性B 对称性C 传递性D 封闭性S的共轭类;5、下列哪个不是3A 1B 123,132,23C 123,132D 12,13,23二、计算题每题10分,共30分S的正规化子和中心化子;1.求S={12,13}在三次对称群32.设G ={1,-1,i,-i},关于数的普通乘法作成一个群,求各个元素的阶;3.设R 是由一切形如⎪⎪⎭⎫ ⎝⎛0,0,y x x,y 是有理数方阵作成的环,求出其右零因子;三、证明题每小题15分,共45分1、设R 是由一切形如⎪⎪⎭⎫ ⎝⎛0,0,y x x,y 是有理数方阵作成的环,证明⎪⎪⎭⎫ ⎝⎛0,00,0是其零因子;2、设Z 是整数集,规定a ·b =a +b -3;证明:Z 对此代数运算作成一个群,并指出其单位元;3、证明由整数集Z和普通加法构成的Z,+是无限阶循环群;近世代数模拟试题答案一、单项选择题每题5分,共25分1. A2. D3. C4. D5. B二、计算题每题10分,共30分1. 解:正规化子NS ={1,23};;;;;;;;;;;;6分中心化子CS ={1};;;;;;;;;;;;;;;;;;4分2. 解:群G 中的单位元是1;;;;;;;;;;;;;;;;;;;;;;;;2分1的阶是1,-1的阶是2,i 和-i 的阶是4;;;;4×2分3. 解:设其右零因子为⎪⎪⎭⎫ ⎝⎛0,0,b a ;;;;;;;;;;;;;;;;;;;;;;;2分 所以⎪⎪⎭⎫ ⎝⎛0,0,y x ⎪⎪⎭⎫ ⎝⎛0,0,b a =⎪⎪⎭⎫ ⎝⎛0,0,xb xa =0;;;;;;;;;;;;;;;3分因为x 任意,所以a =b =0;;;;;;;;;;;;;;;;;;;;3分因此右零因子为⎪⎪⎭⎫⎝⎛0,00,0;;;;;;;;;;;;;;;;;;;;;;;;2分三、证明题每小题15分共45分 1.证明:设其右零因子为⎪⎪⎭⎫ ⎝⎛0,0,b a ;;;;;;;;;;;;;;;;;;;;;;;2分 所以⎪⎪⎭⎫ ⎝⎛0,0,y x ⎪⎪⎭⎫ ⎝⎛0,0,b a =⎪⎪⎭⎫ ⎝⎛0,0,yb xa =0;;;;;;;;;;;;;;;;5分 因为x,y 任意,所以a =b =0;;;;;;;;;;;;;;;;;8分同理设其右零因子为⎪⎪⎭⎫ ⎝⎛0,0,b a ;;;;;;;;;;;;;;;;;;;;10分 所以⎪⎪⎭⎫ ⎝⎛0,0,b a ⎪⎪⎭⎫ ⎝⎛0,0,y x =⎪⎪⎭⎫ ⎝⎛0,0,yb xa =0;;;;;;;;;;;;;;;;12分 因为x,y 任意,所以a =b =0;;;;;;;;;;;;;;;;;14分因此零因子为⎪⎪⎭⎫ ⎝⎛0,00,0;;;;;;;;;;;;;;;;;;;;;;;;15分2.明:首先该代数运算封闭;;;;;;;;;;;;;;;;;;;;3分其次我们有:a ·b ·c =a +b -3·c =a +b -3+c -3=a +b +c -3-3=a ·b ·c,结合律成立;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;6分令e =3,验证a ·e =a +e -3=a,有单位元;;;;7分对任意元素a,6-a 是其逆元,因为a ·6-a =3;;;8分因此,Z 对该运算作成一个群;显然,单位元是e =3;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;10分3.证明:首先证明Z,+是群,+满足结合律,对任意的Z x ∈,x x x =+=+00,0是运算+的单位元又由于: ()()0=+-=-+x x x x所以 ,1x x -=-从而Z,+为群;;;;;;;;;2分由于+满足交换律,所以Z,+是交换群;;;;4分Z,+的单位元为0,对于1Z ∈,由于 1+-1=0,所以111-=-,;;;5分于是对任意Z k ∈,若0=k ,则:010=;若0>k ,则k k =+++=1111 ;;;;;;;;;;;8分若0<k ,则()()()k k k k ------===111111)1()1()1(---++-+-=个k))(1(k --= k = ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;10分综上,有k k =1,对任意的Z k ∈. 因而,{}Z k Z k ∈=1,从而Z,+是无限阶循环群;;;;;;;;;;;;;;;;;;15分。
近世代数期末考试试题库

世代数模拟试题一一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内.错选、多选或未选均无分。
1、设A=B=R(实数集),如果A到B的映射:x→x+2,x∈R,则是从A到B的( c )A、满射而非单射B、单射而非满射C、一一映射D、既非单射也非满射2、设集合A中含有5个元素,集合B中含有2个元素,那么,A与B的积集合A×B中含有( d )个元素.A、2B、5C、7D、103、在群G中方程ax=b,ya=b, a,b∈G都有解,这个解是(b )乘法来说A、不是唯一B、唯一的C、不一定唯一的D、相同的(两方程解一样)4、当G为有限群,子群H所含元的个数与任一左陪集aH所含元的个数(c )A、不相等B、0C、相等D、不一定相等。
5、n阶有限群G的子群H的阶必须是n的(d )A、倍数B、次数C、约数D、指数二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案.错填、不填均无分.1、设集合;,则有。
2、若有元素e∈R使每a∈A,都有ae=ea=a,则e称为环R的单位元。
3、环的乘法一般不交换。
如果环R的乘法交换,则称R是一个交换环。
4、偶数环是整数环的子环。
5、一个集合A的若干个——变换的乘法作成的群叫做A的一个变换全.6、每一个有限群都有与一个置换群同构。
7、全体不等于0的有理数对于普通乘法来说作成一个群,则这个群的单位元是1,元a 的逆元是a-1。
8、设和是环的理想且,如果是的最大理想,那么———————-—。
9、一个除环的中心是一个-域———--。
三、解答题(本大题共3小题,每小题10分,共30分)1、设置换和分别为:,,判断和的奇偶性,并把和写成对换的乘积。
2、证明:任何方阵都可唯一地表示成一个对称矩阵与一个反对称矩阵之和.奇1、解:把和写成不相杂轮换的乘积:可知为奇置换,为偶置换。
近世代数期末考试题库包括模拟卷和1套完整题2

近世代数期末考试题库包括模拟卷和1套完整题2一、(2011年近世代数)判断题(下列命题你认为正确的在题后括号内打,错的打“X” ;每小题1分,共10 分)1、设A与B都是非空集合,那么A B xx A且x B。
()2、设A、B、D都是非空集合,则A B到D的每个映射都叫作二元运算。
()3、只要f是A到A的一一映射,那么必有唯一的逆映射 f 1。
()4、如果循环群G a中生成元a的阶是无限的,贝U G与整数加群同构。
()5、如果群G的子群H是循环群,那么G也是循环群。
()6、近世代数中,群G的子群H是不变子群的充要条件为g G, h H;g 1Hg H。
()7、如果环R的阶2,那么R的单位元1 0。
()8若环R满足左消去律,那么R必定没有右零因子。
()9、F(x)中满足条件p() 0的多项式叫做元在域F上的极小多项式。
()10、若域E的特征是无限大,那么E含有一个与Z?p同构的子域,这里Z是整数环,p是由素数p生成的主理想。
()二、(2011年近世代数)单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其号码写在题干后面的括号内。
答案选错或未作选择者,该题无分。
每小题1分,共10分)1、设A,阳,A n和D都是非空集合,而f是A1 A2 A n到D的一个映射,那么()①集合A|, A2 , , A n , D中两两都不相同;② A1 , A2 , , A n的次序不能调换;③A1 A2A n中不同的元对应的象必不相同;④一个元a1,a2, , a n的象可以不唯一。
2、指出下列那些运算是二元运算()a K t ___________①在整数集Z上,a b --;②在有理数集Q上,a b ... |ab ;ab③在正实数集R上,a b a In b;④在集合n Zn 0上,a b a b。
3、设是整数集Z上的二元运算,其中a b max a,b (即取a与b 中的最大者),那么在Z中()①不适合交换律;②不适合结合律;③存在单位元;④每个元都有逆元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
近世代数模拟试题
一、填空题
1、如果循环群()a G =中生成元a 的阶是无限的,则G 与-----------同构。
2、实数域R 的全部理想是-------
3、n 次对称群Sn 的阶是____________.
4、一个有限非可换群至少含有____________个元素.
5、假定R 是整数环,则:(2,5)=----------------。
6、设A={1,2,…,10}, 给出一个A ×A 到A 的映射,这个映射------------单射。
7、全体整数对于普通加法来说作成一个群,这个群的单位元是 ------,a 的逆元是---------。
8、凯莱定理说:任一个子群都同一个 同构。
9、阶是素数的群一定是-------------群。
二、选择题
1、每一个有限群都与一个置换群( )
A 、同态
B 、相等
C 、同构
D 、不相等
2、从同构的意义讲,阶为4 的群只有( )个。
A. 1
B.2
C. 3
D.4
3、指出下列那些运算是二元运算( )
A 、在整数集Z 上,ab b a b a += ;
B 、在有理数集Q 上,ab b a = ;
C 、在正实数集+R 上,b a b a ln = ;
D 、在集合{}
0≥∈n Z n 上,b a b a -= 。
4、设S3={(1),(1 2),(1 3),(2 3),(1 2 3),(1 3 2)},则S 中与元(1 2 3)不能交换的元的个数是( )。
A.1
B.2
C.3
D.4
5、同构的观点看,循环群有且只有两种,分别( )
A 、G=(a )与G 的子群
B 、(Z ,+)与(Zn ,+)
C 、变换群与置换群
D 、(Q ,+)与(Zn ,+)
三、简答题( 下列题正确错误均需说明,正确的,予以证明;错误的,给出反例。
判断3分,说明5分,判断错误,全题无分。
)
1、若环R 满足左消去律,那么R 必定没有右零因子。
2、在一个群G 里,若
0,1的阶是那么a a a -=。
3、任何方阵都可唯一地表示成一个对称矩阵与一个反对称矩阵之和。
4、假定R是整数环,则:(2,5)=(1)
5、两个理想的交集是一个理想。
四、证明题(共15分)
1、设K是数域F上n阶矩阵全体构成的矩阵环。
证明矩阵的相似关系是一个等价关系。