第四章单自由度系统振动分析

合集下载

单自由度无阻尼自由振动的系统分析

单自由度无阻尼自由振动的系统分析

单自由度无阻尼自由振动的系统分析在结构动力学之中,单自由度体系的振动是最简单的振动,但单自由度体系的频率计算在结构动力学计算中有着十分重要的意义,因为从中我们能得到关于振动理论的一些最基本的概念和分析方法同时也为更复杂的多质点多自由度体系振动问题奠定基础,同时现实工程中也有许多振动问题可以简化为单自由度问题近似的利用单自由度振动理论去分析解决。

在单层厂房、水塔等建筑物中得到有效的利用结构的自由振动是指结构受到扰动离开平衡位置后,不再受到任何外力影响的振动过程,此处动力系统是否有阻尼项,会直接影响到动力系统的反应。

在此,我们把自由振动分为无阻尼自由振动与有阻尼的自由振动。

一、无阻尼自由系统的振动分析目前,以弹簧-质量系统为力学模型,研究单自由度系统的振动具有非常普遍的实际意义,因为工程中许多问题简化后,用单自由度体系的振动理论就能得到很好的解决。

而对多自由度系统和连续振动,在特殊坐标的考察时,也会显示出与单自由度系统类似的振动。

进行无阻尼自由振动分析的主要目的是为了获得系统固有振动的特性,只有充分地了解系统的自身振动特性才能有效的计算系统的动力响应,目前在单质点单自由度无阻尼自由振动体系中我们的运动方程为:0)()(..=+t ku t um (1) 或 0u(t))(=+ωt u (2)其中的ω是振动圆频率,是反应系统动力的重要参数,其计算公式为:m k m ==δω12 (3)由上式可以看出,ω只和系统的刚度及质量有关,而与系统所受到的初始受力状态无关。

ω的量纲与角速度相同为rad/s ,它反映了系统自由振动的快慢。

自由振动系统的这一特性,我们在日常生活中司空见惯。

比如,键盘类乐器标定后,按动某一个琴键,不管你按动的轻重如何,琴键所发出的声音的频率是一定的,按得轻或按得重仅影响声音的强弱。

(2)式经过三角函数的转换可表示为:)sin()(νω+=t A t u (4)其通解为t A t A t u ωωsin cos )(21+= 常数A 1与A 2与初始条件有关,01χ=A ωχ/02 =A式(4)是标准的简谐方程其中A 是其振幅,则ν是其初相角,他们的计算公式2020)(ωx x A += ,00arctan x x v ω=对于质点振动系统,质量越大,则系统的固有频率越低;刚度越大,则系统的固有频率越高。

单自由度振动系统的运动方程解析解的应用案例分析

单自由度振动系统的运动方程解析解的应用案例分析

单自由度振动系统的运动方程解析解的应用案例分析单自由度振动系统是机械工程中非常重要的一类振动系统。

它的运动方程可用解析解表示,这在许多实际问题的解决中发挥着重要作用。

本文将通过分析两个应用案例,展示单自由度振动系统运动方程解析解的实际应用。

案例一:弹簧振子考虑一个弹簧振子系统,由一个质量为m的物体通过一个弹簧与固定支撑相连。

假设摩擦系数为零,物体只有沿水平方向的振动。

根据牛顿第二定律可以得到以下运动方程:m a=−aa其中a是物体的加速度,k是弹簧的劲度系数,x是物体的位移。

通过简单的求解可以得到该系统的解析解为:a = a cos(a_0 t + a)其中A和a分别是振幅和相位,a_0 是系统的固有角频率,有关常数可以通过初始条件来确定。

这个方程给出了振子在任意时间点的位移,通过振幅和相位可以描述振动的特征。

在实际应用中,我们可以利用这个方程来分析弹簧振子的运动规律,如计算特定时刻的位移、速度和加速度等。

案例二:简谐受迫振动考虑一个简谐受迫振动系统,它除了由弹簧力驱动外,还受到外部激励力F(t)的作用。

运动方程可以表示为:m a=−aa +F(t)其中F(t)是外部激励力的函数形式,可以是任意周期性函数。

在这种情况下,运动方程没有解析解,但我们可以通过变换方法将其转化为解析解出现的形式。

一个常见的方法是利用复指数形式的解,并通过计算使运动方程等号两边的实部和虚部相等。

通过求解可以得到:a = a cos(a_0 t + a) + a_p其中a_p是该系统的稳态解,表示受迫振动的特定解,由外部激励力决定,A和a是自由振动的振幅和相位。

这个方程描述了受迫振动系统的运动,可以用于分析系统在不同激励力下的响应,如共振频率、相位差等。

总结起来,单自由度振动系统运动方程解析解的应用案例分析有助于我们深入理解振动系统的运动行为。

通过解析解,我们可以更好地预测和控制系统的振动特性,为相关工程问题提供解决思路。

单自由度系统自由振动——简支梁

单自由度系统自由振动——简支梁

单自由度系统自由振动(简支梁)一、 实验目的 1、测定简支梁的等效弹簧常数k ; 2、记录简支梁的自由振动曲线,用分析仪测定系统的有阻尼时的固有频率d ω及相对阻尼系数ζ; 3、用附加质量法测定简支梁的等效质量m ; 4、初步了解振动测试的一些仪器设备及测试方法。

  二、 实验装置及原理 1、 实验装置 一根均匀的、截面为矩形的简支梁,其简图如图1所示。

这个系统可看作如图2所示的,有阻尼的单自由度弹簧质量系统,有阻尼时的振动微分方程为: 0=++kx x c xm &&& (1) 令m c n =2,mk n =2ω (2) 则(1)式为:022=++x x n x n ω&&& (3) 再令nn ωζ= (4) 则式(3)为:022=++x x x n n ωςω&&& (5) 其中: m :为简支梁系统的等效质量; k :为简支梁系统对于跨度中点的等效弹簧常数; c :为简支梁下的阻尼常数,n 称为衰减系数,ζ称为相对阻尼系数; n ω:为简支梁系统固有频率,n n f πω2=,d ω为系统的有阻尼固有频率,d d f πω2=。

 2、 实验原理 (1) 等效弹簧常数的测定 由于梁在弹性范围内的挠度与梁所受载荷成正比,因此只要在简支梁的跨中点加载,同时图2用百分表读出该点的挠度值,即可测出等效弹簧常数。

 (2)记录简支梁系统的自由振动曲线 在简支梁跨度中点贴应变片作用是使梁在振动时的应变量变化转化成电阻量的变化,再将应变片按半桥接法接到动态应变仪上,把电阻量的变化信号放大,并转化成电压量的变化信号,输出到示波器或分析仪,这样即可观察和记录波形。

测试系统框图如图3所示。

(3)附加质量法测等效质量 根据式(2),因为()222n n f m k πω==,21ζωω−=n d ,d d f πω2=要测出简支梁的等效质量m ,只要在原来的简支梁上附加一个已知质量∆,再次求得带有附加质量∆时的固有频率2∆n ω,然后通过下式计算得到m : ()()()()22222222∆∆∆==∆+=n n n n n n f f f f m m ππωω (6) ()()1111222222−∆=−−−∆=∆∆∆d d d d f f f f m &ζζ (7)  三、 实验步骤 1、 测定简支梁系统的等效弹簧常数 在简支梁跨中点处用砝码加载(i=1,2, …., 5),同时用百分表读出该点相对应的挠度值,并记录表1中,按公式算出。

单自由度系统自由振动

单自由度系统自由振动

取物块的静平衡位置为坐标原点 O , x 轴顺弹簧 变形方向铅直向下为正。当物块在静平衡位置 时,由平衡条件,得到
mg k st
弹簧的静变形
当物块偏离平衡位置为x距离时,物块的运动微 分方程为
mx mg k ( st x)
mx kx
k 固有圆频率 令 : 0 m 无阻尼自由振动微分方程 2018年9 月4日
周期 T 2
0
; 则
1 0 2 2f T
f 称为振动的频率,表示每秒钟振动的次数,单位为1/s或Hz
0 称为固有角(圆)频率(固有频率),表示每2秒内振动
2018年9月4日 《振动力学》
的次数,单位为rad/s,只与系统的质量m和刚度系数k有关。
8
1.单自由度系统自由振动-无阻尼自由振动
统固有的物理参数,称为固有频率,振幅取决 于初始扰动的大小。阻尼振动的固有频率小于 无阻尼情形。临界阻尼和大阻尼条件下的系统 作非往复的衰减运动。
2018年9月4日 《振动力学》
3
单自由度系统自由振动
教学内容
• 无阻尼自由振动 • 能量法 • 等效质量和等效刚度 • 阻尼自由振动
2018年9月4日 《振动力学》
c1 A sin ,
c2 A cos
x t A sin 0 t
2018年9月4日 《振动力学》
无阻尼自由振动是简谐振动.
7
1.单自由度系统自由振动-无阻尼自由振动
1.2 无阻尼自由振动的特点
(1)固有频率
无阻尼自由振动是简谐振动,是一种周期振动
0 ( t T ) 0t 2
振动不能维持等幅而趋于衰减,称为有阻尼自由

《单自由度系的振动》课件

《单自由度系的振动》课件
应用领域
主动控制技术广泛应用于航空航天、机械制造、土木工程等领域, 以减小或消除结构的振动。
优势与局限性
主动控制技术的优点在于能够快速响应并有效抑制振动,但需要外部 能源和复杂的控制系统,增加了系统的复杂性和成本。
被动控制技术
被动控制技术定义
被动控制技术是利用阻尼材料或结构来吸收或耗散振动能量的方 法。
弹性力学模型
描述弹性体的振动特性,适用于弹性体的振动。
振动分析的数值方法
有限元法
将系统离散化为有限个单元,求解每个单元的振动响应。
时域法
在时间域内直接求解系统的振动响应。
频域法
将系统振动问题转化为频率域内的问题,求解系统的振动特性。
04
单自由度系统的振动控 制
主动控制技术
主动控制技术定义
主动控制技术是一种通过向系统提供反向振动来抵消原始振动的方 法。
03
单自由度系统的振动分 析
振动分析的基本方法
解析法
通过数学公式推导,求解系统的振动特性。
实验法
通过实验测量系统的振动响应,分析其特性 。
数值法
利用数值计算方法,求解系统的振动响应。
振动分析的数学模型
线性模型
描述线性系统的振动特性,适用于小振幅振动。
非线性模型
描述非线性系统的振动特性,适用于大振幅振动 。
总结词
在机械系统中,振动控制是提高设备稳定性和延长使用寿命 的关键。
详细描述
机械系统中的许多设备,如发动机、压缩机、机床等,都容 易受到振动的影响。通过采用适当的控制策略,如主动或被 动隔振、阻尼减振等,可以有效减小振动对设备性能的影响 ,提高设备的稳定性和可靠性。
建筑结构中的振动控制

机械震动--单自由度体系的自由振动

机械震动--单自由度体系的自由振动

y sy(t)机械振动分析------单自由度无阻尼系统的自由振动机械振动是物体(或物体的一部分)在平衡位置(物体静止时的位置)附近作的往复运动。

可分为自由振动、受迫振动。

又可分为无阻尼振动与阻尼振动。

常见的简谐运动有弹簧振子模型、单摆模型等。

振动在机械中的应用非常普遍,例如在振动筛分行业中基本原理系借电机轴上下端所安装的重锤(不平衡重锤),将电机的旋转运动转变为水平、垂直、倾斜的三次元运动,再把这个运动传达给筛面。

若改变上下部的重锤的相位角可改变原料的行进方向。

物体受到初干扰后,仅在系统的恢复力作用下在其平衡位置附近的振动称为无阻尼自由振动。

其中仅需用一个独立坐标就可确定振体位置的系统为单自由度系统。

单自由度系统的振动理论是振动理论的基础。

研究单自由度系统的振动有着非常普遍的实际意义,因为工程上有许多问题通过简化,用单自由度系统的振动理论就能得到满意的结果。

而同时对多自由度系统和连续系统的振动,在特殊坐标系中考察时,显示出与单自由度系统类似的性态。

因此,揭示单自由度振动系统的规律、特点,为进一步研究复杂振动系统奠定了基础。

影响振动作用的因素是振动频率、加速度和振幅。

现在我们就此方面展开对单自由度无阻尼振动的讨论。

主要包括两部分:单自由度无阻尼系统的自由振动和单自由度无阻尼系统的受迫振动。

一、单自由度无阻尼系统的自由振动如下图,设此梁上的集中质量为m ,其重量为W mg ,梁由于质量的重力引起的质量处的静力位移用s y 表示,与s y 相应的质量位置称为质量的静力平衡位置。

若此质量受到扰动离开了静力平衡位置,当扰动除去后,则体系将发生振动,这样的振动称为体系的自由振动。

由于振动的方向与梁轴垂直,故称为横向振动。

在此,只讨论微小振幅的振动,由振动引起的内力限于材料的弹性极限以内,用以表示质量运动的方程将为线性微分方程。

1、建立运动方程建立运动方程常用的基本原理是达朗伯原理(亦称惯性力法或动静法)。

汽车振动分析之 单自由度

汽车振动分析之 单自由度

tg
2 1 2
简谐激励下的强迫振动稳态响应解为:
x2(t)
B0 sin(t ) (1 2)2 (2)2
简谐激励下的强迫振动稳态响应解为:
x2 (t)
B0 sin(t ) (1 2 )2 (2)2
强迫振动稳态响应的基本特点:
1、系统在简谐激励的作用下,其强迫振动稳态响应是简谐振动, 振动的频率与激励频率相同。
2.1 简谐激励引起的强迫振动
简谐激振力 f (t) P0 sin t
P 激振力幅值 0
激振力圆频 率
mx cx kx P0 sin t
令: p2 k , 2p c
m
m
x 2px p2x P0 sin t
m
x(t) x1(t) x2 (t)
通解 特解
通解:x1 ent (C1 cos pdt C2 sin pdt)
另一种形式 x Aent sin( pdt )
振幅
初 相
A
x02
(v0
nx0 )2 pd2
位 角
tan x0 pd
v0 nx0
Aent 为阻尼振动振幅
这种情形下,自由振动不是等幅简谐振动,是按负指数衰减的
衰减运动。衰减运动的频率为 pd,衰减速度取决于衰减系数n即
zp。当t→∞时,x→0,即振动最终将完全消失,如图。
程为: mx cx kx 0
x c x k x 0 mm
令 2n c p2 k
m
m
m x
c k
d2 x dt2
2n
dx dt
p2x
0
n c 2m
称为衰减系数
Hale Waihona Puke n 称为相对阻尼系数p

自由度系统振动

自由度系统振动

03 自由度系统振动的特性分 析
固有频率与模态
固有频率
自由度系统振动的固有频率是指系统 在无外力作用下的振动频率,它决定 了系统振动的速度和幅度。
模态
模态是自由度系统振动的特定形式, 每个模态具有特定的固有频率和振动 形态。
阻尼与衰减
阻尼
阻尼是指自由度系统振动过程中能量的耗散,它使得振动逐 渐减弱并最终停止。
被动控制优点
被动控制具有结构简单、成本低、可靠性高等优点。它不 需要外部能源,因此节能且易于维护。
被动控制原理
被动控制通过增加系统的阻尼或改变系统刚度来减小振动 。这通常涉及使用特殊的阻尼材料或结构优化设计。
被动控制限制
被动控制的振动抑制能力相对较低,且其性能受限于所使 用的阻尼材料和结构。此外,它的响应速度较慢,可能无 法适应快速变化的振动环境。
VS
详细描述
在机械工程领域,自由度系统振动理论被 广泛应用于减震降噪。通过对机械设备进 行动力学分析和优化设计,可以有效降低 运转过程中产生的振动和噪音,提高设备 的稳定性和可靠性,延长使用寿命。
航空航天中的振动隔离
总结词
在航空航天领域,自由度系统振动理论用于 实现振动隔离,确保航天器和飞行器的安全 性和稳定性。
制造业
机床、生产线等制造业设备的 机械系统需要进行自由度系统 振动分析,以提高生产效率和
产品质量。
02 自由度系统振动的基本原 理
牛顿第二定律
总结词
描述物体运动状态变化与作用力之间关系的定律。
详细描述
牛顿第二定律指出,物体运动状态的变化与作用力成正比,加速度的大小与作 用力成正比,方向与作用力相同。在振动问题中,牛顿第二定律用于描述系统 受到的力与产生的加速度之间的关系。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
弹簧原长位置
0 k / m
用两个独 立广义坐 标就能确 定的系统 用振动
用多个独 立广义坐 标就能确 定的系统 用振动
用无限多 个自由度 才能确定 的系统用 振动
描述系统的微分方程
振动
线性振动 非线性振动
用线性微分方程来描 述振动
Hale Waihona Puke 用非线性微分方程来 描述振动
4.1.2 振动问题的求解步骤
1、建立振动系统的力学模型; m-c-k系统。 2、建立振动系统的数学模型; 建立运动微分方程。用牛 顿第二定律和拉格朗日方程。 3、求解运动微分方程。用解析法。
单自由度线性系统的微分方程:
& & & m x (t ) cx (t ) kx (t ) F (t )
& & & m x (t ) cx (t ) kx (t ) F (t )
从数学上看:是二阶常系数非齐次线性微 分方程。左边由系统参数m-c-k决定,反 映的是振动系统本身的自然特性,右边是 外加激励,反应系统的输入特性。
2018年10月30日
21
可看出,除了选择了坐标不同之外,角振动与
直线振动的数学描述完全相同。
如果在弹簧质量系统中将 m、k 称为广义质量及广义刚 度,则弹簧质量系统的有关结论完全适用于角振动。
& & m x kx 0
0 k / m
k
弹簧原长位置
m
0

静平衡位置
k
I

I k 0
4.3.1 单自由度线性系统的运动微分方程及 其系统特性
建立运动方程 是研究振动的核心问题。 方法有:牛顿运动定律 能量法 拉格朗日方程
1、牛顿运动定律法: 直线振动:
x(t )
Fs (t )
m
x(t )
F (t )
F (t )
Fd (t )
& & m x (t ) F (t ) Fs (t ) Fd (t )
4.1 振动分类及求解步骤
离散系统是具有集中参数元件所组成的系 统,具有有限多个自由度; 连续系统是由连续参数元件组成的系统, 有无限多个自由度。在离散系统中,最简 单的最基本的是单自由度振动系统。
4.1.1 振动的分类
1、定义:在一定条件下,振动体在其平衡 位置附近所做的往复性机械运动。 有用的一面:利用振动现象的特征设计制造机 器和仪器仪表,例:振动筛选机、振动打桩机、 振动给料机、仓壁振动器、钟表计时仪器、振 子示波器等。 不利的一面:产生噪音、影响机器的正常运转, 影响其安全性和可靠性、使机床的加工精度、 精密仪器的灵敏度下降、使机械设备的使用受 命缩短,严重时引发机器的损坏引发事故 。

4.2 振动系统模型及其简化
4.2.1 单自由度系统的基本模型
振动系统的力学模型: 质量块(m),阻尼器(c);弹簧(K)。 单自由度系统: 只用一个坐标就可以把振动系统的形态表明了, 这种系统称为单自由度系统.
0 k mt m
x
系统的简化取决于考虑问题的复杂程度与所需要的 计算精度。考虑的问题越复杂,精度越高,模型的 复杂程度也越高。
例1 锻锤模型
锤体
砧座 弹性垫阻尼 基础 土壤阻尼 砧座和基础 土壤阻尼 土壤刚度
x1 弹性垫刚度 x2 土壤刚度
锤体
x1
4.2.2 单自由度系统模型的简化
例1 简化机床的力学模型: 机床工作时,产生惯性力的作用,机床和基 础一起产生振动,下面的地基即土壤长生较大 的弹性变形,当弹簧来处理。 基础和机床
0 k / I
& &
x
2018年10月30日
《振动力学》
22
从前面两种形式的振动看到,单自由度无阻尼系统总包含
着惯性元件和弹性元件两种基本元件,惯性元件是感受加速度 的元件,它表现为系统的质量或转动惯量,而弹性元件是产生 使系统恢复原来状态的恢复力的元件,它表现为具有刚度或扭 转刚度的弹性体。同一个系统中,若惯性增加,则使固有频率 降低,而若刚度增加,则固有频率增大 。
单自由度线性系统的 微分方程:
& & & m x (t ) cx (t ) kx (t ) F (t )
说明质量块的重力对系统的运动方程没有影响。 线性系统中,忽略恒力及其引起的静位移。
& & & x (t ) cx (t ) kx (t ) F (t )
角振动:
例:圆盘转动
机械系统动力学
Dynamics of Mechanical System
太原科技大学:宁少慧
第4章 单自由度系统振动



4.1 4.2 4.3 4.4 4.5 4.6 4.7
振动分类及求解步骤 振动系统模型及其简化 单自由度系统的自由振动 谐波激励下的强迫振动 周期性激励下的强迫振动 任意激励下的强迫振动 单自由度系统振动的应用
系统的输出
振动
简谐振动 振动量为 时间的正 弦或余弦 函数 周期性振动 瞬态振动 随机振动
振动量 为时间的 周期函数
振动量为 振动量为 时间的非 时间的随 周期函数 机函数
系统的自由度
振动
两自由 度振动 多自由 度振动 连续系 统振动
单自由 度振动
用一个独 立广义坐 标就能确 定的系统 用振动
圆盘转动惯量 I k 为轴的扭转刚度,定义为使得圆盘 产生单位转角所需的力矩 ( N m / rad )
在圆盘的静平衡位置上任意选
k
I
扭振固有频率

一根半径作为角位移的起点位置。
由牛顿第二定律:
I k 0 & & 2 0 0
《振动力学》
& &
0 k / I
例2 电机和梁组成的振动系统的力学模型。 电机质量简化为m,忽略梁质量,梁的弹 性简化为k,忽略电机的弹性。
4.3 单自由度系统的自由振动
4.3.1 单自由度线性系统的运动微分 方程及其系统特性 4.3.2 振动系统的线性化处理 4.3.3 单自由度无阻尼系统的自由振动 4.3.4 固有频率的计算方法 4.3.5 有阻尼系统的自由振动
4.1 振动分类及求解步骤
2、分类 系统的输入 系统的输出 系统的自由度 描述系统的微分方程
系统的输入
振动
强迫振动 自激振动 参数振动
自由振动
在特定的 初始位移 和初始速 度下产生 的振动
系统在给 定的外界 激励作用 下的振动
激励受系 统振动本 身控制的 振动
通过改变 系统的物 理特性参 数实现振 动
相关文档
最新文档