初等数论定理
《初等数论(闵嗣鹤、严士健)》第三版习题解答

第一章 整数的可除性§1 整除的概念·带余除法 1.证明定理3定理3 若12n a a a ,,,都是m 得倍数,12n q q q ,,,是任意n 个整数,则1122n n q a q a q a +++是m 得倍数.证明:12,,n a a a 都是m 的倍数。
∴ 存在n 个整数12,,n p p p 使 1122,,,n n a p m a p m a p m ===又12,,,n q q q 是任意n 个整数1122n nq a q a q a ∴+++1122n n q p m q p m q p m =+++1122()n n p q q p q p m =+++即1122n n q a q a q a +++是m 的整数2.证明 3|(1)(21)n n n ++ 证明(1)(21)(1)(21)n n n n n n n ++=+++-(1)(2)(1)(1)n n n n n n =+++-+ 又(1)(2)n n n ++,(1)(2)n n n -+是连续的三个整数故3|(1)(2),3|(1)(1)n n n n n n ++-+3|(1)(2)(1)(1)n n n n n n ∴+++-+从而可知3|(1)(21)n n n ++3.若00ax by +是形如ax by +(x ,y 是任意整数,a ,b 是两不全为零的整数)的数中最小整数,则00()|()ax by ax by ++.证:,a b 不全为0∴在整数集合{}|,S ax by x y Z =+∈中存在正整数,因而有形如ax by +的最小整数00ax by +,x y Z ∀∈,由带余除法有0000(),0ax by ax by q r r ax by +=++≤<+则00()()r x x q a y y q b S =-+-∈,由00ax by +是S 中的最小整数知0r =00|ax by ax by ∴++00|ax by ax by ++ (,x y 为任意整数) 0000|,|ax by a ax by b ∴++ 00|(,).ax by a b ∴+ 又有(,)|a b a ,(,)|a b b00(,)|a b ax by ∴+ 故00(,)ax by a b +=4.若a ,b 是任意二整数,且0b ≠,证明:存在两个整数s ,t 使得||,||2b a bs t t =+≤成立,并且当b 是奇数时,s ,t 是唯一存在的.当b 是偶数时结果如何? 证:作序列33,,,,0,,,,2222b b b b b b ---则a 必在此序列的某两项之间即存在一个整数q ,使122q q b a b +≤<成立 ()i 当q 为偶数时,若0.b >则令,22q qs t a bs a b ==-=-,则有 02222b q q qa bs t ab a b b t ≤-==-=-<∴<若0b < 则令,22q qs t a bs a b =-=-=+,则同样有2b t <()ii 当q 为奇数时,若0b >则令11,22q q s t a bs a b ++==-=-,则有若 0b <,则令11,22q q s t a bs a b ++=-=-=+,则同样有2b t ≤,综上所述,存在性得证.下证唯一性当b 为奇数时,设11a bs t bs t =+=+则11()t t b s s b -=-> 而111,22b bt t t t t t b ≤≤∴-≤+≤ 矛盾 故11,s s t t == 当b 为偶数时,,s t 不唯一,举例如下:此时2b为整数 11312(),,22222b b b b b b b t t ⋅=⋅+=⋅+-=≤§2 最大公因数与辗转相除法 1.证明推论4.1推论4.1 a ,b 的公因数与(a ,b )的因数相同. 证:设d '是a ,b 的任一公因数,∴d '|a ,d '|b 由带余除法111222111111,,,,,0n n n n n n n n n n a bq r b r q r r r q r r r q r r r r b---++-=+=+=+==≤<<<<∴(,)n a b r =∴d '|1a bq -1r =, d '|122b r q r -=,┄, d '|21(,)n n n n r r q r a b --=+=,即d '是(,)a b 的因数。
人教版高中数学选修4-6《初等数论:算术基本定理》

第六节 算术基本定理
推论2 设正整数a与b的标准分解式是
a p1 p2 pk q1 ql , b p1 p2 pk r1 rs
1 2 k 1 s
1
2
k
1
l
其中pi(1 i k),qi(1 i l)与ri(1 i s)是两 两不相同的素数,i,i(1 i k),i(1 i l) 与i(1 i s)都是非负整数,则
1 2
任何大于1的整数n可以
k
n p1 p2 pk
,
(2)
2, , k是正整数。
证明 由引理1,任何大于1的整数n可以表示成 式(2)的形式,因此,只需证明表示式(2)的唯 一性。
第六节 算术基本定理
假设pi(1 i k)与qj(1 j l)都是素数,
p1 p2 pk,q1 q2 ql,
n = p1p2pm, (1) 其中pi(1 i m)是素数.
第六节 算术基本定理
引理1 即 任何大于1的正整数n可以写成素数之积,
n = p1p2pm,
其中pi(1 i m)是素数。 证明 当n = 2时,结论显然成立。
(1)
假设对于2 n k,式(1)成立,我们来证明式(1) 对于n = k 1也成立,从而由归纳法推出式(1) 对任何大于1的整数n成立。
[a, b] p p p , i max{ i , i }, 1 i k。
1 1
1 2
k k
第六节 算术基本定理
推论3 设a,b,c,n是正整数,
ab = cn ,(a, b) = 1,
则存在正整数u,v,使得
(5)
初等数论§4.2孙子定理

2020/4/1
10
例2 〔韩信点兵〕有兵一队,若列成五行纵队,则 末行1人;成六行纵队,则末行5人;成七行纵队, 则末行4人;成十一行纵队,则末行10人。求兵数。
解 : 即 求 解 同 余 式 组
x 1 ( m o d 5 ) , x 5 ( m o d 6 ) , x 4 ( m o d 7 ) ,2 6 , m 3 7 , m 4 1 1 .
202043阜阳师范学院1247年南宋的数学家秦九韶把孙子算经中物不知其数一题的方法推广到一般的情况得到称之为大衍求一术的方法在数书九章中发表
§4.2 孙子定理
李新年
2020/4/1
1
• 看过《射雕英雄传》的同学应该记得,当年黄蓉身中奇毒 ,郭靖将她送到瑛姑那里救治,进入瑛姑茅舍,瑛姑就给 他们出了一题:
2020/4/1
3
中国剩余定理
➢ 1247年南宋的数学家秦九韶把《孙子算经》中“物
不知其数”一题的方法推广到一般的情况,得到称之 为“大衍求一术”的方法,在《数书九章》中发表。 这个结论在欧洲要到十八世纪才由数学家高斯和欧拉 发现。所以世界公认这个定理是中国人最早发现的, 特别称之为“中国剩余定理”
2020/4/1
12
敬请指导,谢谢!
2020/4/1
阜阳师范学院 数科院
13
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
m i ai 51 65 74 11 10
m
Mi
462
385 2310 330
210
M i ' aiMiMi ' aiMiMi'
3
1×462×3
1 5×385×1 6731
湘教版高中数学选修4-6初等数论初步:费马小定理和欧拉定理

1
欧拉定理 费马定理及其对循环小数的应用
本节主要通过应用简化剩余系的性质证明 数论中的两个重要定理,欧拉定理和费马定理, 并说明其在理论和解决实际问题中的应用。
一、两个基本定理
定理1Euler 设 m是正整数,(a, m) = 1, 则 am) 1 (mod m).
例1 求131956 被60除的余数。 解: Q (13, 60) 1,(60) 60(1 1)(1 1)(1 1) 16
235
由欧拉定理得 1316 (1 mod 60) am) 1 (mod m)
又131956 13161224 13(4 mod60) 169(2 mod60) 49(2 mod60)(-11)(2 mod60) 12(1 mod60)(1 mod60)
若(a, p) > 1,则pa,
所以 a p 0 a (mod p) 注:Fermat定理即是欧拉定理的推论。
注:根据欧拉定理,当(a, m) = 1时,
总能找到x=(m),使得ax 1 (mod m)。 但(m)并不是使ax 1 (mod m)成立的自
然数x中的最小数。
二、定理的应用举例
证明: 设{x1, x2, L , x(m)}是模m的一个简化剩余系, 则{ax1, ax2, L , ax(m)}也是模m的简化剩余系, 所以 ax1ax2 L ax(m) x1x2L x(m) (mod m), 即 a(m)x1x2 L x(m) x1x2 L x(m) (mod m). 由( x1, m) ( x2 , m) L =( x(m), m) 1 得 (x1x2 L x(m), m) = 1,所以 a(m) 1 (mod m).
初等数论中的欧拉定理

初等数论中的欧拉定理定理内容在数论中,欧拉定理(也称费马-欧拉定理)是⼀个关于同余的性质。
欧拉定理表明,若n,a为正整数,且n,a互素,(a,n) = 1,则a^φ(n) ≡ 1 (mod n)证明⾸先证明下⾯这个命题:对于集合Zn={x1,x2,...,xφ(n)},其中xi(i=1,2,…φ(n))是不⼤于n 且与n互素的数,即n的⼀个化简剩余系,或称简系,或称缩系),考虑集合S = {a*x1(mod n),a*x2(mod n),...,a*xφ(n)(mod n)} 则S = Zn1) 由于a,n互质,xi也与n互质,则a*xi也⼀定于n互质,因此任意xi,a*xi(mod n) 必然是Zn的⼀个元素2) 对于Zn中两个元素xi和xj,如果xi ≠ xj则a*xi(mod n) ≠ a*xj(mod n),这个由a、n互质和消去律可以得出。
所以,很明显,S=Zn既然这样,那么(a*x1 × a*x2×...×a*xφ(n))(mod n)= (a*x1(mod n) × a*x2(mod n) × ... × a*xφ(n)(mod n))(mod n)= (x1 × x2 × ... × xφ(n))(mod n)考虑上⾯等式左边和右边左边等于(a*(x1 × x2 × ... × xφ(n))) (mod n)右边等于x1 × x2 × ... × xφ(n))(mod n)⽽x1 × x2 × ... × xφ(n)(mod n)和n互质根据消去律,可以从等式两边约去,就得到:a^φ(n) ≡ 1 (mod n)推论:对于互质的数a、n,满⾜a^(φ(n)+1) ≡ a (mod n)费马定理:a是不能被质数p整除的正整数,则有a^(p-1) ≡ 1 (mod p)证明这个定理⾮常简单,由于φ(p) = p-1,代⼊欧拉定理即可证明。
初等数论的性质与定理总结

初等数论的性质与定理总结初等数论是数论中的一个基础分支,研究整数的性质和整数运算规律。
本文将总结初等数论中的一些重要性质与定理。
一、整数的整除性质1. 整数的除法基本性质:对于任意整数a、b和非零整数c,存在唯一的整数q使得a = bq + c。
2. 整除关系的传递性:如果a能整除b,且b能整除c,则a能整除c。
3. 整除关系的辗转相除法:对于任意整数a和非零整数b,存在唯一的整数q和r使得a = bq + r(其中0 ≤ r < |b|)。
二、质数与合数1. 质数的定义:质数是指大于1且只能被1和自身整除的整数。
例如,2、3、5、7等都是质数。
2. 质因数分解定理:每个大于1的整数都可以唯一地表示为若干个质数的乘积。
3. 最大公约数与最小公倍数的性质:对于任意整数a和b,记a和b 的最大公约数为gcd(a, b),最小公倍数为lcm(a, b),则有以下性质: - gcd(a, b) = gcd(b, a)- gcd(a, 0) = |a|- lcm(a, b) = |ab| / gcd(a, b)三、模运算与同余1. 模运算的基本性质:对于任意整数a、b和正整数n,有以下性质:- (a + b) mod n = (a mod n + b mod n) mod n- (a - b) mod n = (a mod n - b mod n) mod n- (a * b) mod n = (a mod n * b mod n) mod n2. 同余关系的性质:对于任意整数a、b和正整数n,如果a与b模n同余(记作a ≡ b (mod n)),则有以下性质:- a + c ≡ b + c (mod n)- ac ≡ bc (mod n)- 如果a ≡ b (mod n),则a^k ≡ b^k (mod n)对于任意正整数k四、费马小定理与欧拉定理1. 费马小定理:如果p是质数,a是任意正整数且p不整除a,则有a^(p-1) ≡ 1 (mod p)。
初等数论闵嗣鹤第三版pdf

初等数论闵嗣鹤第三版pdf初等数论是数学的一个分支,它主要研究自然数的性质和规律,以及数字之间的关系,是数学的基础之一。
其中,闵嗣鹤所撰写的《初等数论》是一本经典的教材,在广大数学爱好者和学生中享有很高的声誉。
下面是闵嗣鹤第三版《初等数论》的主要内容及划分:一、自然数与整数自然数和整数是初等数论的基础,闵嗣鹤在第一章中详细地探讨了这两个概念的定义、性质和运算法则。
其中,自然数之间的关系包括大小关系、奇偶性、质因数分解等,而整数之间的关系包括最大公因数、最小公倍数、同余等。
二、素数与分解定理素数是指在大于1的自然数中,除了1和本身之外,没有其他因数的数。
在第二章中,闵嗣鹤详细探讨了素数的性质、分布规律、筛法等,并引入了分解定理,即任何大于1的自然数都可以唯一地写成素数的积的形式。
三、同余与模运算同余是指两个数除以同一个自然数的余数相等。
闵嗣鹤在第三章中解释了同余的概念和性质,并介绍了模运算,即对于任何整数a和正整数n,都可以得到一个余数r,也就是a mod n=r。
四、数论函数与数论约束问题数论函数是指把自然数映射为自然数的函数,闵嗣鹤在第四章中介绍了数论函数的类型、性质和应用,如欧拉函数、莫比乌斯函数等。
另外,数论约束问题是数论中一个重要的研究方向,指在一定条件下求出自然数的个数或性质,如高斯整数环中最大不同平方因子数量的值等。
五、二次剩余与离散对数二次剩余是指一个数的平方模一个素数后的余数,闵嗣鹤在第五章中详细探讨了二次剩余的性质和应用,如欧拉定理、勒让德符号等。
离散对数则是指解一个同余方程中未知数的问题,其在密码学领域中有重要应用。
六、多项式与代数数论多项式是数论中的一个重要分支,涉及到的问题包括多项式的根、因式分解等。
闵嗣鹤在第六章中介绍了多项式的性质和运算法则,以及代数数论的相关知识。
综上所述,闵嗣鹤第三版《初等数论》是一本内容丰富、系统完备、知识详尽的经典教材,不仅适用于初学者,也适合用于深入研究数论的专业人士。
初等数论四大定理

初等数论四大定理威尔逊定理、欧拉定理、剩余定理(孙子定理)、费马小定理威尔逊定理:当且仅当p为素数时,有:(p-1)!≡-1(mod p)欧拉定理:若n,a为正整数,且n,a互质,(a,n)=1,则:a^φ(n)≡1(mod n)剩余定理(孙子定理):若有一些两两互质的整数m1,m2,…,m n,则对任意的整数a1,a2,…,a n,以下联立同余方程组对模m1,m2,…,m n有公解:x≡a1(mod m1),x≡a2(mod m2),……,x≡a n(mod m n)费马小定理:若p是质数,且(a,p)=1,则:a^(p-1)≡1(mod p)之前一直认为费马小定理的证明很复杂,但是懂了欧拉定理之后就迎刃而解了.首先,我们需要知道欧拉定理是什么:数论上的欧拉定理,指的是a x≡1(modn)这个式子实在a和n互质的前提下成立的.为什么成立呢?下面来证一下.首先,我们知道在1到n的数中,与n互质的一共有φ(n)φ(n)个,所以我们把这φ(n)φ(n)个数拿出来,放到设出的集合X中,即为x1,x2……xφ(n)x1,x2……xφ(n).那么接下来,我们可以再设出一个集合为M,设M中的数为:m1=a∗x1m2=a∗x2……mφ(n)=a∗xφ(n)m1=a∗x1m2=a∗x2……mφ(n)=a∗xφ(n)下面我们证明两个推理:一、M中任意两个数都不模n同余.反证法.证明:假设M中存在两个数设为m a,m b ma,mb模n同余.即m a≡m b ma≡mb移项得到:m a−m b=n∗k ma−mb=n∗k再将m用x来表示得到:a∗x a−a∗x b=n∗k a∗xa−a∗xb=n∗k提取公因式得到a∗(x a−x b)=n∗k a∗(xa−xb)=n∗k我们现在已知a与n互质,那么式子就可以转化为:x a−x b≡0(modn)xa−xb≡0(modn),因为a中没有与n的公因子(1除外)所以a对模n同余0并没有什么贡献.又因为x a,x b xa,xb都是小于n的并且不会相同,所以x a−x b xa−xb一定是小于n的,那么上述的式子自然全都不成立.假设不成立.证得:M中任意两个数都不模n同余.二、M中的数除以n的余数全部与n互质.证明:我们已知m i=a∗x i mi=a∗xi.又因为a与n互质,x i xi与n互质,所以可得m i mi与n互质.带入到欧几里得算法中推一步就好了.即gcd(a∗x i,n)=gcd(m i,n)=gcd(n,m i modn)=1证毕.根据我们证得的两个性质,就可以开始推式子了.首先,根据第二个性质可以知道,M中的数分别对应X中的每个数模n同余.所以可以得到:m1∗m2∗……∗mφ(n)≡x1∗x2∗……∗xφ(n)(modn)m1∗m2∗……∗mφ(n)≡x1∗x2∗……∗xφ(n)(modn)现在我们把m i mi替换成x的形式,就可以得到:a∗x1∗a∗x2∗……∗a∗xφ(n)≡x1∗x2∗……∗xφ(n)(modn)a∗x1∗a∗x2∗……∗a∗xφ(n)≡x1∗x2∗……∗xφ(n)(modn)很显然,我们应该移项了,但是在移项之前,我们认为这么多的a很烦,那么就先乘起来:aφ(n)∗(x1∗x2……∗xφ(n))≡x1∗x2……∗xφ(n)(modn)aφ(n)∗(x1∗x2……∗xφ(n))≡x1∗x2……∗xφ(n)(modn)很开心,我们终于凑出了aφ(n)aφ(n),那么就开始移项吧:(aφ(n)−1)∗(x1∗x2……∗xφ(n))≡0(modn)(aφ(n)−1)∗(x1∗x2……∗xφ(n))≡0(modn)然后,就出来啦:aφ(n)≡1(modn)aφ(n)≡1(modn)证毕.用现代数学的语言来说明的话,中国剩余定理给出了以下的一元线性同余方程组:有解的判定条件,并用构造法给出了在有解情况下解的具体形式.中国剩余定理说明:假设整数m1,m2, ... ,m n两两互质,则对任意的整数:a1,a2, ... ,a n,方程组有解,并且通解可以用如下方式构造得到:设是整数m1,m2, ... ,m n的乘积,并设是除了m i以外的n- 1个整数的乘积.设为模的数论倒数( 为模意义下的逆元)方程组的通解形式为在模的意义下,方程组只有一个解:证明:从假设可知,对任何,由于,所以这说明存在整数使得这样的叫做模的数论倒数.考察乘积可知:所以满足:这说明就是方程组的一个解.另外,假设和都是方程组的解,那么:而两两互质,这说明整除 . 所以方程组的任何两个解之间必然相差的整数倍.而另一方面,是一个解,同时所有形式为:的整数也是方程组的解.所以方程组所有的解的集合就是:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初等数论
1. 整除性质
a) 若a|b,a|c,则a|(b±c)。
b) 若a|b,则对任意c,a|bc。
c) 对任意非零整数a,±1|a,±a|a。
d) 若a|b,b|a,则|a|=|b|。
e) 如果a能被b整除,c是任意整数,那么积ac也能被b整除。
f) 如果a同时被b与c整除,并且b与c互质,那么a一定能被积bc整除,反
过来也成立。
g) 如果a∣b且b∣c,则a∣c。
h) 如果c∣a且c∣b,则c∣ua+vb,其中u,v是整数。
i) 对任意整数a,b,b>0,存在唯一的数对q,r,使a=bq+r,其中0≤r<b,这
个事实称为带余除法定理,是整除理论的基础。
j) 若c|a,c|b,则称c是a,b的公因数。
若d是a,b的公因数,d≥0,且d可被a,b的任意公因数整除,则d是a,b的最大公因数。
若a,b的最大公因
数等于1,则称a,b互素,也称互质。
累次利用带余除法可以求出a,b的最
大公因数,这种方法常称为辗转相除法。
又称欧几里得算法。
2. 带余除法
a) 对于a,b两个整数,其中b≠0,则存在唯一q,r使得:
a = bq+r,0 ≤ r< |b|.r称为a被b除得到的余数.显然当r = 0时,b∣a.
3. 最大公约数
设a,b是两个整数,如果整数c∣a且c∣b,则c称为a,b的公因子.设c>0是两个不全为零的整数a,b的公因子,如果a,b的任何公因子都整除c,则c称为a,b的最大公因子,记为c= (a,b).
a) (a,b)=(-a,b)=(a,-b)=(-a,-b)
b) (0,a)=a
c) 设a,b是两个不全为零的整数,则存在两个整数u,v,使
(a,b)= ua+vb.
4. 欧几里德除法(辗转相除法):
已知整数a,b,记r0=a,r1=b,
r0=q1r1+r2,0 ≤r2<r1=b;
r1=q2r2+r3,0 ≤r3<r2;
…
r n-2=q n-1r n-1+r n,0 ≤r n<r n-1;
r n-1=q n r n
f) 除法若ac ≡ bc (mod m) c≠0 则a≡ b (mod m/gcd(c,m)) 其中gcd(c,m)表示
c,m的最大公约数,特殊地,gcd(c,m)=1 则a ≡ b (mod m)
g) 幂运算如果a ≡ b (mod m),那么a^n ≡ b^n (mod m)
h) 如果a ≡ b (mod m),且d∣m,d是正整数,则a ≡ b (mod d)
i) 若a ≡ b (mod mi) (i=1,2...n) 则a ≡ b (mod [m1,m2,...mn]) 其中
[m1,m2,...mn]表示m1,m2,...mn的最小公倍数
j) 推论如果a1≡b1 (mod m),a2≡b2 (mod m),则
a1x+ a2y≡b1x+ b2y (mod m),其中x,y是任意整数.
a1n=b1n(mod m),其中n是正整数.
f(a1) ≡f(b1) (mod m),其中f(x)是任一给定的整系数多项式:
f(x) = c0+ c1x+…+c k x k.
10. 威尔逊定理
若p为质数,则p可整除(p-1)!+1。
11. 欧拉定理
若n,a为正整数,且n,a互素,即gcd(a,n) = 1,则a^φ(n) ≡ 1 (mod n)
12. 孙子定理
中国剩余定理说明:假设整数m1,m2, ... ,m n两两互质,则对任意的整数:a1,a2, ... ,a n,方程组有解,并且通解可以用如下方式构造得到:
设是整数m1,m2, ... ,m n的乘积,并设
是除了m i以外的n- 1个整数的乘积。
设为模的数论倒数
:
方程组的通解形式为
:
在模的意义下,方程组只有一个解:
13. 费马小定理
假如p是质数,若p不能整除a,则a^(p-1) ≡1(mod p),若p能整除a,则a^(p-1) ≡0(mod p)。
若p是质数,且a,p互质,那么a的(p-1)次方除以p的余数恒等于1。
14.。