欧拉定理99617知识讲解

欧拉定理99617知识讲解
欧拉定理99617知识讲解

欧拉定理99617

欧拉定理

认识欧拉

欧拉,瑞士数学家,13岁进巴塞尔大学读书,得到著名数学家贝努利的精心指导.欧拉是科学史上最多产的一位杰出的数学家,他从19岁开始发表论文,直到76岁,他那不倦的一生,共写下了886本书籍和论文,其中在世时发表了700多篇论文。彼得堡科学院为了整理他的著作,整整用了4 7年。欧拉著作惊人的高产并不是偶然的。他那顽强的毅力和孜孜不倦的治学精神,可以使他在任何不良的环境中工作:他常常抱着孩子在膝盖上完成论文。即使在他双目失明后的17年间,也没有停止对数学的研究,口述了好几本书和400余篇的论文。当他写出了计算天王星轨道的计算要领后离开了人世。欧拉永远是我们可敬的老师。欧拉研究论著几乎涉及到所有数学分支,对物理力学、天文学、弹道学、航海学、建筑学、音乐都有研究!有许多公式、定理、解法、函数、方程、常数等是以欧拉名字命名的。欧拉写的数学教材在当时一直被当作标准教程。19世纪伟大的数学家高斯(Gau

ss,1777-1855)曾说过“研究欧拉的著作永远是了解数学的最好方法”。欧拉还是数学符号发明者,他创设的许多数学符号,例如π,i,e,sin,co s,tg,Σ,f (x)等等,至今沿用。欧拉不仅解决了彗星轨迹的计算问题,还解决了使牛顿头痛的月离问题。对著名的“哥尼斯堡七桥问题”的完美解答开创了“图论”的研究。欧拉发现,不论什么形状的凸多面体,其顶点数V、棱数E、面数F之间总有关系V+F-E=2,此式称为欧拉公式。V+F-E即欧拉示性数,已成为“拓扑学”的基础概念。那么什么是“拓扑学”?欧拉是如何发现这个关系的?他是用什么方法研究的?今天让我们沿着欧拉的足迹,怀着崇敬的心情和欣赏的态度探索这个公式......

初等数论中的欧拉定理

定理内容

在数论中,欧拉定理(也称费马-欧拉定理)是一个关于同余的性质。欧拉定理表明,若n,a为正整数,且n,a互素,(a,n) = 1,则

a^φ(n) ≡ 1 (mod n)

证明

首先证明下面这个命题:

对于集合Zn={x1,x2,...,xφ(n)},其中xi(i=1,2,…φ(n))是不大于n且与n 互素的数,即n的一个化简剩余系,或称简系,或称缩系),考虑集合S = {a *x1(mod n),a*x2(mod n),...,a*xφ(n)(mod n)}

则S = Zn

1) 由于a,n互质,xi也与n互质,则a*xi也一定于p互质,因此

任意xi,a*xi(mod n) 必然是Zn的一个元素

2) 对于Zn中两个元素xi和xj,如果xi ≠ xj

则a*xi(mod n) ≠ a*xi(mod n),这个由a、p互质和消去律可以得出。

所以,很明显,S=Zn

既然这样,那么

(a*x1 × a*x2×...×a*xφ(n))(mod n)

= (a*x1(mod n) × a*x2(mod n) × ... × a*xφ(n)(mod n))(mod n)

= (x1 × x2 × ... × xφ(n))(mod n)

考虑上面等式左边和右边

左边等于(a*(x1 × x2 × ... × xφ(n))) (mod n)

右边等于x1 × x2 × ... × xφ(n))(mod n)

而x1 × x2 × ... × xφ(n)(mod n)和n互质

根据消去律,可以从等式两边约去,就得到:

a^φ(n) ≡ 1 (mod n)

推论:对于互质的数a、n,满足a^(φ(n)+1) ≡ a (mod n)

费马定理:

a是不能被质数p整除的正整数,则有a^(p-1) ≡ 1 (mod p)

证明这个定理非常简单,由于φ(p) = p-1,代入欧拉定理即可证明。

同样有推论:对于不能被质数p整除的正整数a,有a^p ≡ a (mod p) 平面几何里的欧拉定理

定理内容

设三角形的外接圆半径为R,内切圆半径为r,外心与内心的距离为d,则d^2=R^2-2Rr.

证明

O、I分别为⊿ABC的外心与内心.

连AI并延长交⊙O于点D,由AI平分ÐBAC,故D为弧BC的中点.

连DO并延长交⊙O于E,则DE为与BC垂直的⊙O的直径.

由圆幂定理知,R2-d2=(R+d)(R-d)=IA·ID.(作直线OI与⊙O交于两点,即可用证明)

但DB=DI(可连BI,证明ÐDBI=ÐDIB得),

故只需证2Rr=IA·DB,即2R∶DB=IA∶r 即可.

而这个比例式可由⊿AFI∽⊿EBD证得.故得R2-d2=2Rr,即证.

拓扑学里的欧拉公式

V+F-E=X(P),V是多面体P的顶点个数,F是多面体P的面数,E是多面体P的棱的条数,X(P)是多面体P的欧拉示性数。

如果P可以同胚于一个球面(可以通俗地理解为能吹胀成一个球面),那么X(P)=2,如果P同胚于一个接有h个环柄的球面,那么X(P)=2-2h。

X(P)叫做P的拓扑不变量,是拓扑学研究的范围。

V+F-E=2的证明

方法1:(利用几何画板)

逐步减少多面体的棱数,分析V+F-E

先以简单的四面体ABCD为例分析证法。

去掉一个面,使它变为平面图形,四面体顶点数V、棱数E与剩下的面数F1变形后都没有变。因此,要研究V、E和F关系,只需去掉一个面变为平面图形,证V+F1-E=1

(1)去掉一条棱,就减少一个面,V+F1-E不变。依次去掉所有的面,变为“树枝形”。

(2)从剩下的树枝形中,每去掉一条棱,就减少一个顶点,V+F1-E不变,直至只剩下一条棱。

以上过程V+F1-E不变,V+F1-E=1,所以加上去掉的一个面,V+F-E = 2。

对任意的简单多面体,运用这样的方法,都是只剩下一条线段。因此公式对任意简单多面体都是正确的。

方法2:计算多面体各面内角和

设多面体顶点数V,面数F,棱数E。剪掉一个面,使它变为平面图形(拉开图),求所有面内角总和Σα

一方面,在原图中利用各面求内角总和。

设有F个面,各面的边数为n1,n2,…,nF,各面内角总和为:

Σα = [(n1-2)·180度+(n2-2)·180度+…+(nF-2) ·180度]

= (n1+n2+…+nF -2F) ·180度

=(2E-2F) ·180度 = (E-F) ·360度(1)

另一方面,在拉开图中利用顶点求内角总和。

设剪去的一个面为n边形,其内角和为(n-2)·180角,则所有V个顶点中,有n个顶点在边上,V-n个顶点在中间。中间V-n个顶点处的内角和为(V-n)·360度,边上的n个顶点处的内角和(n-2)·180度。

所以,多面体各面的内角总和:

Σα = (V-n)·360度+(n-2)·180度+(n-2)·180度

=(V-2)·360度(2)

由(1)(2)得: (E-F) ·360度=(V-2)·360度

所以 V+F-E=2.

方法3 用拓朴学方法证明欧拉公式

尝试一下用拓朴学方法证明关于多面体的面、棱、顶点数的欧拉公式。

欧拉公式:对于任意多面体(即各面都是平面多边形并且没有洞的立体),假设F,E和V分别表示面,棱(或边),角(或顶)的个数,那末F-E+V=2。

证明如图(图是立方体,但证明是一般的,是“拓朴”的):

(1)把多面体(图中①)看成表面是薄橡皮的中空立体。

勾股定理测试题(精选)

一、选择题(40分) 1 ) A :4,5,6 B :1,1 C :6,8,11 D :5,12,23 2、在Rt △ABC 中,∠C =90°,a =12,b =16,则c 的长为( ) A :26 B :18 C :20 D :21 3、在平面直角坐标系中,已知点P 的坐标是(3,4),则OP 的长为( ) A :3 B :4 C :5 D :7 4、在Rt △ABC 中,∠C =90°,∠B =45°,c =10,则a 的长为( ) A :5 B :10 C :25 D :5 5、等边三角形的边长为2,则该三角形的面积为( ) A 、 B C 、 D 、3 6、若等腰三角形的腰长为10,底边长为12,则底边上的高为( ) A 、6 B 、7 C 、8 D 、9 7、已知,如图长方形ABCD 中,AB=3cm ,AD=9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为( ) A 、3cm 2 B 、4cm 2 C 、6cm 2 D 、12cm 2 8、若△ABC 中,13,15AB cm AC cm ==,高AD=12,则BC 的长为( ) A 、14 B 、4 C 、14或4 D 、以上都不对 9、三角形各边长度的平方比如选项中所示,其中不是直角三角形是( ) (A )1:1:2 (B )1:3:4 (C )9:25:26 (D )25:144:169 10、在直线l 上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S 、2S 、3S 、4S ,则 二、填空题(30分)

勾股定理练习题及答案

一、 选择题 1、在Rt △ABC 中,∠C=90°,三边长分别为a 、b 、c ,则下列结论中恒成立的是 ( ) A 、2abc 2 D 、2ab ≤c 2 2、已知x 、y 为正数,且│x 2-4│+(y 2-3)2=0,如果以x 、y 的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为( ) A 、5 B 、25 C 、7 D 、15 3、直角三角形的一直角边长为12,另外两边之长为自然数,则满足要求的直角三角形共有( ) A 、4个 B 、5个 C 、6个 D 、8个 4、下列命题①如果a 、b 、c 为一组勾股数,那么4a 、4b 、4c 仍是勾股数;②如果直角三角形的两边是3、4,那么斜边必是5;③如果一个三角形的三边是12、2 5、21,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是a 、b 、c ,(a>b=c ),那么a 2∶b 2∶c 2=2∶1∶1。其中正确的是( ) A 、①② B 、①③ C 、①④ D 、②④ 5、若△ABC 的三边a 、b 、c 满足a 2+b 2+c 2+338=10a+24b+26c ,则此△为( ) A 、锐角三角形 B 、钝角三角形 C 、直角三角形 D 、不能确定 6、已知等腰三角形的腰长为10,一腰上的高为6,则以底边为边长的正方形的面积为( ) A 、40 B 、80 C 、40或360 D 、80或360 7、如图,在Rt △ABC 中,∠C=90°,D 为AC 上一点,且DA=DB=5,又△DAB 的面积为10,那么DC 的长是( ) A 、4 B 、3 C 、5 D 、 4.5 8、如图,一块直角三角形的纸片,两直角边AC=6㎝,BC=8㎝。现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( ) A 、2㎝ B 、3㎝ C 、4㎝ D 、5㎝ 9.一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A 点沿纸箱爬到B 点,那么它所行的最短路线的长是_____________。 10.在平静的湖面上,有一支红莲,高出水面1米,阵风吹来,红莲被吹到一边,花朵齐及水面,已知红莲移动的水平距离为2米,问这里水深是________m 。 二.解答题 1.如图,某沿海开放城市A 接到台风警报,在该市正南方向260km 的B 处有一台风中心,沿BC 方向以15km/h 的速度向D 移动,已知城市A 到BC 的距离AD=100km ,那么台风中心经过多长时间从B 点移到D 点?如果在距台风中心30km 的圆形区域内都将有受到台风的破坏的危险,正在D 点休闲的游人在接到台风警报后的几小时内撤离才可脱离危险? A B D C 第7题图 A C D B E 第8题图 A B C D 第1题图 A D B C B ′ A ′ C ′ D ′ 第9题图

勾股定理知识点总结

第18章 勾股定理复习 一.知识归纳 1.勾股定理 内容:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD ,221 4()2 ab b a c ?+-=,化简可证. c b a H G F E D C B A 方法二: b a c b a c c a b c a b 四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221 422S ab c ab c =?+=+ 大正方形面积为222()2S a b a ab b =+=++ 所以222a b c += 方法三:1()()2S a b a b =+?+梯形,211 2S 222 ADE ABE S S ab c ??=+=?+梯形,化简得证

a b c c b a E D C B A 3.勾股定理的适用范围 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用 ①已知直角三角形的任意两边长,求第三边 在ABC ?中,90C ∠=? ,则c ,b = ,a ②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题 5 、利用勾股定理作长为 的线段 作长为 、 、 的线段。 思路点拨:由勾股定理得,直角边为1的等腰直角三角形,斜边长就等于,直角边为 和1的直 角三角形斜边长就是,类似地可作 。 作法:如图所示 (1)作直角边为1(单位长)的等腰直角△ACB ,使AB 为斜边; (2)以AB 为一条直角边,作另一直角边为1的直角。斜边为 ; (3)顺次这样做下去,最后做到直角三角形,这样斜边 、 、 、 的长度就是 、 、 、 。 举一反三 【变式】在数轴上表示的点。 解析:可以把 看作是直角三角形的斜边, , 为了有利于画图让其他两边的长为整数, 而10又是9和1这两个完全平方数的和,得另外两边分别是3和1。

勾股定理知识点

1.勾股定理 内容:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c 勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方. 2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD ,221 4()2 ab b a c ?+-=,化简可证. 方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221 422S ab c ab c =?+=+ 大正方形面积为2 2 2 ()2S a b a ab b =+=++ 所以222a b c +=方法三:1()()2S a b a b =+?+梯形,211 2S 222ADE ABE S S ab c ??=+=?+梯形,化简得证 3.勾股定理的适用范围 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于 直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形. 4.勾股定理的应用 ①已知直角三角形的任意两边长,求第三边在ABC ?中,90 C ∠=?,则c =,b ,a ②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题 5.勾股定理的逆定理:如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边. ①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b , c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>, 时,以a ,b ,c 为三边的三角形是锐角三角形; ②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边 c b a H G F E D C B A b a c b a c c a b c a b a b c c b a E D C B A

勾股定理基础训练题

勾股定理基础题 1.已知一直角三角形的木板,三边的平方和为1800cm 2,则斜边长为( ). (A )80cm (B)30cm (C)90cm (D120cm. 2.直角三角形中,以直角边为边长的两个正方形的面积分别为36和64,那么以斜边为边长的正方形的面积是( ) A.54 B.100 C.72 D.120 3、有两棵树,一棵高6米,另一棵高2米,两树相距5米.一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了 米. A.4 B.5 C.3 D.41 4、直角三角形两条直角边的长分别为8和6,则斜边上的高为( ) (A )2.4 (B )4.8 (C )1.2 (D )10 5、直角三角形的三边上的半圆面积之间的关系是( ) A 、321S S S >+ B 、321S S S <+ C 、321S S S =+ D 、无法判断 6、如图字母A 所代表的正方形的面积是 ( ) A.、20 B. 24 C 、30 D. 74 7、如图,一圆柱高8cm,底面半径2cm,一只蚂蚁从点A 爬到点B 处吃食, 要爬行的最短路程(π取3)是( ) A.20cm B.10cm C.14cm D.无法确定. 8、一个等腰三角形的腰长为13cm ,底边长为10cm ,则底边上的高为________cm . 9、现有一长5米的梯子,架靠在建筑物的墙上,它们的底部在地面的水平距离是3米,则梯子可以到达建筑物的高度是___________米。 10.一个直角三角形,有两边长分别为6和8,下列说法正确的是( ) A. 第三边一定为10 B. 三角形的周长为25 C. 三角形的面积为48 D. 第三边可能为10 11.直角三角形的斜边为20cm ,两条直角边之比为3∶4,那么这个直角三角形的周长为( ) A . 27cm B. 30cm C. 40cm D. 48cm

2020年八年级数学 勾股定理(基础)知识讲解

勾股定理(基础) 【学习目标】 1.掌握勾股定理的内容,了解勾股定理的多种证明方法,体验数形结合的思想; 2.能够运用勾股定理求解三角形中相关的边长(只限于常用的数); 3.通过对勾股定理的探索解决简单的实际问题,进一步运用方程思想解决问题. 【要点梳理】 【高清课堂勾股定理知识要点】 要点一、勾股定理 直角三角形两条直角边的平方和等于斜边的平方.如果直角三角形的两直角边长分别为a b ,,斜边长为c ,那么222 a b c +=. 要点诠释:(1)勾股定理揭示了一个直角三角形三边之间的数量关系. (2)利用勾股定理,当设定一条直角边长为未知数后,根据题目已知的线段长 可以建立方程求解,这样就将数与形有机地结合起来,达到了解决问题的 目的. (3)理解勾股定理的一些变式:222a c b =-,222b c a =-,()2 22c a b ab =+-.要点二、勾股定理的证明 方法一:将四个全等的直角三角形拼成如图(1)所示的正方形.图(1)中,所以. 方法二:将四个全等的直角三角形拼成如图(2)所示的正方形. 图(2)中,所以. 方法三:如图(3)所示,将两个直角三角形拼成直角梯形.

,所以 . 要点三、勾股定理的作用 1.已知直角三角形的任意两条边长,求第三边; 2.用于解决带有平方关系的证明问题; 3.与勾股定理有关的面积计算; 4.勾股定理在实际生活中的应用. 【典型例题】类型一、勾股定理的直接应用1、在△ABC 中,∠C=90°,∠A、∠B、∠C 的对边分别为a 、b 、c . (1)若a =5,b =12,求c ; (2)若c =26,b =24,求a . 【思路点拨】利用勾股定理222a b c +=来求未知边长. 【答案与解析】 解:(1)因为△ABC 中,∠C=90°,222a b c +=,a =5,b =12, 所以2222251225144169c a b =+=+=+=.所以c =13. (2)因为△ABC 中,∠C=90°,222a b c +=,c =26,b =24, 所以222222624676576100a c b =-=-=-=.所以a =10. 【总结升华】已知直角三角形的两边长,求第三边长,关键是先弄清楚所求边是直角边还是斜边,再决定用勾股原式还是变式. 举一反三: 【变式】在△ABC 中,∠C=90°,∠A、∠B、∠C 的对边分别为a 、b 、c . (1)已知b =6,c =10,求a ; (2)已知:3:5a c =,b =32,求a 、c . 【答案】 解:(1)∵ ∠C=90°,b =6,c =10,∴ 2222210664a c b =-=-=,∴a =8. (2)设3a k =,5c k =, ∵∠C=90°,b =32, ∴222a b c +=. 即222(3)32(5)k k +=. 解得k =8. ∴33824a k ==?=,55840c k ==?=. 类型二、与勾股定理有关的证明

勾股定理练习题及答案

勾股定理课时练(1) 1. 在直角三角形ABC中,斜边AB=1,则AB2 2 2AC BC+ +的值是() 2.如图18-2-4所示,有一个形状为直角梯形的零件ABCD,AD∥BC,斜腰DC的长为10 cm,∠D=120°,则该零件另一腰AB的长是______ cm(结果不取近似值). 3. 直角三角形两直角边长分别为5和12,则它斜边上的高为_______. 4.一根旗杆于离地面12m处断裂,犹如装有铰链那样倒向地面,旗杆顶落于离旗杆地步16m,旗杆在断裂之前高多少m? 5.如图,如下图,今年的冰雪灾害中,一棵大树在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是米. 6. 飞机在空中水平飞行,某一时刻刚好飞到一个男孩子头顶正上方4000米处,过了20秒,飞机距离这个男孩头顶5000米,求飞机每小时飞行多少千米? 7. 如图所示,无盖玻璃容器,高18cm,底面周长为60cm,在外侧距下底1cm的点C处有一蜘蛛,与蜘蛛相对的容器的上口外侧距开口1cm的F处有一苍蝇,试求急于扑货苍蝇充饥的蜘蛛,所走的最短路线的长度. 8. 一个零件的形状如图所示,已知AC=3cm,AB=4cm,BD=12cm。求CD的长. 9. 如图,在四边形ABCD 中,∠A=60°,∠B=∠D=90°,BC=2,CD=3,求AB的长. 10. 如图,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北7km处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?

11如图,某会展中心在会展期间准备将高5m,长13m,宽2m的楼道上铺地毯,已知地毯平方米 12. 甲、乙两位探险者到沙漠进行探险,没有了水,需要寻找水源.为了不致于走散,他们用两部对话机联系,已知对话机的有效距离为15千米.早晨8:00甲先出发,他以6千米/时的速度向东行走,1小时后乙出发,他以5千米/时的速度向北行进,上午10:00,甲、乙二人相 距多远?还能保持联系吗?

勾股定理基础训练题

勾股定理基础题 1. 已知一直角三角形的木板,三边的平方和为 1800cm 2,则斜边长为( ). (A )80cm (B )30cm (C )90cm (D120cm. 2. 直角三角形中,以直角边为边长的两个正方形的面积分别为36 和64,那么以斜边为边长 的 正方形的面积是( ) A. 54 B.100 C.72 D.120 3、有两棵树,一棵高 6米,另一棵高 2米,两树相距 5米.一只小鸟从一棵树的树梢飞到 另一棵树的树梢,至少飞了 米. A. 4 B.5 C.3 D. 41 4、直角三角形两条直角边的长分别为 8 和 6,则斜边上的高为( ) (A )2.4 (B )4.8 (C )1.2 5、直角三角形的三边上的半圆面积之间的关系是( A 、 S + S S B 、 S + S S C 、S 1+S 2 =S 3 D 、无法判断 6、如图字母 A 所代表的正方形的面积是 ( ) A.、20 B. 24 C 、30 D. 74 7、如图,一圆柱高 8cm,底面半径 2cm,一只蚂蚁从点A 爬到点 B 处吃食, 要爬行的最短路程(取 3)是( ) A.20cm B.10cm C.14cm D.无法确定. 8、一个等腰三角形的腰长为 13cm ,底边长为 10cm ,则底边上的高为_ 9、现有一长 5米的梯子,架靠在建筑物的墙上,它们的底部在地面的水平距离是 3米,则梯 子可以到达建筑物的高度是 ___________ 米。 10.一个直角三角形,有两边长分别为 6和 8,下列说法正确的是( ) A. 第三边一定为 10 B. 三角形的周长为 25 C. 三角形的面积为 48 D. 第三边可能为 10 ( D )10 ) S 1 S 3 S 2 A 7 5 cm .

中考数学勾股定理知识点-+典型题及解析

中考数学勾股定理知识点-+典型题及解析 一、选择题 1.图中不能证明勾股定理的是( ) A . B . C . D . 2.勾股定理是几何中的一个重要定理,在我国算书《网醉算经》中就有“若勾三,股四,则弦五”的记载.如图1,是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,BC=5,点D ,E ,F ,G ,H ,I 都在矩形KLMJ 的边上,则矩形KLMJ 的面积为( ) A .121 B .110 C .100 D .90 3.如图,在ABC 中,90A ∠=?,6AB =,8AC =,ABC ∠与ACB ∠的平分线交于点O ,过点O 作⊥OD AB 于点D ,若则AD 的长为( )

A .2 B .2 C .3 D .4 4.已知△ABC 是腰长为1的等腰直角三角形,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第三个等腰Rt △ADE ,…,依此类推,第n 个等腰直角三角形的面积是( ) A .2n ﹣2 B .2n ﹣1 C .2n D .2n+1 5.如图,正方形ABCD 和正方形CEFG 边长分别为a 和b ,正方形CEFG 绕点C 旋转,给出下列结论:①BE=DG;②BE⊥DG;③DE 2+BG 2=2a 2+2b 2,其中正确结论有( ) A .0个 B .1个 C .2个 D .3个 6.如图是我国数学家赵爽的股弦图,它由四个全等的直角三角形和小正方形拼成的一个大正方形.已知大正方形的面积是l3,小正方形的面积是1,直角三角形的较短直角边长为a ,较长直角边长为b ,那么()2 a b +值为( ) A .25 B .9 C .13 D .169 7.我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的三角形,如图所示,已知90A ∠=?正方形ADOF 的边长是2,4BD =,则CF 的长为( ) A .6 B .2 C .8 D .10 8.有一个面积为1的正方形,经过一次“生长”后,在他的左右肩上生出两个小正方形,其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,变成了上图,如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2020次后形成的图形中所有的正方形的面积和是( )

(完整版)《勾股定理》典型练习题

《勾股定理》典型例题分析 一、知识要点: 1、勾股定理 勾股定理:直角三角形两直角边的平方和等于斜边的平方。也就是说:如果直角三角形的两直角边为a、b,斜边为c ,那么 a2 + b2= c2。公式的变形:a2 = c2- b2, b2= c2-a2 。 2、勾股定理的逆定理 如果三角形ABC的三边长分别是a,b,c,且满足a2 + b2= c2,那么三角形ABC 是直角三角形。这个定理叫做勾股定理的逆定理. 该定理在应用时,同学们要注意处理好如下几个要点: ①已知的条件:某三角形的三条边的长度. ②满足的条件:最大边的平方=最小边的平方+中间边的平方. ③得到的结论:这个三角形是直角三角形,并且最大边的对角是直角. ④如果不满足条件,就说明这个三角形不是直角三角形。 3、勾股数 满足a2 + b2= c2的三个正整数,称为勾股数。注意:①勾股数必须是正整数,不能是分数或小数。②一组勾股数扩大相同的正整数倍后,仍是勾股数。常见勾股数有: (3,4,5)(5,12,13) (6,8,10)(7,24,25)(8,15,17)(9,12,15) 4、最短距离问题:主要 5、运用的依据是两点之间线段最短。 二、考点剖析 考点一:利用勾股定理求面积 1、求阴影部分面积:(1)阴影部分是正方形;(2)阴影部分是长方形;(3)阴影部分是半圆.

2. 如图,以Rt △ABC 的三边为直径分别向外作三个半圆,试探索三个半圆的面积之间的关系. 3、如图所示,分别以直角三角形的三边向外作三个正三角形,其面积分别是S 1、S 2、S 3,则它们之间的关系是( ) A. S 1- S 2= S 3 B. S 1+ S 2= S 3 C. S 2+S 3< S 1 D. S 2- S 3=S 1 4、四边形ABCD 中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD 的面积。 5、(难)在直线上依次摆放着七个正方形(如图4所示)。已知斜放置的三个正方形的面积分别是 1、2、3,正放置的四个正方形的面积依次是 、 =_____________。 考点二:在直角三角形中,已知两边求第三边 1.在直角三角形中,若两直角边的长分别为1cm ,2cm ,则斜边长为 . S 3 S 2 S 1

《勾股定理》练习题及答案

《勾股定理》练习题及答案 测试1 勾股定理(一) 学习要求 掌握勾股定理的内容及证明方法,能够熟练地运用勾股定理由已知直角三角形中的两条边长求出第三条边长. 课堂学习检测 一、填空题 1.如果直角三角形的两直角边长分别为a、b,斜边长为c,那么______=c2;这一定理在我国被称为______.2.△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边. (1)若a=5,b=12,则c=______; (2)若c=41,a=40,则b=______; (3)若∠A=30°,a=1,则c=______,b=______; (4)若∠A=45°,a=1,则b=______,c=______. 3.如图是由边长为1m的正方形地砖铺设的地面示意图,小明沿图中所示的折线从A→B→C 所走的路程为______. 4.等腰直角三角形的斜边为10,则腰长为______,斜边上的高为______. 5.在直角三角形中,一条直角边为11cm,另两边是两个连续自然数,则此直角三角形的周长为______.二、选择题 6.Rt△ABC中,斜边BC=2,则AB2+AC2+BC2的值为( ). (A)8 (B)4 (C)6 (D)无法计算 7.如图,△ABC中,AB=AC=10,BD是AC边上的高线,DC=2,则BD等于( ). 2 (A)4 (B)6 (C)8 (D)10 8.如图,Rt△ABC中,∠C=90°,若AB=15cm,则正方形ADEC和正方形BCFG的面积和 为( ).(A)150cm2 (B)200cm2 (C)225cm2 (D)无法计算 三、解答题 9.在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c. (1)若a∶b=3∶4,c=75cm,求a、b; (2)若a∶c=15∶17,b=24,求△ABC的面积;

勾股定理知识讲解

勾股定理知识点 学习要求: 学习重点是利用计算面积和拼图的方法探索并验证勾股定理借助三角形三边关系来 判断一个三角 形是否是直角三角形。难点是各种拼图的理解和勾股定理的应用。 中考执占: I <7 八、、八\、? 主要考查勾股定理及直角三角形判定条件的应用和勾股数常与三角形其他知识结合 考查。 一、探索勾股定理: 1?勾股定理(重点) 内容:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为 a , b ,斜边为c ,那么a 2 b 2 c 2 即:直角三角形的三边关系为:两直角边的平方和等于斜边的平方 注:勾股定理揭示的是直角三角形三边关系的定理, 只使用与直角三角形。 使用勾股定理时 首先确定最长边即斜边。 2 ?勾股定理的证明(难点) 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ① 图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ② 根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法二:见右图 四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为 S 4 — ab c 2 2ab c 2 2 _ 2 2 2 大正方形面积为 S (a b ) a 2ab b 所以a 2 b 2 c 2 1 11 方法三:S 梯形 (a b ) (a b ) , S 梯形2S ADE S ABE 2 2 2 得证 方法一:4S S 正方形EFGH St 方形 ABCD , 1 4 ab 2 (b a)2 c 2,化简可证. b a

勾股定理知识点总结及练习

第 课时 第十八章 勾股定理 一.基础知识点: 1:勾股定理 直角三角形两直角边a 、b 的平方和等于斜边c 的平方。(即:a 2 +b 2 =c 2) 要点诠释: 勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用: (1)已知直角三角形的两边求第三边(在A B C ?中,90C ∠=?,则 2 2 c a b = +,22 b c a = -,22 a c b = -) (2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题 2:勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD ,22 14()2 ab b a c ?+-=,化简可证. 方法二: 四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为2 2 1422 S ab c ab c =? +=+ 大正方形面积为222()2S a b a ab b =+=++ 所以222a b c += 方法三:1()()2 S a b a b = +?+梯形,2 112S 22 2 ADE ABE S S ab c ??=+=? + 梯形,化简得证 3:勾股数 ①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数 ②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数:221,2,1n n n -+(2,n ≥n 为正整数); 2 2 21,22,221n n n n n ++++(n 为正整数)2 2 2 2 ,2,m n mn m n -+(,m n >m ,n 为正整数) 规律方法指导 1.勾股定理的证明实际采用的是图形面积与代数恒等式的关系相互转化证明的。 2.勾股定理反映的是直角三角形的三边的数量关系,可以用于解决求解直角三角形边边关系的题目。 c b a H G F E D C B A a b c c b a E D C B A c b a H G F E D C B A b a c b a c c a b c a b

(完整版)初二勾股定理习题(附答案)

C 勾股定理评估试卷 一、选择题(每小题3分,共30分) 1. 直角三角形一直角边长为12,另两条边长均为自然数,则其周长为( ). (A )30 (B )28 (C )56 (D )不能确定 2. 直角三角形的斜边比一直角边长2 cm ,另一直角边长为6 cm ,则它的斜边长 (A )4 cm (B )8 cm (C )10 cm (D )12 cm 3. 已知一个Rt △的两边长分别为3和4,则第三边长的平方是( ) (A )25 (B )14 (C )7 (D )7或25 4. 等腰三角形的腰长为10,底长为12,则其底边上的高为( ) (A )13 (B )8 (C )25 (D )64 5. 五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( ) 7 1524 25 20715 2024 25 157 25 20 24 257 202415 (A) (B) (C) (D) 6. 将直角三角形的三条边长同时扩大同一倍数, 得到的三角形是( ) (A ) 钝角三角形 (B ) 锐角三角形 (C ) 直角三角形 (D ) 等腰三角形. 7. 如图小方格都是边长为1的正方形,则四边形ABCD 的面积是 ( ) (A ) 25 (B ) 12.5 (C ) 9 (D ) 8.5 8. 三角形的三边长为ab c b a 2)(2 2 +=+,则这个三角形是( ) (A ) 等边三角形 (B ) 钝角三角形 (C ) 直角三角形 (D ) 锐角三角形. 9.△ABC 是某市在拆除违章建筑后的一块三角形空地.已知∠C=90°,AC=30米,AB=50米,如果要在这块空地上种植草皮,按每平方米草皮a 元计算,那么共需要资金( ). (A )50a 元 (B )600a 元 (C )1200a 元 (D )1500a 元 10.如图,A B ⊥CD 于B ,△ABD 和△BCE 都是等腰直角三角形,如果CD=17,BE=5,那么AC 的长为( ).

勾股定理全章知识点归纳总结

全国中考信息资源门户网站 https://www.360docs.net/doc/3a17833859.html, 勾股定理全章知识点归纳总结 一.基础知识点: 1:勾股定理 直角三角形两直角边a 、b 的平方和等于斜边c 的平方。(即:a 2+b 2=c 2) 要点诠释: 勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用: (1)已知直角三角形的两边求第三边(在A B C ?中,90C ∠=? ,则22 c a b = +, 2 2 b c a = -,22 a c b = -) (2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题 2:勾股定理的逆定理 如果三角形的三边长:a 、b 、c ,则有关系a 2+b 2=c 2,那么这个三角形是直角三角形。 要点诠释: 勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时应注意: (1)首先确定最大边,不妨设最长边长为:c ; (2)验证c 2与a 2+b 2是否具有相等关系,若c 2=a 2+b 2,则△ABC 是以∠C 为直角的直角三角形 (若c 2>a 2+b 2,则△ABC 是以∠C 为钝角的钝角三角形;若c 2

全国中考信息资源门户网站 https://www.360docs.net/doc/3a17833859.html, 3:勾股定理与勾股定理逆定理的区别与联系 区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理; 联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。 4:互逆命题的概念 如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。 规律方法指导 1.勾股定理的证明实际采用的是图形面积与代数恒等式的关系相互转化证明的。 2.勾股定理反映的是直角三角形的三边的数量关系,可以用于解决求解直角三角形边边关系的题目。 3.勾股定理在应用时一定要注意弄清谁是斜边谁直角边,这是这个知识在应用过程中易犯的主要错误。 4. 勾股定理的逆定理:如果三角形的三条边长a ,b ,c 有下列关系:a 2+b 2=c 2,?那么这个三角形是直角三角形;该逆定理给出判定一个三角形是否是直角三角形的判定方法. 5.?应用勾股定理的逆定理判定一个三角形是不是直角三角形的过程主要是进行代数运算,通过学习加深对“数形结合”的理解. 我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理) 5:勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ? +=正方形正方形ABCD ,22 14()2 ab b a c ? +-=,化简可证. c b a H G F E D C B A

人教版数学八年级下册《勾股定理》基础练习题

勾股定理 一、选择题(每小题4分,共12分) 1.(2013·黔西南州中考)一直角三角形的两边长分别为3和4.则第三边的长为 ( ) A.5 B. C. D.5或 2.如图,有一块直角三角形纸板ABC,两直角边 AC=6cm,BC=8cm.现将直角边AC沿直线AD折叠,使它落在斜 边AB上,且点C落到点E处,则CD等于( ) A.2cm B.3cm C.4cm D.5cm 3.(2013·资阳中考)如图,点E在正方形ABCD内,满足 ∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( ) A.48 B.60 C.76 D.80 二、填空题(每小题4分,共12分) 4.(2013·莆田中考)如图是一株美丽的勾股树,其中所有 的四边形都是正方形,所有的三角形都是直角三角形,若 正方形A,B,C,D的面积分别为2,5,1,2.则最大的正方形 E的面积是. 5.如图,等腰△ABC中,AB=AC,AD是底边上的高,若AB=5cm,BC=6cm,则AD= cm.

6.(2013·桂林中考)如图,在△ABC中,CA=CB,AD⊥BC,BE⊥AC,AB=5,AD=4,则AE= . 三、解答题(共26分)[ 7.(8分)已知,如图,在△ABC中,∠C=90°,∠1=∠2,CD=15,BD=25,求AC的长. 8.(8分)在△ABC中,AB=15,AC=20,BC边上的高AD=12,试求BC边的长. 【拓展延伸】 9.(10分)有一块直角三角形的绿地,量得两直角边长分别为6m,8m.现在要将绿地扩充成等腰三角形,且扩充部分是以8m为直角边的直角三角形,求扩充后等腰三角形绿地的周长.(图2,图3备用)

勾股定理练习题及答案

勾股定理练习题及答案 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

《勾股定理》练习题 测试1 勾股定理(一) 课堂学习检测 一、填空题 1.若一个直角三角形的两边长分别为12和5,则此三角形的第三边长为______. 2.甲、乙两人同时从同一地点出发,已知甲往东走了4km ,乙往南走了3km ,此时甲、乙两 人相距______km . 3.如图,有一块长方形花圃,有少数人为了避开拐角走“捷径”,在花圃内走 出了一条“路”,他们仅仅少走了______m 路,却踩伤了花草. 4.如图,有两棵树,一棵高8m ,另一棵高2m ,两树相距8m ,一只小鸟从 一棵树的树梢飞到另一棵树的树梢,至少要飞______m . 二、选择题 5.如图,一棵大树被台风刮断,若树在离地面3m 处折 断, 树顶端落在离树底部4m 处,则树折断之前高 ( ). (A)5m (B)7m (C)8m (D)10m 6.如图,从台阶的下端点B 到上端点A 的直线距离为( ). (A)212 (B)310 (C)56 (D)58 三、解答题 7.在一棵树的10米高B 处有两只猴子,一只猴子爬下树走到离树20米 处的池塘的A 处;另一只爬到树顶D 后直接跃到A 处,距离以直线计 算,如果两只猴子所经过的距离相等,则这棵树高多少米 8.在平静的湖面上,有一支红莲,高出水面1米,一阵风吹来,红莲移 到一边,花朵齐及水面,已知红莲移动的水平距离为2米,求这里的水深是多少米

综合、运用、诊断 一、填空题 9.如图,一电线杆AB的高为10米,当太阳光线与地面的夹角为60°时,其影长AC为______米. 10.如图,有一个圆柱体,它的高为20,底面半径为5.如果一只蚂蚁要从圆柱体下底面的A点,沿圆柱表面爬到与A相对的上底面B点,则蚂蚁爬的最短路线长约为______(取3) 二、解答题: 11.长为4 m的梯子搭在墙上与地面成45°角,作业时调整为60°角(如图所示),则梯子的顶端沿墙面升高了______m. 12.如图,在高为3米,斜坡长为5米的楼梯表面铺地毯,则地毯的长度至少需要多少米若楼梯宽2米,地毯每平方米30元,那么 这块地毯需花多少元 9 10 11 12 拓展、探究、思考 13.如图,两个村庄A、B在河CD的同侧,A、B两村到河的距离分别为AC= 1千米,BD=3千米,CD=3千米.现要在河边CD上建造一水厂,向A、 B两村送自来水.铺设水管的工程费用为每千米20000元,请你在CD上 选择水厂位置O,使铺设水管的费用最省,并求出铺设水管的总费用W. 测试2 勾股定理(三) 学习要求 熟练应用勾股定理解决直角三角形中的问题,进一步运用方程思想解决问题. 课堂学习检测

八年级下册勾股定理知识点归纳

八年级下册勾股定理知识点和典型例习题 一、基础知识点: 1.勾股定理 内容:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形通过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD , ,化简可证. 方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形 的面积与小正方形面积的和为221 422 S ab c ab c =?+=+ 大正方形面积为 2 22() 2S a b a a b b =+=++ 所以222a b c += 方法三:1()()2S a b a b =+?+梯形,211 2S 222 ADE ABE S S ab c ??=+=?+梯形,化简得证 3.勾股定理的适用范围 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ?中,90C ∠ =?,则c =,b ,a =②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实 际问题 5.勾股定理的逆定理 如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边 ①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;否则,就不是直角三角形。 ②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边 ③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形 6.勾股数 ①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数 ②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25,8,15,17等 ③用含字母的代数式表示n 组勾股数: c b a H G F E D C B A b a c b a c c a b c a b a b c c b a E D C B A

相关文档
最新文档