第1章误差分析

合集下载

第一章 误差分析与误差的传播习题及解答

第一章 误差分析与误差的传播习题及解答

有 5 位有效数字,其误差限
,相对误差限
有 2 位有效数字,
有 5 位有效数字, 3. 下列公式如何才比较准确? (1)
(2) 解:要使计算较准确,主要是避免两相近数相减,故应变换所给公式。 (1) (2)
4.设
,假定 是准确的,而对 的测量有
而相对误差却减少。
解:
秒的误差,证明当 增加时 的绝对误差增加,
四、解答题 1. 设 x>0,x*的相对误差为 δ,求 f(x)=ln x 的误差限。
解:求 lnx 的误差极限就是求 f(x)=lnx 的误差限,由公式有
已知 x*的相对误差 满足
,而
,故

2. 下列各数
都是经过四舍五入得到的近似值,试指出它们有几
位有效数字,并给出其误差限与相对误差限。 解:直接根据定义和式(1.2.2)(1.2.3)则得
( )
3. 任给实数 a 及向量 x ,则 || ax || a || x ||。
()
二、填空题:
1.设
x*
2.40315 是真值
x
2.40194 的近似值,则
x* 有(3)位有效数字。
2. x*的相对误差约是 x*的相对误差的 1 倍。
2
3. 为了使计算
y 10 3 4 6 x 1 (x 1)2 (x 1)3
5. 的近似值 3.1428 是准确到
近似值。答: 102
6. 取 x 3.142 作为 x 3.141 592 654 ┅的近似值,则 x 有
位有效数字.答:4
7. 近似值 x* 0.231关于真值 x 0.229有( 2 )位有效数字;
8. 3 x* 的相对误差为 x* 的相对误差的(

《试验设计与数据处理》第1章试验数据的误差分析

《试验设计与数据处理》第1章试验数据的误差分析

d p xp x (, n) s
则应将xp从该组试验值
中剔除。
7 10.52 0.066 10.52 0.119
8 10.82 0.366
x 10.45
x 10.40
s= 0.165
s= 0.078
从附录2查取。
(, n)
(1) s (0.05,8) 2.03 0.16 0.320.366 (2) (0.05,7) s 1.94 0.078 0.15220.119
※ 适用场合: 测定次数n >20
※测定次数n <10时,应采用其它准则。如:
格拉布斯准则、狄克逊准则、t检验法等 21
(2) 格拉布斯(Grubbs)准则

第一次检验
第二次检验
※ 方法:
号 xi xi x xi xi x
1)计算包括可疑值在内
1 10.29 0.164 10.29 0.111
• 在相同条件下,多次测量同一量时,误差的绝对值和符号 的变化时大时小,时正时负,没有确定的规律;
• 在一次测定中,是不可预知的,但在多次测定中,其误差 的算术平均值趋于零。
※ 随机误差的来源:偶然因素 ※ 随机误差具有一定的统计规律:
(1) 有界性; (2) 正误差和负误差出现的频数大致相等; (3) 绝对值小的误差比大的误差出现的次数多(收敛性)。 (4) 当测量次数n→∞,误差的算术平均值趋于零(抵偿性1)3 。
用来描述试验结果与真值的接近程度,即反映系统误差和随 机误差合成的大小程度。
16
1.5 试验数据误差的估计与检验
※1 随机误差的估计 对试验值精密度高低的判断:
(1) 极差:指一组试验值中最大值与最小值的差值。

第一章测量误差的分析与处理

第一章测量误差的分析与处理
这类误差对于单个测量值来说,误差的大小和正、负都是 不确定的,但对于一系列重复测量值来说,误差的分布服 从统计规律。因此随机误差只有在不改变测量条件的情况 下。对同一被测量进行多次测量才能计算出来。
随机误差大多是由测量过程中大量彼此独立的微小因 素对测量影响的综合结果造成的。这些因素通常是测量者 所不知道的,或者因其变化过分微小而无法加以严格控制 的。如气温和电源电压的微小波动,气流的微小改变等。
例如,仪表使用时的环境温度与校验时不同,并且是变化的,这就会 引起变值系统误差。变值系统误差可以通过实验方法找出产生误差的 原因及变化规律,改善测量条件来加以消除,也可通过计算或在仪表 上附加补偿装置加以校正。
未被充分认识只能估计它的误差范围,在测量结果上标明。
(3)随机误差
在相同条件下(同一观测者,同一台测量器具,相同的环 境条件等)多次测量同一被测量时,绝对值和符号不可预 知地变化着的误差称为随机误差。
(3)准确度:精密度与正确度的综合称准确度,它反映 了测量结果中系统误差和随机误差的综合数值,即测量结 果与真值的一致程度。准确度也称为精确度。
对于同一被 测量的多次 测量,精密 度高的准确 度不一定高, 正确度高的 准确度也不 一定高,只 有精密度和 正确度都高 时,准确度 才会高。
三、不确定度
是表示用测量值代表被测量真值的不肯定程度。
它是对被测量的真值以多大的可能性处于以测量 值为中心的某个量值范围之内的一个估计。
不确定度是测量准确度的定量表示。不确定度愈 小的测量结果,其准确度愈高。在评定测量结果 的不确定度时,应先行剔除坏值并对测量值尽可 能地进行修正。
第二节 随机误差的分布规律
测量系统和测量条件不变时,增加重复测 量次数并不能减少系统误差。

第一章 误差分析与误差的传播习题及解答

第一章 误差分析与误差的传播习题及解答

四、解答题 1. 设 x>0,x*的相对误差为 δ,求 f(x)=ln x 的误差限。
解:求 lnx 的误差极限就是求 f(x)=lnx 的误差限,由公式有
已知 x*的相对误差 满足
,而
,故

2. 下列各数
都是经过四舍五入得到的近似值,试指出它们有几
位有效数字,并给出其误差限与相对误差限。 解:直接根据定义和式(1.2.2)(1.2.3)则得
第一章 误差分析与误差的传播
一、判断题: 1.舍入误差是模型准确值与用数值方法求得的准确值产生的误差。 ( )
x2 2. 用 1- 2 近似表示 cosx 产生舍入误差。
( )
3. 任给实数 a 及向量 x ,则 || ax || a || x ||。
()
二、填空题:
1.设
x*
2.40315 是真值
5. 计算下列矩阵的范数:
1)
,求
2)
,求
3)
,求
解:1)
2)
3)
1 0 1
6.
求矩阵
A
0
1
0
的谱半径.
2 0 2
1 0 1
解 I A 0 1 0 1 3
4分
2 0 2
矩阵 A 的特征值为 1 0, 2 1, 3 3
8分
所以谱半径 A max0,1,3 3
7. 证明向量 X 的范数满足不等式

。( 2.7183 和 8.0000)
12. 、
,则 A 的谱半径

,A 的

( 11.计算


,利用( )式计算误差最小。
四个选项:
解:
三、选择题

试验设计与数据处理(第三版)李云雁-第1章-误差分析PPT优秀课件

试验设计与数据处理(第三版)李云雁-第1章-误差分析PPT优秀课件

设有n个正试验值:x1,x2,…,xn,则:
1 1 ... 1 n 1
1 x1 x2
xn i1 xi
H
n
n
常用在涉及到与一些量的倒数有关的场合 调和平均值≤几何平均值≤算术平均值
Excel在计算平均值中的应用
13
1.2 误差的基本概念
1.2.1 绝对误差(absolute error)
10
(3)对数平均值(logarithmic mean)
设两个数:x1>0,x2 >0 ,则
说明:
xL
x1 x2 ln x1 ln x2
x1 x2 ln x1
x2 x1 ln 宜使用对数平均值
对数平均值≤算术平均值
如果1/2≤x1/x2≤2 时,可用算术平均值代替
(1)定义: 一定试验条件下,由某个或某些因素按照某一 确定的规律起作用而形成的误差
(2)产生的原因:多方面 (3)特点: 系统误差大小及其符号在同一试验中是恒定的 它不能通过多次试验被发现,也不能通过取多次试验值的
平均值而减小 只要对系统误差产生的原因有了充分的认识,才能对它进
行校正,或设法消除。
数学家华罗庚教授也在国内积极倡导和普及的“优选法” 我国数学家王元和方开泰于1978年首先提出了均匀设计
3
0.2 试验设计与数据处理的意义
0.2.1 试验设计的目的:
合理地安排试验,力求用较少的试验次数获得较好结果 例:某试验研究了3个影响因素: A:A1,A2,A3 B:B1,B2,B3 C:C1,C2,C3 全面试验:27次 正交试验:9次
6
误差分析(error analysis) :对原始数据的可靠性进 行客观的评定
误差(error) :试验中获得的试验值与它的客观真实 值在数值上的不一致

1-第一章 数值计算中的误差分析

1-第一章 数值计算中的误差分析
前言
课程目的和任务: 通过对一些基本声学和水声学问题的分析和
求解,掌握基本声学理论计算与工程研究中常用的 数值计算方法,培养综合运用声学专业知识、数学 知识和计算机技术解决科学研究中手工所不能解算 的问题,具备应用现代计算工具解决工程实际问题 的能力。
前言
水声学主要研究声波在水下的辐射、传播与接收,用 以解决与水下目标探测和信息传输过程有关的各种声学问 题。声波是目前在海洋中唯一能够远距离传播的能量辐射 形式。因此作为信息载体的声波,在海洋中所形成的声场 时空结构,就成为近代水声学的基本研究内容,而提取海 洋中声场信息的结构是我们用来进行水下探测、识别、通 信及环境监测等的手段。



c*

1.2 299792458
4.1 109 (4.002769
109 )
数值计算中的误差分析
有效数字
如果近似值 x* 的绝对误差限是某一位的半个单位,就称其
“准
x*
确”到这一位x*,且从该位开始直到 的第一位非零数字共有n位,
则称近似数 有n位有效数字。
有效数字既能表示近似值的大小,又能表示其精确程度(绝对
学习目的:
提高应用计算机解决实际问题的能力。
前言
数值计算流程:
实际问题
理论模型
数学问题
误差分析
上机计算
程序设计
算法设计
特点:
既具有数学的抽象性与严格性,又具有应用的广泛性与实际实 验的技术性,是一门与计算机紧密结合的实用性很强的有着自身研 究方法与理论体系的计算数学课程。
前言
数学问题可以通过离散化、逼近转化为数值问题,在计算机上 可执行的(指计算公式中只有四则运算和逻辑运算等计算机上能够 执行的计算)求解数值问题的系列计算公式称为数值方法。

第一章数值计算方法与误差分析分析

第一章数值计算方法与误差分析分析

控制误差传播的例子
例10 计算积分 In=∫01 xn ex-1dx,n=0,1, 2, … , 9 利用分部积分法,可得 In= xn ex-1| 01 –∫01 ex-1dxn
=1– n∫01 xn-1 ex-1dx =1– nIn-1
从而有递推公式
I0= ∫01 ex-1dx= ex-1 | 01 = 1-e-1 ≈0.6321 In= 1– nIn-1 (n=0, 1, 2, … , 9)
所谓算法,是指对一些数据按某种规定的顺序 进行的运算序列。在实际计算中,对于同一问题我 们选用不同的算法, 所得结果的精度往往大不相同。 这是因为初始数据的误差或计算中的舍入误差在计 算过程中的传播,因算法不同而异,于是就产生了 算法的数值稳定性问题。一个算法, 如果计算结果 受误差的影响小,就称这个算法具有较好的数值稳 定性。否则,就称这个算法的数值稳定性不好。
简化计算步骤、减少运算次数、避免误差积累的例子
又如计算
1/(1*2)+1/(2*3)+…+1/(1000*1001)
的值。 若一项一项进行计算,不仅计算次数多,而 且误差积累也很大。若简化成 1-1/1001 进行计 算,则整个计算只要一次求倒数和一次减法。
(四)要避免绝对值小的数作除数
由式 ε(x1/x2)≈d(x1/x2)≈[x2ε(x1)-x1ε(x2)]/ x22 , (x2≠0) 可知,当除数x2接近于零时,商的绝对误差就可能很大。因此 , 在数值计算中要尽量避免绝对值小的数作除数, 避免的方法是把 算式变形或改变计算顺序。 例8 当x接近于0时 (1-cosx)/sinx 的分子、分母都接近0,为避免绝对值小的数作除数,可将原式 化为 (1-cosx)/sinx=sinx/(1+cosx) 例9 当x 很大时,可化 x/[(x+1)0.5-x0.5]=x[(x+1)0.5 + x0.5]

试验设计与数据处理(第三版)李云雁 第1章 误差分析.ppt

试验设计与数据处理(第三版)李云雁 第1章 误差分析.ppt

1.2.2 相对误差(relative error)
(1)定义:
相对误差
绝对误差 真值

ER
x xt
x
xt xt
(2)说明:
真值未知,常将Δx与试验值或平均值之比作为相对误差:
ER
x x

ER
x x
可以估计出相对误差的大小范围:
ER
x xt
x xt max
相对误差限或相对误差上界
∴ xt x(1 ER )
设有n个正试验值:x1,x2,…,xn,则:
1 1 ... 1 n 1
1 x1 x2
xn i1 xi
H
n
n
常用在涉及到与一些量的倒数有关的场合 调和平均值≤几何平均值≤算术平均值
Excel在计算平均值中的应用
1.2 误差的基本概念
1.2.1 绝对误差(absolute error)
真值:在某一时刻和某一状态下,某量的客观值或实际值 真值一般是未知的 相对的意义上来说,真值又是已知的 ➢ 平面三角形三内角之和恒为180° ➢ 国家标准样品的标称值 ➢ 国际上公认的计量值 ➢ 高精度仪器所测之值 ➢ 多次试验值的平均值
1.1.2 平均值(mean)
(1)算术平均值(arithmetic mean)
(3)对数平均值(logarithmic mean)
设两个数:x1>0,x2 >0 ,则
说明:
xL
x1 x2 ln x1 ln x2
x1 x2 ln x1
x2 x1 ln x2
x2
x1
若数据的分布具有对数特性,则宜使用对数平均值
对数平均值≤算术平均值
如果1/2≤x1/x2≤2 时,可用算术平均值代替
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1章误差分析
0.2.2 数据处理的目的
通过误差分析,评判试验数据的可靠性; 确定影响试验结果的因素主次,抓住主要矛盾,提高试
验效率; 确定试验因素与试验结果之间存在的近似函数关系,并
能对试验结果进行预测和优化; 试验因素对试验结果的影响规律,为控制试验提供思路; 确定最优试验方案或配方。
i1
i1
n1
n1
n1
表示试验值的精密度,标准差↓,试验数据精密度↑
第1章误差分析
1.3 试验数据误差的来源及分类
1.3.1 随机误差 (random error )
(1)定义:以不可预知的规律变化着的误差,绝对误差时 正时负,时大时小
(2)产生的原因: 偶然因素 (3)特点:具有统计规律 小误差比大误差出现机会多 正、负误差出现的次数近似相等 当试验次数足够多时,误差的平均值趋向于零 可以通过增加试验次数减小随机误差 随机误差不可完全避免的
ER
x xt
x xt max
相对误差限或相对误差上界
∴ xt x(1 ER )
相对误差常常表示为百分数(%)或千分数(‰)
第1章误差分析
1.2.3 算术平均误差 (average discrepancy)
定义式:
n
n
xi x di
i1
i1
n
n
d i —— 试验值 x i 与算术平均值 x 之间的偏差
第1章误差分析
第1章 试验数据的误差分析
第1章误差分析
误差分析(error analysis) :对原始数据的可靠性进 行客观的评定
误差(error) :试验中获得的试验值与它的客观真实 值在数值上的不一致
➢ 试验结果都具有误差,误差自始至终存在于一切科学实 验过程中
➢ 客观真实值——真值
第1章误差分析
1.1 真值与平均值
1.1.1 真值(true value)
真值:在某一时刻和某一状态下,某量的客观值或实际值 真值一般是未知的 相对的意义上来说,真值又是已知的 ➢ 平面三角形三内角之和恒为180° ➢ 国家标准样品的标称值 ➢ 国际上公认的计量值 ➢ 高精度仪器所测之值 ➢ 多次试验值的平均值
对数平均值≤算术平均值
如果1/2≤x1/x2≤2 时,可用算术平均值代替
第1章误差分析
(4)几何平均值(geometric mean) 设有n个正试验值:x1,x2,…,xn,则
1
xGnx1x2...xn (x1x2...xn)n
当一组试验值取对数后所得数据的分布曲线更加对称时, 宜采用几何平均值。
试验设计与数据处理
(第二版)
Experiment Design and Data Processing
第1章误差分析
引言
第1章误差分析
0.1 试验设计与数据处理的发展概况
20世纪20年代,英国生物统计学家及数学家费歇 (R.A.Fisher)提出了方差分析
20世纪50年代,日本统计学家田口玄一将试验设计中应用 最广的正交设计表格化
第1章误差分析
1.1.2 平均值(mean)

(1)算术平均值(arithmetic mean)
n
x x1 x2 ...xn i1 xi
n
n
适合: 等精度试验值 试验值服从正态分布
第1章误差分析
(2)加权平均值(weighted mean)
n
xW
w1x1 w2x2 ...wnxn w1 w2 ...wn
数学家华罗庚教授也在国内积极倡导和普及的“优选法” 我国数学家王元和方开泰于1978年首先提出了均匀设计
第1章误差分析
0.2 试验设计与数据处理的意义
0.2.1 试验设计的目的:
合理地安排试验,力求用较少的试验次数获得较好结果 例:某试验研究了3个影响因素: A:A1,A2,A3 B:B1,B2,B3 C:C1,C2,C3 全面试验:27次 正交试验:9次
绝对误差=量程×精度等级%
第1章误差分析
1.2.2 相对误差(relative error)
(1)定义:
相对误差绝真 对值 误差

ER
x
xt 或
x xt xt
(2)说明:
真值未知,常将Δx与试验值或平均值之比作为相对误差:
ER
x x

x ER x
第1章误差分析
可以估计出相对误差的大小范围:
行校正,或设法消除。
wixi
i1 n
wi
i1
wi——权重
加权和
适合不同试验值的精度或可靠性不一致时
第1章误差分析
(3)对数平均值(logarithmic mean)
设两个数:x1>0,x2 >0 ,则
说明:
xL
x1x2 lnx1lnx2
x1x2 lnx1
x2x1 lnx2
x2
x1
若数据的分布具有对数特性,则宜使用对数平均值
第1章误差分析
1.3.2 系统误差(systematic error)
(1)定义: 一定试验条件下,由某个或某些因素按照某一 确定的规律起作用而形成的误差
(2)产生的原因:多方面 (3)特点: 系统误差大小及其符号在同一试验中是恒定的 它不能通过多次试验被发现,也不能通过取多次试验值的
平均值而减小 只要对系统误差产生的原因有了充分的认识,才能对它进
几何平均值≤算术平均值
第1章误差分析
(5)调和平均值(harmonic mean)
设有n个正试验值:x1,x2,…,xn,则:
1 1 ... 1 n 1
1 x1 x2
xn i1 xi
H
n
n
常用在涉及到与一些量的倒数有关的场合 调和平均值≤几何平均值≤算术平均值
第1章误差分析
1.2 误差的基本概念
可以反映一组试验数据的误差大小
第1章误差分析
1.2.4 标准误差 (standard error)
当试验次数n无穷大时,总体标准差:
n
n
n
(xi x)2
xi2( xi)2/n
i1
i1
i1
n
n
试验次数为有限次时,样本标准差:
n
n
n
n
di2
(xi x)2
xi2( xi)2/n
s i1 i1
1.2.1 绝对误差(absolute error)
(1)定义
绝对误差=试验值-真值

x xxt
(2)说明 真值未知,绝对误差也未知 可以估计出绝对误差的范围:

xxxt xm ax
绝对误差限或绝对误差上界
xt
xx max
第1章误差分析
绝对误差估算方法: ➢ 最小刻度的一半为绝对误差; ➢ 最小刻度为最大绝对误差; ➢ 根据仪表精度等级计算:
相关文档
最新文档