最新(高二数学空间直角坐标系word版本

合集下载

高二数学空间直角坐标系1

高二数学空间直角坐标系1

问题引入
4.空间中的点M用代数的方法又怎样表示呢? 当建立空间直角坐标系后,空间中的点M,可以 用有序实数(x,y,z)表示.
z
z
Байду номын сангаас
M (x,y,z)
O
x
y
y
x
空间直角坐标系
OABC D A B C 是单位正方体.以O为原点,分 如图, 别以射线OA,OC, OD ' 的方向为正方向,以线段OA,OC,OD '
R
M
P
O
M’
Q
y
x
空间直角坐标系
反过来,给定有序实数组(x,y,z),我们可以 在x 轴、y 轴和z 轴上依次取坐标为x,y和z的点P、Q 和R,分别过P、Q和R各作一个平面,分别垂直于x 轴、 y 轴和z 轴,这三个平面的唯一交点就是有序实数组 (x,y,z)确定的点M.
z
R
M
P
O
M’
Q
y
x
空间直角坐标系
' ' ' '
的长为单位长,建立三条数轴:x轴、y 轴、z 轴.这时我们 说建立了一个空间直角坐标系O xyz ,其中点O 叫做坐标 原点, x轴、y 轴、z 轴叫做坐标轴.通过每两个坐标轴的平 面叫做坐标平面,分别称为xOy 平面、yOz平面、zOx平面.
z
D'
C'
A'
B'
O
A B
C
y
x
空间直角坐标系
1 1 1 1 1 1 1 1 ( ,0, ),(1, , ),( ,1, ),(0, , ); 2 2 2 2 2 2 2 2
上层的原子所在的平面平行于平面,与轴交点的竖坐标为 1,所以,这五个钠原子所在位置的坐标分别是: (0,0,1),(1,0,1),(1,1,1),(0,1,1),

怎样在word中画坐标系

怎样在word中画坐标系

怎样在word中画坐标系最佳答案基本步骤如下:1.执行“绘图/绘图网格/在屏幕上显示网格(注意数据设置)/确定”命令,使页面上显示绘图网格;2.用“绘图”工具栏上的“箭头”画坐标轴,画时按住Shift键,保证画出的线水平、垂直;3.用“直线”或“椭圆”画坐标轴上的刻度;4.用“本框”制作数轴上数据标识;5.把直线、刻度、数据标识同时选中并右击,执行“组合/组合”命令,把所有图形组合起来成为一个完整的平面直角坐标系,便于整体移动摆放。

6.用“椭圆”制作坐标点(画时按住Shift键)、用“直线”画点向坐标轴引的垂线、用“文本框”制作点的坐标。

7.用“绘图”工具栏上的“自选图形”制作函数图形。

用Word 2000巧制坐标图(上)徐成龙摘要:本文主要介绍如何用Word 2000巧制坐标图用word编辑理科试卷、教案、论文等。

关键字:坐标图绘制Word 2000绘图工具环绕在用word编辑理科试卷、教案、论文时,有时要用到如图1所示的坐标图。

在坐标图上可以画函数曲或电压U 电流I的关系图线等。

若要制作这类坐标图,您可能首先想到用wod本身自带的绘图工具进行绘制,但在制作坐标中等距离的表格线时难度很大,而在word中绘制这样一个类似大小的表格要容易的多,且各行各列之间严格等距。

能不能把wod中的表格和其绘图工具综合利用起来,完成这一任务呢?回答是肯定的,而且我们希望最后制作好的坐标图是一个整体图象,具有环绕功能,这样在排版时就非常方便。

考虑到表格的属性,它是一种特殊的对象,不能与直线等图形对象进行组合,在处理时要稍稍变通一下,利用文本框可与其他对象进行组合的特性,把表格画在文本框中,然后再与两条坐标轴线进行组合,从而达到我们的目的。

制作思路是(以12)(12的坐标图为例),先在文档中某一位置插入一个适当的文本框,用表格工具在该文本框内绘制一个12x12的表格3再用wod中的绘图工具画出两条坐标轴x轴和y轴,在x轴\y轴和原点O所在位置上输入字符x、y、0;最后把这几个对象组合起来成为一个整体,并设置具有环绕功能。

(完整word版)人教A版高中数学必修2知识点

(完整word版)人教A版高中数学必修2知识点

必修2知识点归纳第一章 空间几何体1、空间几何体的结构:空间几何体分为多面体和旋转体和简单组合体⑴常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有:圆柱、圆锥、圆台、球。

简单组合体的构成形式:一种是由简单几何体拼接而成,例如课本图1.1-11中(1)(2)物体表示的几何体; 一种是由简单几何体截去或挖去一部分而成,例如课本图1.1-11中(3)(4)物体表示的几何体。

⑵棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。

⑶棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台。

1、空间几何体的三视图和直观图把光由一点向外散射形成的投影叫中心投影,中心投影的投影线交于一点;把在一束平行光线照射下的投影叫平行投影,平行投影的投影线是平行的。

(1)定义:正视图:光线从几何体的前面向后面正投影得到的投影图; 侧视图:光线从几何体的左面向右面正投影得到的投影图; 俯视图:光线从几何体的上面向下面正投影得到的投影图。

几何体的正视图、侧视图和俯视图统称为几何体的三视图。

(2)三视图中反应的长、宽、高的特点:“长对正”,“高平齐”,“宽相等”2、空间几何体的直观图(表示空间图形的平面图). 观察者站在某一点观察几何体,画出的图形.3、斜二测画法的基本步骤:①建立适当直角坐标系xOy (尽可能使更多的点在坐标轴上) ②建立斜坐标系'''x O y ∠,使'''xOy∠=450(或1350),注意它们确定的平面表示水平平面;③画对应图形,在已知图形平行于X 轴的线段,在直观图中画成平行于X ‘轴,且长度保持不变;在已知图形平行于Y 轴的线段,在直观图中画成平行于Y ‘轴,且长度变为原来的一半;一般地,原图的面积是其直观图面积的22倍,即22S S 原图直观=4、空间几何体的表面积与体积⑴圆柱侧面积;l r S ⋅⋅=π2侧面⑵圆锥侧面积:l r S ⋅⋅=π侧面⑶圆台侧面积:l R lr S ⋅⋅+⋅⋅=ππ侧面⑷体积公式:h S V ⋅=柱体;h S V ⋅=31锥体;()13V h S S S S =+⋅+下下台体上上⑸球的表面积和体积:32344R V R S ππ==球球,.一般地,面积比等于相似比的平方,体积比等于相似比的立方。

(完整word版)参考系坐标系及转换

(完整word版)参考系坐标系及转换

1 天球坐标系、地球坐标系和卫星测量中常用的坐标系的建立方法.天球直角坐标系天球坐标系天球球面坐标系坐标系地球直角坐标系地球坐标系地球大地坐标系常用的天球坐标系:天球赤道坐标系、天球地平坐标系和天文坐标系。

在天球坐标系中,天体的空间位置可用天球空间直角坐标系或天球球面坐标系两种方式来描述.1 天球空间直角坐标系的定义地球质心O为坐标原点,Z轴指向天球北极,X轴指向春分点,Y轴垂直于XOZ 平面,与X轴和Z轴构成右手坐标系。

则在此坐标系下,空间点的位置由坐标(X,Y,Z)来描述.春分点:当太阳在地球的黄道上由天球南半球进入北半球,黄道与赤道的交点)2 天球球面坐标系的定义地球质心O为坐标原点,春分点轴与天轴(天轴:地球自转的轴)所在平面为天球经度(赤经)测量基准-—基准子午面,赤道为天球纬度测量基准而建立球面坐标.空间点的位置在天球坐标系下的表述为(r,α,δ)。

天球空间直角坐标系与天球球面坐标系的关系可用图2—1表示:岁差和章动的影响岁差:地球实际上不是一个理想的球体,地球自转轴方向不再保持不变,这使春分点在黄道上产生缓慢的西移,这种现象在天文学中称为岁差。

章动:在日月引力等因素的影响下,瞬时北天极将绕瞬时平北天极旋转,大致呈椭圆,这种现象称为章动。

极移:地球自转轴相对地球体的位置并不是固定的,因而,地极点在地球表面上的位置,是随时间而变化的,这种现象称为极移。

地球的自转轴不仅受日、月引力作用而使其在空间变化,而且还受地球内部质量不均匀影响在地球内部运动。

前者导致岁差和章动,后者导致极移。

协议天球坐标系:为了建立一个与惯性坐标系统相接近的坐标系,人们通常选择某一时刻,作为标准历元,并将此刻地球的瞬时自转轴(指向北极)和地心至瞬时春分点的方向,经过瞬时的岁差和章动改正后,分别作为X轴和Z轴的指向,由此建立的坐标系称为协议天球坐标系.3 地球坐标系地球直角坐标系和地球大地坐标系的转换其中:过椭球面上一点的法线,可作无限个法截面,其中一个与该点子午面相垂直的法截面同椭球面相截形成的闭合的圈称为卯酉圈。

空间直角坐标系(课件)高二数学(北师大版2019选择性必修第一册)

空间直角坐标系(课件)高二数学(北师大版2019选择性必修第一册)

x
空间直角坐标系的建立
下图是一个房间的示意图,我们来探讨表示电灯位置的
方法.
z

墙 地面
4 3
1
O1
4
x
(4,5,3) 5y
空间直角坐标系 z
从空间某一个定点O引三条
互相垂直且有相同单位长度的
数轴,这样就建立了空间直角
坐标系O-xyz.
O
y
x 点O叫作坐标原点,x,y,z轴统称为坐标轴,
这三条坐标轴中每两条确定一个坐标平面,分别称
横坐标不变, 纵坐标相反。
P3(1, 1,1) z
o
x
P1(1, 1, 1)
P(1,1,1)
y P2 (1,1, 1)
空间点的对称问题:
点M(x,y,z)是空间直角坐标系O-xyz中的一点
(1)与点M关于x轴对称的点: (x,-y,-z) (2)与点M关于y轴对称的点: (-x,y,-z) (3)与点M关于z轴对称的点: (-x,-y,z) (4)与点M关于原点对称的点: (-x,-y,-z)
6 设 P 在 x轴上,它到 P1(0, 2,3)的距离为到 点P2(0,1,1)的距离的两倍,求点P 的坐标. 解 因为P 在x 轴上,设P点坐标为 ( x,0,0),
PP1 x2 2 2 32 x2 11,
PP2 x2 12 12 x2 2,
PP1 2 PP2 , x2 11 2 x2 2
三点为顶点的三角形是一个等腰三角形.
解 M1M2 2 (7 4)2 (1 3)2 (2 1)2 14, M2M3 2 (5 7)2 (2 1)2 (3 2)2 6, M3M1 2 (4 5)2 (3 2)2 (1 3)2 6, M2M3 M3M1 , 原结论成立.

(word完整版)高二空间向量知识点归纳总结,推荐文档

(word完整版)高二空间向量知识点归纳总结,推荐文档

一.知识要点1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。

注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。

(2)向量具有平移不变性 2. 空间向量的运算:定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。

b a B A OA OB +=+=;b a OB OA BA -=-=;)(R a OP ∈=λλ运算律:⑴加法交换律:a b b a+=+ ⑵加法结合律:)()(c b a c b a ++=++⑶数乘分配律:b a b a λλλ+=+)( 运算法则:三角形法则、平行四边形法则3. 共线向量:(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a ρ平行于b ρ,记作b a //。

(2)共线向量定理:空间任意两个向量a ρ、b ρ(b ρ≠0ρ),a ρ//b ρ存在实数λ,使a ρ=λb ρ。

(3)三点共线:A 、B 、C 三点共线<=>λ= <=>OB y OA x OC +=,其中1=+y x(4)与a 共线的单位向量为||a ±4. 共面向量 :(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。

说明:空间任意的两向量都是共面的。

(2)共面向量定理:如果两个向量,a b rr 不共线,p r与向量,a br r 共面的条件是存在实数,x y 使。

y x +=(3)四点共面:若A 、B 、C 、P 四点共面<=>AC y AB x AP += <=>OC z OB y OA x OP ++=,其中1=++z y x5. 空间向量基本定理:如果三个向量c b a ,,不共面,那么对空间任一向量p ,存在一个唯一的有序实数组z y x ,,,使z y x ++=。

若三向量c b a ,,不共面,我们{},,把叫做空间的一个基底,c b a ,,叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。

1.3.1空间直角坐标系(教学教学设计)-高二数学同步备课系列(人教A版2019选择性必修第一册)

1.3.1空间直角坐标系(教学教学设计)-高二数学同步备课系列(人教A版2019选择性必修第一册)
- 参与课堂活动:积极参与小组讨论,体验空间直角坐标系的实际应用。
- 提问与讨论:针对不懂的问题或新的想法,勇敢提问并参与讨论。
教学方法/手段/资源:
- 讲授法:通过详细讲解,帮助学生理解空间直角坐标系的基本概念和性质。
- 实践活动法:设计小组讨论,让学生在实际操作中加深对坐标系的理解。
- 合作学习法:通过小组讨论等活动,培养学生的团队合作意识和沟通能力。
在能力方面,学生已经具备了一定的逻辑推理能力和数学抽象能力。他们能够通过例题解析和实际问题解决,运用逻辑推理方法,掌握空间直角坐标系的运算规则和解题方法。然而,空间想象能力是学生在学习空间直角坐标系时面临的一大挑战。空间直角坐标系是一个三维的概念,学生需要具备良好的空间想象能力,才能更好地理解和运用空间直角坐标系。
r = √(x^2 + y^2 + z^2)
其中,r表示点P到原点O的距离。
4. 坐标点的坐标应用
①坐标应用的定义:坐标应用是指在空间直角坐标系中,利用坐标点的坐标值进行实际应用的过程。
作用与目的:
- 帮助学生深入理解空间直角坐标系的基本概念和性质,掌握其在数学中的应用。
- 通过实践活动,培养学生的动手能力和解决问题的能力。
- 通过合作学习,培养学生的团队合作意识和沟通能力。
3. 课后拓展应用
教师活动:
- 布置作业:根据空间直角坐标系的性质和应用,布置适量的课后作业,巩固学习效果。
教学实施过程
1. 课前自主探索
教师活动:
- 发布预习任务:通过在线平台或班级微信群,发布预习资料(如PPT、视频、文档等),明确预习目标和要求。
- 设计预习问题:围绕空间直角坐标系的概念和性质,设计一系列具有启发性和探究性的问题,引导学生自主思考。

2022版高考数学(文理通用新课标)一轮复习教师用书:选修4-4 坐标系与参数方程 Word版含解析

2022版高考数学(文理通用新课标)一轮复习教师用书:选修4-4 坐标系与参数方程 Word版含解析

选修4-4⎪⎪⎪坐标系与参数方程 第一节 坐 标 系突破点(一) 平面直角坐标系下图形的伸缩变换基础联通 抓主干学问的“源”与“流”设点P (x ,y )是平面直角坐标系中的任意一点,在变换φ:⎩⎪⎨⎪⎧x ′=λ·x (λ>0),y ′=μ·y (μ>0)的作用下,点P (x ,y )对应到点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.考点贯穿 抓高考命题的“形”与“神”平面直角坐标系下图形的伸缩变换典例] 求椭圆x 24+y 2=1,经过伸缩变换⎩⎪⎨⎪⎧x ′=12x ,y ′=y 后的曲线方程.解] 由⎩⎪⎨⎪⎧x ′=12x ,y ′=y得到⎩⎪⎨⎪⎧x =2x ′,y =y ′.①将①代入x 24+y 2=1,得4x ′24+y ′2=1,即x ′2+y ′2=1.因此椭圆x 24+y 2=1经伸缩变换后得到的曲线方程是x 2+y 2=1.方法技巧]应用伸缩变换公式时的两个留意点(1)曲线的伸缩变换是通过曲线上任意一点的坐标的伸缩变换实现的,解题时肯定要区分变换前的点P 的坐标(x ,y )与变换后的点P ′的坐标(X ,Y ),再利用伸缩变换公式⎩⎪⎨⎪⎧X =ax (a >0),Y =by (b >0)建立联系.(2)已知变换后的曲线方程f (x ,y )=0,一般都要改写为方程f (X ,Y )=0,再利用换元法确定伸缩变换公式.力量练通 抓应用体验的“得”与“失”1.在同一平面直角坐标系中,已知伸缩变换φ:⎩⎪⎨⎪⎧x ′=3x ,2y ′=y .求点A ⎝⎛⎭⎫13,-2经过φ变换所得的点A ′的坐标.解:设A ′(x ′,y ′),由伸缩变换φ:⎩⎪⎨⎪⎧x ′=3x ,2y ′=y ,得到⎩⎪⎨⎪⎧x ′=3x ,y ′=12y ,由于点A 的坐标为⎝⎛⎭⎫13,-2, 于是x ′=3×13=1,y ′=12×(-2)=-1,所以A ′(1,-1)为所求.2.求直线l :y =6x 经过φ:⎩⎪⎨⎪⎧x ′=3x ,2y ′=y 变换后所得到的直线l ′的方程.解:设直线l ′上任意一点P ′(x ′,y ′), 由题意,将⎩⎪⎨⎪⎧x =13x ′,y =2y ′代入y =6x 得2y ′=6×⎝⎛⎭⎫13x ′, 所以y ′=x ′,即直线l ′的方程为y =x . 3.求双曲线C :x 2-y 264=1经过φ:⎩⎪⎨⎪⎧x ′=3x ,2y ′=y 变换后所得曲线C ′的焦点坐标. 解:设曲线C ′上任意一点P ′(x ′,y ′), 由题意,将⎩⎪⎨⎪⎧x =13x ′,y =2y ′代入x 2-y 264=1得x ′29-4y ′264=1,化简得x ′29-y ′216=1,本节主要包括2个学问点: 1.平面直角坐标系下图形的伸缩变换; 2.极坐标系.即x 29-y 216=1为曲线C ′的方程,可见经变换后的曲线仍是双曲线, 则所求焦点坐标为F 1(-5,0),F 2(5,0).4.将圆x 2+y 2=1变换为椭圆x 29+y 24=1的一个伸缩变换公式为φ:⎩⎪⎨⎪⎧X =ax (a >0),Y =by (b >0),求a ,b 的值.解:由⎩⎪⎨⎪⎧X =ax ,Y =by知⎩⎨⎧x =1a X ,y =1b Y ,代入x 2+y 2=1中得X 2a 2+Y 2b2=1,所以a 2=9,b 2=4,即a =3,b =2.突破点(二) 极坐标系基础联通 抓主干学问的“源”与“流” 1.极坐标系的概念 (1)极坐标系如图所示,在平面内取一个定点O ,点O 叫做极点,自极点O 引一条射线Ox ,Ox 叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.(2)极坐标一般地,没有特殊说明时,我们认为ρ≥0,θ可取任意实数. (3)点与极坐标的关系一般地,极坐标(ρ,θ)与(ρ,θ+2k π)(k ∈Z)表示同一个点,特殊地,极点O 的坐标为(0,θ)(θ∈R),和直角坐标不同,平面内一个点的极坐标有很多种表示.假如规定ρ>0,0≤θ<2π,那么除极点外,平面内的点可用唯一的极坐标(ρ,θ) 表示;同时,极坐标(ρ,θ)表示的点也是唯一确定的.2.极坐标与直角坐标的互化点M直角坐标(x ,y )极坐标(ρ,θ)互化公式⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ ⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=y x (x ≠0)考点贯穿 抓高考命题的“形”与“神”极坐标与直角坐标的互化1.极坐标方程化为直角坐标方程的步骤第一步推断极坐标的极点与直角坐标系的原点是否重合,且极轴与x 轴正半轴是否重合,若上述两个都重合,则极坐标方程与直角坐标方程可以互化其次步通过极坐标方程的两边同乘ρ或同时平方构造ρcos θ,ρsin θ,ρ2的形式,肯定要留意变形过程中方程要保持同解,不要消灭增解或漏解第三步 依据极坐标方程与直角坐标方程的互化公式⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ及ρ2=x 2+y 2将极坐标方程转化为直角坐标方程2.直角坐标方程化为极坐标方程或直角坐标系中的点的坐标化为极坐标(1)直角坐标方程化为极坐标方程较为简洁,只需将直角坐标方程中的x ,y 分别用ρcos θ,ρsin θ代替即可得到相应极坐标方程.(2)求直角坐标系中的点(x ,y )对应的极坐标的一般步骤:第一步,依据直角坐标系中两点间的距离公式计算该点与坐标原点的距离,即计算ρ;其次步,依据角θ的正切值tan θ=yx (x ≠0)求出角θ(若正切值不存在,则该点在y 轴上),问题即解.例1] 在极坐标系下,已知圆O :ρ=cos θ+sin θ和直线l :ρsin ⎝⎛⎭⎫θ-π4=22. (1)求圆O 和直线l 的直角坐标方程;(2)当θ∈(0,π)时,求直线l 与圆O 公共点的一个极坐标. 解] (1)圆O :ρ=cos θ+sin θ,即ρ2=ρcos θ+ρsin θ,圆O 的直角坐标方程为:x 2+y 2=x +y ,即x 2+y 2-x -y =0,直线l :ρsin ⎝⎛⎭⎫θ-π4=22,即ρsin θ-ρcos θ=1,则直线l 的直角坐标方程为:y -x =1,即x -y +1=0.(2)由⎩⎪⎨⎪⎧ x 2+y 2-x -y =0,x -y +1=0得⎩⎪⎨⎪⎧x =0,y =1,则直线l 与圆O 公共点的一个极坐标为⎝⎛⎭⎫1,π2. 方法技巧]1.应用互化公式的三个前提条件 (1)取直角坐标系的原点为极点. (2)以x 轴的正半轴为极轴. (3)两种坐标系规定相同的长度单位. 2.直角坐标化为极坐标时的两个留意点(1)依据终边相同的角的意义,角θ的表示方法具有周期性,故点M 的极坐标(ρ,θ)的形式不唯一,即一个点的极坐标有无穷多个.当限定ρ≥0,θ∈0,2π)时,除极点外,点M 的极坐标是唯一的.(2)当把点的直角坐标化为极坐标时,求极角θ应留意推断点M 所在的象限(即角θ的终边的位置),以便正确地求出角θ(θ∈0,2π))的值.极坐标方程的应用例2] (2021·福州五校联考)已知曲线C 的极坐标方程为ρ2-22ρcos ⎝⎛⎭⎫θ+π4-2=0.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系xOy .(1)若直线l 过原点,且被曲线C 截得的弦长最小,求直线l 的直角坐标方程; (2)若M 是曲线C 上的动点,且点M 的直角坐标为(x ,y ),求x +y 的最大值. 解] (1)ρ2-22ρcos ⎝⎛⎭⎫θ+π4-2=0,即ρ2-2ρcos θ+2ρsin θ-2=0, 将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入得曲线C 的直角坐标方程为(x -1)2+(y +1)2=4, 圆心C (1,-1),若直线l 被曲线C 截得的弦长最小,则直线l 与OC 垂直, 即k l ·k OC =-1,k OC =-1,因而k l =1,故直线l 的直角坐标方程为y =x .(2)由于M 是曲线C 上的动点,因而利用圆的参数方程可设⎩⎪⎨⎪⎧x =1+2cos φ,y =-1+2sin φ(φ为参数),则x +y =2sinφ+2cos φ=22sin ⎝⎛⎭⎫φ+π4,当sin ⎝⎛⎭⎫φ+π4=1时,x +y 取得最大值2 2.易错提示]用极坐标系解决问题时要留意题目中的几何关系,假如几何关系不简洁通过极坐标表示时,可以先化为直角坐标方程,将不生疏的问题转化为生疏的问题加以解决.力量练通 抓应用体验的“得”与“失”1.考点一、二]已知直线l 的极坐标方程为2ρsin ⎝⎛⎭⎫θ+π4=2,点A 的极坐标为A ⎝⎛⎭⎫22,7π4,求点A 到直线l 的距离.解:由2ρsin ⎝⎛⎭⎫θ+π4=2, 得2ρ⎝⎛⎭⎫22sin θ+22cos θ=2,由坐标变换公式,得直线l 的直角坐标方程为y +x =1,即x +y -1=0. 由点A 的极坐标为⎝⎛⎭⎫22,7π4得点A 的直角坐标为(2,-2),所以点A 到直线l 的距离d =|2-2-1|2=22.2.考点一]已知圆C 的极坐标方程为ρ2+22ρsin θ-π4-4=0,求圆C 的半径.解:以极坐标系的极点为平面直角坐标系的原点O ,以极轴为x 轴的正半轴,建立直角坐标系xOy . 圆C 的极坐标方程为ρ2+22ρ⎝⎛⎭⎫22sin θ-22cos θ-4=0,化简,得ρ2+2ρsin θ-2ρcos θ-4=0.由坐标变换公式,得圆C 的直角坐标方程为x 2+y 2-2x +2y -4=0, 即(x -1)2+(y +1)2=6, 所以圆C 的半径为 6.3.考点二]在极坐标系中,直线ρ(sin θ-cos θ)=a 与曲线ρ=2cos θ-4sin θ相交于A ,B 两点,若|AB |=23,求实数a 的值.解:直线的极坐标方程化为直角坐标方程为x -y +a =0,曲线的极坐标方程化为直角坐标方程为(x -1)2+(y +2)2=5,所以圆心C 的坐标为(1,-2),半径r =5,所以圆心C 到直线的距离为|1+2+a |2=r 2-⎝⎛⎭⎫|AB |22=2,解得a =-5或a =-1.故实数a 的值为-5或-1.4.考点一、二](2021·洛阳统考)已知圆O 1和圆O 2的极坐标方程分别为ρ=2,ρ2-22ρcos ⎝⎛⎭⎫θ-π4=2. (1)将圆O 1和圆O 2的极坐标方程化为直角坐标方程; (2)求经过两圆交点的直线的极坐标方程.解:(1)由ρ=2知ρ2=4,由坐标变换公式,得x 2+y 2=4. 由于ρ2-22ρcos ⎝⎛⎭⎫θ-π4=2, 所以ρ2-22ρ⎝⎛⎭⎫cos θcos π4+sin θsin π4=2. 由坐标变换公式, 得x 2+y 2-2x -2y -2=0.(2)将两圆的直角坐标方程相减,得经过两圆交点的直线方程为x +y =1.化为极坐标方程为ρcos θ+ρsin θ=1,即ρsin ⎝⎛⎭⎫θ+π4=22. 全国卷5年真题集中演练——明规律]1.(2022·全国乙卷)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =a cos t ,y =1+a sin t (t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ.(1)说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(2)直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a . 解:(1)消去参数t 得到C 1的一般方程为x 2+(y -1)2=a 2, 则C 1是以(0,1)为圆心,a 为半径的圆.将x =ρcos θ,y =ρsin θ代入C 1的一般方程中,得到C 1的极坐标方程为ρ2-2ρsin θ+1-a 2=0. (2)曲线C 1,C 2的公共点的极坐标满足方程组⎩⎪⎨⎪⎧ρ2-2ρsin θ+1-a 2=0,ρ=4cos θ. 若ρ≠0,由方程组得16cos 2θ-8sin θcos θ+1-a 2=0,由已知tan θ=2,可得16cos 2θ-8sin θcos θ=0, 从而1-a 2=0,解得a =-1(舍去)或a =1.当a =1时,极点也为C 1,C 2的公共点,且在C 3上. 所以a =1.2.(2021·新课标全国卷Ⅰ)在直角坐标系xOy 中,直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)求C 1,C 2的极坐标方程;(2)若直线C 3的极坐标方程为θ=π4(ρ∈R),设C 2与C 3的交点为M ,N ,求△C 2MN 的面积.解:(1)由于x =ρcos θ,y =ρsin θ, 所以C 1的极坐标方程为ρcos θ=-2, C 2的极坐标方程为ρ2-2ρcos θ-4ρsin θ+4=0. (2)将θ=π4代入ρ2-2ρcos θ-4ρsin θ+4=0,得ρ2-32ρ+4=0, 解得ρ1=22,ρ2= 2. 故ρ1-ρ2=2,即|MN |= 2. 由于C 2的半径为1, 所以△C 2MN 的面积为12.课时达标检测] 基础送分题——高考就考那几点,练通就能把分捡1.在极坐标系中,已知圆C 经过点P ⎝⎛⎭⎫2,π4,圆心为直线ρsin ⎝⎛⎭⎫θ-π3=-32与极轴的交点,求圆C 的极坐标方程.解:在ρsin ⎝⎛⎭⎫θ-π3=-32中,令θ=0,得ρ=1,所以圆C 的圆心坐标为(1,0). 由于圆C 经过点P ⎝⎛⎭⎫2,π4, 所以圆C 的半径PC = (2)2+12-2×1×2cos π4=1,于是圆C 过极点,所以圆C 的极坐标方程为ρ=2cos θ.2.设M ,N 分别是曲线ρ+2sin θ=0和ρsin ⎝⎛⎭⎫θ+π4=22上的动点,求M ,N 的最小距离. 解:由于M ,N 分别是曲线ρ+2sin θ=0和ρsin ⎝⎛⎭⎫θ+π4=22上的动点,即M ,N 分别是圆x 2+y 2+2y =0和直线x +y -1=0上的动点,要求M ,N 两点间的最小距离,即在直线x +y -1=0上找一点到圆x 2+y 2+2y =0的距离最小,即圆心(0,-1)到直线x +y -1=0的距离减去半径,故最小值为|0-1-1|2-1=2-1.3.在极坐标系中,求直线ρ(3cos θ-sin θ)=2与圆ρ=4sin θ的交点的极坐标. 解:ρ(3cos θ-sin θ)=2化为直角坐标方程为3x -y =2,即y =3x -2. ρ=4sin θ可化为x 2+y 2=4y , 把y =3x -2代入x 2+y 2=4y ,得4x 2-83x +12=0,即x 2-23x +3=0, 所以x =3,y =1.所以直线与圆的交点坐标为(3,1),化为极坐标为⎝⎛⎭⎫2,π6. 4.(2021·山西质检)在极坐标系中,曲线C 的方程为ρ2=31+2sin 2θ,点R ⎝⎛⎭⎫22,π4. (1)以极点为原点,极轴为x 轴的正半轴,建立平面直角坐标系,把曲线C 的极坐标方程化为直角坐标方程,R 点的极坐标化为直角坐标;(2)设P 为曲线C 上一动点,以PR 为对角线的矩形PQRS 的一边垂直于极轴,求矩形PQRS 周长的最小值,及此时P 点的直角坐标.解:(1)曲线C :ρ2=31+2sin 2θ,即ρ2+2ρ2sin 2θ=3,从而ρ2cos 2θ3+ρ2sin 2θ=1. ∵x =ρcos θ,y =ρsin θ,∴曲线C 的直角坐标方程为x 23+y 2=1,点R 的直角坐标为R (2,2). (2)设P (3cos θ,sin θ),依据题意可得|PQ |=2-3cos θ,|QR |=2-sin θ, ∴|PQ |+|QR |=4-2sin ⎝⎛⎭⎫θ+π3, 当θ=π6时,|PQ |+|QR |取最小值2,∴矩形PQRS 周长的最小值为4, 此时点P 的直角坐标为⎝⎛⎭⎫32,12.5.(2021·南京模拟)已知直线l :ρsin ⎝⎛⎭⎫θ-π4=4和圆C :ρ=2k cos ⎝⎛⎭⎫θ+π4(k ≠0),若直线l 上的点到圆C 上的点的最小距离等于2.求实数k 的值并求圆心C 的直角坐标.解:圆C 的极坐标方程可化为ρ=2k cos θ-2k sin θ, 即ρ2=2kρcos θ-2kρsin θ,所以圆C 的直角坐标方程为x 2+y 2-2kx +2ky =0, 即⎝⎛⎭⎫x -22k 2+⎝⎛⎭⎫y +22k 2=k 2, 所以圆心C 的直角坐标为⎝⎛⎭⎫22k ,-22k .直线l 的极坐标方程可化为ρsin θ·22-ρcos θ·22=4,所以直线l 的直角坐标方程为x -y +42=0,所以⎪⎪⎪⎪22k +22k +422-|k |=2.即|k +4|=2+|k |, 两边平方,得|k |=2k +3,所以⎩⎪⎨⎪⎧ k >0,k =2k +3或⎩⎪⎨⎪⎧k <0,-k =2k +3,解得k =-1,故圆心C 的直角坐标为⎝⎛⎭⎫-22,22. 6.已知圆C :x 2+y 2=4,直线l :x +y =2.以O 为极点,x 轴的正半轴为极轴,取相同的单位长度建立极坐标系.(1)将圆C 和直线l 方程化为极坐标方程;(2)P 是l 上的点,射线OP 交圆C 于点R ,又点Q 在OP 上,且满足|OQ |·|OP |=|OR |2,当点P 在l 上移动时,求点Q 轨迹的极坐标方程.解:(1)将x =ρcos θ,y =ρsin θ分别代入圆C 和直线l 的直角坐标方程得其极坐标方程为C :ρ=2,l :ρ(cos θ+sin θ)=2.(2)设P ,Q ,R 的极坐标分别为(ρ1,θ),(ρ,θ),(ρ2,θ),则由|OQ |·|OP |=|OR |2,得ρρ1=ρ22. 又ρ2=2,ρ1=2cos θ+sin θ,所以2ρcos θ+sin θ=4,故点Q 轨迹的极坐标方程为ρ=2(cos θ+sin θ)(ρ≠0).7.(2021·贵州联考)已知在一个极坐标系中点C 的极坐标为⎝⎛⎭⎫2,π3. (1)求出以C 为圆心,半径长为2的圆的极坐标方程(写出解题过程);(2)在直角坐标系中,以圆C 所在极坐标系的极点为原点,极轴为x 轴的正半轴建立直角坐标系,点P 是圆C 上任意一点,Q (5,-3),M 是线段PQ 的中点,当点P 在圆C 上运动时,求点M 的轨迹的一般方程.解:(1)如图,设圆C 上任意一点A (ρ,θ),则∠AOC =θ-π3或π3-θ.由余弦定理得,4+ρ2-4ρcos θ-π3=4,所以圆C 的极坐标方程为ρ=4cos ⎝⎛⎭⎫θ-π3. (2)在直角坐标系中,点C 的坐标为(1,3),可设圆C 上任意一点P (1+2cos α,3+2sin α), 又令M (x ,y ),由Q (5,-3),M 是线段PQ 的中点, 得点M 的轨迹的参数方程为⎩⎪⎨⎪⎧x =6+2cos α2,y =2sin α2(α为参数),即⎩⎪⎨⎪⎧x =3+cos α,y =sin α(α为参数), ∴点M 的轨迹的一般方程为(x -3)2+y 2=1.8.在平面直角坐标系中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2cos φ,y =sin φ(φ为参数),以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2是圆心在极轴上且经过极点的圆,射线θ=π3与曲线C 2交于点D ⎝⎛⎭⎫2,π3. (1)求曲线C 1的一般方程和曲线C 2的直角坐标方程;(2)已知极坐标系中两点A (ρ1,θ0),B ⎝⎛⎭⎫ρ2,θ0+π2,若A ,B 都在曲线C 1上,求1ρ21+1ρ22的值. 解:(1)∵C 1的参数方程为⎩⎪⎨⎪⎧x =2cos φ,y =sin φ,∴C 1的一般方程为x 24+y 2=1.由题意知曲线C 2的极坐标方程为ρ=2a cos θ(a 为半径), 将D ⎝⎛⎭⎫2,π3 代入,得2=2a ×12, ∴a =2,∴圆C 2的圆心的直角坐标为(2,0),半径为2, ∴C 2的直角坐标方程为(x -2)2+y 2=4.(2)曲线C 1的极坐标方程为ρ2cos 2θ4+ρ2sin 2θ=1,即ρ2=44sin 2θ+cos 2θ. ∴ρ21=44sin 2θ0+cos 2θ0,ρ22=44sin 2⎝⎛⎭⎫θ0+π2+cos 2⎝⎛⎭⎫θ0+π2=4sin 2θ0+4cos 2θ0.∴1ρ21+1ρ22=4sin 2θ0+cos 2θ04+4cos 2θ0+sin 2θ04=54. 其次节 参数方程突破点(一) 参数方程基础联通 抓主干学问的“源”与“流”1.参数方程一般地,在平面直角坐标系中,假如曲线上任意一点的坐标x ,y 都是某个变数t 的函数:⎩⎪⎨⎪⎧x =f (t ),y =g (t ),并且对于t 的每一个允许值,由方程组⎩⎪⎨⎪⎧x =f (t ),y =g (t )所确定的点M (x ,y )都在这条曲线上,那么方程⎩⎪⎨⎪⎧x =f (t ),y =g (t )就本节主要包括2个学问点: 1.参数方程;2.参数方程与极坐标方程的综合问题.叫做这条曲线的参数方程,变数t 叫做参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做一般方程.2.直线、圆、椭圆的参数方程(1)过点M (x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).(2)圆心在点M 0(x 0,y 0),半径为r 的圆的参数方程为⎩⎪⎨⎪⎧x =x 0+r cos θ,y =y 0+r sin θ(θ为参数).(3)椭圆x 2a 2+y 2b 2=1(a >b >0)的参数方程为⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ(φ为参数).考点贯穿 抓高考命题的“形”与“神”参数方程与一般方程的互化1.参数方程化为一般方程基本思路是消去参数,常用的消参方法有:①代入消元法;②加减消元法;③恒等式(三角的或代数的)消元法;④平方后再加减消元法等.其中代入消元法、加减消元法一般是利用解方程的技巧,三角恒等式消元法常利用公式sin 2θ+cos 2θ=1等.2.一般方程化为参数方程 (1)选择参数的一般原则曲线上任意一点的坐标与参数的关系比较明显且关系相对简洁;当参数取某一值时,可以唯一确定x ,y 的值;(2)具体步骤第一步,引入参数,但要选定合适的参数t ;其次步,确定参数t 与变量x 或y 的一个关系式x =f (t )(或y =φ(t ));第三步,把确定的参数与一个变量的关系式代入一般方程F (x ,y )=0,求得另一关系y =g (t )(或x =ψ(t )),问题得解.例1] 将下列参数方程化为一般方程.(1)⎩⎨⎧x =1t,y =1tt 2-1(t 为参数);(2)⎩⎪⎨⎪⎧x =2+sin 2θ,y =-1+cos 2θ(θ为参数). 解] (1)∵⎝⎛⎭⎫1t 2+⎝⎛⎭⎫1t t 2-12=1, ∴x 2+y 2=1.∵t 2-1≥0,∴t ≥1或t ≤-1.又x =1t ,∴x ≠0. 当t ≥1时,0<x ≤1, 当t ≤-1时,-1≤x <0,∴所求一般方程为x 2+y 2=1,其中⎩⎨⎧0<x ≤1,0≤y <1或⎩⎪⎨⎪⎧-1≤x <0,-1<y ≤0.(2)∵y =-1+cos 2θ=-1+1-2sin 2θ=-2sin 2θ,sin 2θ=x -2, ∴y =-2x +4,∴2x +y -4=0. ∵0≤sin 2θ≤1,∴0≤x -2≤1,∴2≤x ≤3,∴所求的一般方程为2x +y -4=0(2≤x ≤3). 易错提示](1)将曲线的参数方程化为一般方程时务必要留意x ,y 的取值范围,保证消参前后的方程的全都性. (2)将参数方程化为一般方程时,要留意参数的取值范围对一般方程中x ,y 的取值范围的影响.直线与圆锥曲线的参数方程及应用1第一步,把直线和圆锥曲线的参数方程都化为一般方程; 其次步,依据直线与圆锥曲线的位置关系解决问题.2.当直线经过点P (x 0,y 0),且直线的倾斜角为α,求直线与圆锥曲线的交点、弦长问题时,可以把直线的参数方程设成⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数),交点A ,B 对应的参数分别为t 1,t 2,计算时把直线的参数方程代入圆锥曲线的直角坐标方程,求出t 1+t 2,t 1·t 2,得到|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1·t 2.例2] (2021·豫南九校联考)在直角坐标系xOy 中,设倾斜角为α的直线l :⎩⎨⎧x =2+t cos α,y =3+t sin α(t 为参数)与曲线C :⎩⎪⎨⎪⎧x =2cos θ,y =sin θ(θ为参数)相交于不同的两点A ,B .(1)若α=π3,求线段AB 的中点M 的坐标;(2)若|PA |·|PB |=|OP |2,其中P (2,3),求直线l 的斜率. 解] (1)将曲线C 的参数方程化为一般方程是x 24+y 2=1.当α=π3时,设点M 对应的参数为t 0.直线l 的方程为⎩⎨⎧x =2+12t ,y =3+32t(t 为参数),代入曲线C 的一般方程x 24+y 2=1,得13t 2+56t +48=0,设直线l 上的点A ,B 对应参数分别为t 1,t 2. 则t 0=t 1+t 22=-2813,所以点M 的坐标为⎝⎛⎭⎫1213,-313.(2)将⎩⎪⎨⎪⎧x =2+t cos α,y =3+t sin α代入曲线C 的一般方程x 24+y 2=1,得(cos 2α+4sin 2α)t 2+(83sin α+4cos α)t +12=0, 由于|PA |·|PB |=|t 1t 2|=12cos 2α+4sin 2α,|OP |2=7, 所以12cos 2α+4sin 2α=7,得tan 2α=516.由于Δ=32cos α(23sin α-cos α)>0, 故tan α=54.所以直线l 的斜率为54.方法技巧]1.解决直线与圆的参数方程的应用问题时一般是先化为一般方程再依据直线与圆的位置关系来解决问题.2.对于形如⎩⎪⎨⎪⎧x=x 0+at ,y =y 0+bt(t 为参数)的直线的参数方程,当a 2+b 2≠1时,应先化为标准形式后才能利用t 的几何意义解题.1.考点一]将下列参数方程化为一般方程.(1)⎩⎨⎧x =3k1+k 2,y =6k21+k2(k 为参数);(2)⎩⎪⎨⎪⎧x =1-sin 2θ,y =sin θ+cos θ(θ为参数). 解:(1)两式相除,得k =y 2x ,将其代入x =3k1+k 2得x =3·y2x 1+⎝⎛⎭⎫y 2x 2,化简得4x 2+y 2-6y =0,由于y =6k 21+k 2=6-11+k 2,所以0<y <6,所以所求的一般方程是4x 2+y 2-6y =0(0<y <6). (2)由(sin θ+cos θ)2=1+sin 2θ=2-(1-sin 2θ) 得y 2=2-x .又x =1-sin 2θ∈0,2], 得所求的一般方程为y 2=2-x ,x ∈0,2].2.考点二](2021·唐山模拟)已知曲线C 的参数方程为⎩⎪⎨⎪⎧x =6cos θ,y =4sin θ(θ为参数),在同一平面直角坐标系中,将曲线C 上的点按坐标变换⎩⎨⎧x ′=13x ,y ′=14y得到曲线C ′.(1)求曲线C ′的一般方程;(2)若点A 在曲线C ′上,点D (1,3).当点A 在曲线C ′上运动时,求AD 中点P 的轨迹方程.解:(1)将⎩⎪⎨⎪⎧x =6cos θ,y =4sin θ代入⎩⎨⎧x ′=13x ,y ′=14y ,得曲线C ′的参数方程为⎩⎪⎨⎪⎧x ′=2cos θ,y ′=sin θ,∴曲线C ′的一般方程为x 24+y 2=1.(2)设点P (x ,y ),A (x 0,y 0),又D (1,3)且AD 的中点为P ,∴⎩⎪⎨⎪⎧x 0=2x -1,y 0=2y -3.又点A 在曲线C ′上,∴将A 点坐标代入C ′的一般方程x 24+y 2=1,得(2x -1)2+4(2y -3)2=4,∴动点P的轨迹方程为(2x -1)2+4(2y -3)2=4.3.考点二](2021·郑州模拟)将曲线C 1:x 2+y 2=1上全部点的横坐标伸长到原来的2倍(纵坐标不变)得到曲线C 2,A 为C 1与x 轴正半轴的交点,直线l 经过点A 且倾斜角为30°,记l 与曲线C 1的另一个交点为B ,与曲线C 2在第一、三象限的交点分别为C ,D .(1)写出曲线C 2的一般方程及直线l 的参数方程; (2)求|AC |-|BD |.解:(1)由题意可得C 2:x 22+y 2=1,对曲线C 1,令y =0,得x =1,所以l :⎩⎨⎧x =1+32t ,y =12t(t 为参数).(2)将⎩⎨⎧x =1+3t 2,y =12t代入x 22+y 2=1,整理得5t 2+43t -4=0.设点C ,D 对应的参数分别为t 1,t 2,则t 1+t 2=-435,且|AC |=t 1,|AD |=-t 2.又|AB |=2|OA |cos 30°=3,故|AC |-|BD |=|AC |-(|AD |-|AB |)=|AC |-|AD |+|AB |=t 1+t 2+3=35. 4.考点二]设直线l 的参数方程为⎩⎪⎨⎪⎧x =3+t cos α,y =4+t sin α(t 为参数,α为倾斜角),圆C 的参数方程为⎩⎪⎨⎪⎧x =1+2cos θ,y =-1+2sin θ(θ为参数). (1)若直线l 经过圆C 的圆心,求直线l 的斜率;(2)若直线l 与圆C 交于两个不同的点,求直线l 的斜率的取值范围.解:(1)由已知得直线l 经过的定点是P (3,4),而圆C 的圆心是C (1,-1),所以,当直线l 经过圆C 的圆心时,直线l 的斜率为k =52.(2)将圆C 的参数方程⎩⎪⎨⎪⎧x =1+2cos θ,y =-1+2sin θ,化成一般方程为(x -1)2+(y +1)2=4,① 将直线l 的参数方程代入①式,得 t 2+2(2cos α+5sin α)t +25=0.②当直线l 与圆C 交于两个不同的点时,方程②有两个不相等的实根,即Δ=4(2cos α+5sin α)2-100>0, 即20sin αcos α>21cos 2α,两边同除以cos 2α, 由此解得tan α>2120,即直线l 的斜率的取值范围为⎝⎛⎭⎫2120,+∞.突破点(二) 参数方程与极坐标方程的综合问题将极坐标方程与参数方程、一般方程交织在一起,考查极坐标方程与参数方程的综合应用.将各类方程相互转化是求解该类问题的前提.,解决问题时要留意:(1)解题时,易将直线与圆的极坐标方程混淆.要娴熟把握特殊直线、圆的极坐标方程的形式.(2)应用解析法解决实际问题时,要留意选取直角坐标系还是极坐标系,建立极坐标系要留意极点、极轴位置的选择,留意点和极坐标之间的“一对多”关系.(3)求曲线方程,常设曲线上任意一点P (ρ,θ),利用解三角形的学问,列出等量关系式,特殊是正弦、余弦定理的应用.圆的参数方程常和三角恒等变换结合在一起,解决取值范围或最值问题.(4)参数方程和一般方程表示同一个曲线时,要留意其中x ,y 的取值范围,即留意两者的等价性.考点贯穿 抓高考命题的“形”与“神”参数方程与极坐标方程的综合问题典例] (2021·长沙模拟)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =-1+cos α,y =sin α(α为参数),以原点O 为极点,x 轴正半轴为极轴,建立极坐标系,直线l 的极坐标方程为ρ(cos θ+k sin θ)=-2(k 为实数).(1)推断曲线C 1与直线l 的位置关系,并说明理由;(2)若曲线C 1和直线l 相交于A ,B 两点,且|AB |=2,求直线l 的斜率.解] (1)由曲线C 1的参数方程⎩⎪⎨⎪⎧x =-1+cos α,y =sin α可得其一般方程为(x +1)2+y 2=1.由ρ(cos θ+k sin θ)=-2可得直线l 的直角坐标方程为x +ky +2=0. 由于圆心(-1,0)到直线l 的距离d =11+k 2≤1,所以直线与圆相交或相切,当k =0时,d =1,直线l 与曲线C 1相切; 当k ≠0时,d <1,直线l 与曲线C 1相交. (2)由于曲线C 1和直线l 相交于A ,B 两点, 且|AB |=2,故圆心到直线l 的距离d =11+k 2=1-⎝⎛⎭⎫222=22, 解得k =±1,所以直线l 的斜率为±1. 方法技巧]处理极坐标、参数方程综合问题的方法(1)涉及参数方程和极坐标方程的综合题,求解的一般方法是分别化为一般方程和直角坐标方程后求解.当然,还要结合题目本身特点,确定选择何种方程.(2)数形结合的应用,即充分利用参数方程中参数的几何意义,或者利用ρ和θ的几何意义,直接求解,能达到化繁为简的解题目的.1.已知曲线C 的参数方程为⎩⎨⎧x =3+10cos α,y =1+10sin α(α为参数),以直角坐标系原点为极点,x 轴正半轴为极轴建立极坐标系.(1)求曲线C 的极坐标方程,并说明其表示什么轨迹;(2)若直线的极坐标方程为sin θ-cos θ=1ρ,求直线被曲线C 截得的弦长.解:(1)∵曲线C 的参数方程为⎩⎪⎨⎪⎧x =3+10cos α,y =1+10sin α(α为参数),∴曲线C 的一般方程为(x -3)2+(y -1)2=10,①曲线C 表示以(3,1)为圆心,10为半径的圆.将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入①并化简,得ρ=6cos θ+2sin θ, 即曲线C 的极坐标方程为ρ=6cos θ+2sin θ. (2)∵直线的直角坐标方程为y -x =1, ∴圆心C 到直线的距离为d =322, ∴弦长为210-92=22.2.在极坐标系中,圆C 的方程为ρ=2a cos θ(a ≠0),以极点为坐标原点,极轴为x 轴正半轴建立平面直角坐标系,设直线l 的参数方程为⎩⎪⎨⎪⎧x =3t +1,y =4t +3(t 为参数).(1)求圆C 的标准方程和直线l 的一般方程;(2)若直线l 与圆C 恒有公共点,求实数a 的取值范围.解:(1)由ρ=2a cos θ,ρ2=2aρcos θ,又ρ2=x 2+y 2,ρcos θ=x ,所以圆C 的标准方程为(x -a )2+y 2=a 2.由⎩⎪⎨⎪⎧x =3t +1,y =4t +3,得⎩⎪⎨⎪⎧x -13=t ,y -34=t ,因此x -13=y -34,所以直线l 的一般方程为4x -3y +5=0.(2)由于直线l 与圆C 恒有公共点,所以|4a +5|42+(-3)2≤|a |,两边平方得9a 2-40a -25≥0,所以(9a +5)(a-5)≥0,解得a ≤-59或a ≥5,所以a 的取值范围是⎝⎛⎦⎤-∞,-59∪[)5,+∞.全国卷5年真题集中演练——明规律] 1.(2022·全国甲卷)在直角坐标系xOy 中,圆C 的方程为(x +6)2+y 2=25. (1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(2)直线l 的参数方程是⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数),l 与C 交于A ,B 两点,|AB |=10,求l 的斜率.解:(1)由x =ρcos θ,y =ρsin θ可得圆C 的极坐标方程为ρ2+12ρcos θ+11=0. (2)在(1)中建立的极坐标系中,直线l 的极坐标方程为θ=α(ρ∈R).设A ,B 所对应的极径分别为ρ1,ρ2,将l 的极坐标方程代入C 的极坐标方程得ρ2+12ρcos α+11=0.于是ρ1+ρ2=-12cos α,ρ1ρ2=11. |AB |=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ2=144cos 2α-44.由|AB |=10得cos 2α=38,tan α=±153.所以直线l 的斜率为153或-153. 2.(2022·全国丙卷)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =3cos α,y =sin α(α为参数).以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρsin ⎝⎛⎭⎫θ+π4=2 2. (1)写出C 1的一般方程和C 2的直角坐标方程;(2)设点P 在C 1上,点Q 在C 2上,求|PQ |的最小值及此时P 的直角坐标. 解:(1)C 1的一般方程为x 23+y 2=1,C 2的直角坐标方程为x +y -4=0.(2)由题意,可设点P 的直角坐标为(3cos α,sin α).由于C 2是直线,所以|PQ |的最小值即为P 到C 2的距离d (α)的最小值, d (α)=|3cos α+sin α-4|2=2⎪⎪⎪⎪sin ⎝⎛⎭⎫α+π3-2, 当且仅当α=2k π+π6(k ∈Z)时,d (α)取得最小值,最小值为2,此时P 的直角坐标为⎝⎛⎭⎫32,12. 3.(2021·新课标全国卷Ⅱ)在直角坐标系xOy 中,曲线C 1:⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数,t ≠0),其中0≤α<π.在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,C 3:ρ=23cos θ.(1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A ,C 1与C 3相交于点B ,求|AB |的最大值. 解:(1)曲线C 2的直角坐标方程为x 2+y 2-2y =0, 曲线C 3的直角坐标方程为x 2+y 2-23x =0.联立⎩⎪⎨⎪⎧ x 2+y 2-2y =0,x 2+y 2-23x =0,解得⎩⎪⎨⎪⎧x =0,y =0或⎩⎨⎧x =32,y =32.所以C 2与C 3交点的直角坐标为(0,0)和⎝⎛⎭⎫32,32.(2)曲线C 1的极坐标方程为θ=α(ρ∈R ,ρ≠0),其中0≤α<π. 因此A 的极坐标为(2sin α,α),B 的极坐标为(23cos α,α).所以|AB |=|2sin α-23cos α|=4⎪⎪⎪⎪sin ⎝⎛⎭⎫α-π3. 当α=5π6时,|AB |取得最大值,最大值为4.4.(2022·新课标全国卷Ⅰ)已知曲线C :x 24+y 29=1,直线l :⎩⎪⎨⎪⎧x =2+t ,y =2-2t (t 为参数).(1)写出曲线C 的参数方程,直线l 的一般方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|PA |的最大值与最小值.解:(1)曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =3sin θ(θ为参数).直线l 的一般方程为2x +y -6=0.(2)曲线C 上任意一点P (2cos θ,3sin θ)到l 的距离为d =55|4cos θ+3sin θ-6|.则|PA |=d sin 30°=255|5sin(θ+α)-6|,其中α为锐角,且tan α=43.当sin(θ+α)=-1时,|PA |取得最大值,最大值为2255.当sin(θ+α)=1时,|PA |取得最小值,最小值为255.5.(2022·新课标全国卷Ⅱ)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2cos θ,θ∈⎣⎡⎦⎤0,π2. (1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线l :y =3x +2垂直,依据(1)中你得到的参数方程,确定D 的坐标.解:(1)C 的一般方程为(x -1)2+y 2=1(0≤y ≤1).可得C 的参数方程为⎩⎪⎨⎪⎧x =1+cos t ,y =sin t (t 为参数,0≤t ≤π).(2)设D (1+cos t ,sin t ).由(1)知C 是以G (1,0)为圆心,1为半径的上半圆.由于C 在点D 处的切线与l垂直,所以直线GD 与l 的斜率相同,tan t =3,t =π3.故D 的直角坐标为⎝⎛⎭⎫1+cos π3,sin π3,即⎝⎛⎭⎫32,32.6.(2021·新课标全国卷Ⅰ)已知曲线C 1的参数方程为⎩⎪⎨⎪⎧x =4+5cos t ,y =5+5sin t , (t 为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ .(1)把C 1的参数方程化为极坐标方程; (2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).解:(1)将⎩⎪⎨⎪⎧x =4+5cos t ,y =5+5sin t消去参数t ,化为一般方程(x -4)2+(y -5)2=25,即C 1:x 2+y 2-8x -10y +16=0.将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入x 2+y 2-8x -10y +16=0 得ρ2-8ρcos θ-10ρsin θ+16=0.所以C 1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0. (2)C 2的一般方程为x 2+y 2-2y =0.由⎩⎪⎨⎪⎧ x 2+y 2-8x -10y +16=0,x 2+y 2-2y =0,解得⎩⎪⎨⎪⎧ x =1,y =1,或⎩⎪⎨⎪⎧x =0,y =2.所以C 1与C 2交点的极坐标分别为⎝⎛⎭⎫2,π4,⎝⎛⎭⎫2,π2. 课时达标检测] 基础送分题——高考就考那几点,练通就能把分捡1.(2021·郑州模拟)已知曲线C 1的参数方程为⎩⎨⎧x =-2-32t ,y =12t ,曲线C 2的极坐标方程为ρ=22cos θ-π4,以极点为坐标原点,极轴为x 轴正半轴建立平面直角坐标系. (1)求曲线C 2的直角坐标方程;(2)求曲线C 2上的动点M 到曲线C 1的距离的最大值. 解:(1)ρ=22cos ⎝⎛⎭⎫θ-π4=2(cos θ+sin θ), 即ρ2=2(ρcos θ+ρsin θ),可得x 2+y 2-2x -2y =0, 故C 2的直角坐标方程为(x -1)2+(y -1)2=2.(2)C 1的一般方程为x +3y +2=0,由(1)知曲线C 2是以(1,1)为圆心,以2为半径的圆,且圆心到直线C 1的距离d =|1+3+2|12+(3)2=3+32,所以动点M 到曲线C 1的距离的最大值为3+3+222.2.在极坐标系中,已知三点O (0,0),A ⎝⎛⎭⎫2,π2,B ⎝⎛⎭⎫22,π4. (1)求经过点O ,A ,B 的圆C 1的极坐标方程;(2)以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,圆C 2的参数方程为⎩⎪⎨⎪⎧x =-1+a cos θ,y =-1+a sin θ(θ是参数),若圆C 1与圆C 2外切,求实数a 的值.解:(1)O (0,0),A ⎝⎛⎭⎫2,π2,B ⎝⎛⎭⎫22,π4对应的直角坐标分别为O (0,0),A (0,2),B (2,2),则过点O ,A ,B 的圆的一般方程为x 2+y 2-2x -2y =0,将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入可求得经过点O ,A ,B 的圆C 1的极坐标方程为ρ=22cos ⎝⎛⎭⎫θ-π4. (2)圆C 2:⎩⎪⎨⎪⎧x =-1+a cos θ,y =-1+a sin θ(θ是参数)对应的一般方程为(x +1)2+(y +1)2=a 2,圆心为(-1,-1),半径为|a |,而圆C 1的圆心为(1,1),半径为2,所以当圆C 1与圆C 2外切时,有2+|a |=(-1-1)2+(-1-1)2,解得a =±2.3.(2021·太原模拟)在平面直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立的极坐标系中,直线l 的极坐标方程为θ=π4(ρ∈R),曲线C 的参数方程为⎩⎨⎧x =2cos θ,y =sin θ.(1)写出直线l 的直角坐标方程及曲线C 的一般方程;(2)过点M 且平行于直线l 的直线与曲线C 交于A ,B 两点,若|MA |·|MB |=83,求点M 轨迹的直角坐标方程.解:(1)直线l 的直角坐标方程为y =x ,曲线C 的一般方程为x 22+y 2=1.(2)设点M (x 0,y 0),过点M 的直线为l 1:⎩⎨⎧x =x 0+22t ,y =y 0+22t (t 为参数),由直线l 1与曲线C 相交可得:3t 22+2tx 0+22ty 0+x 20+2y 20-2=0,由|MA |·|MB |=83,得t 1t 2=⎪⎪⎪⎪⎪⎪⎪⎪x 20+2y 20-232=83,即x 20+2y 20=6,x 2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

宁师中学“自主参与学习法”数学学科导学稿(学生版)编号SXBx2-2-3
主编人:余奎审稿人:高二数学组定稿日:
协编人:高二数学备课组使用人:
课题:2.3.1 空间直角坐标系
学习内容学习目标高考考点考查题型
空间坐标系;
空间距离1.明确空间直角坐标系是如何建立;明确空间中的
任意一点如何表示;
2 能够在空间直角坐标系中求出点的坐标。

1.空间坐标系
2.空间距离
选择,填空题、
解答题中分支
问题
一、新课导学
问题1:空间直角坐标系
(1)定义:以空间中两两垂直且相交于一点O的三条直线分别为x轴、y轴、z轴.这时就说建立了空间直角坐标系Oxyz,其中点O叫作坐标原点,x轴、y轴、z轴叫作坐标轴.通过每两个坐标轴的平面叫作坐标平面,分别称为xOy 平面、yOz 平面、zOx 平面.
(2)画法:在平面上画空间直角坐标系Oxyz时,一般使∠xOy=45°或135°,∠yOz=90°.
(3)坐标:设点M为空间的一个定点,过点M分别作垂直于x轴、y轴和z轴的平面,依次交x 轴、y轴和z轴于点P、Q和R.设点P、Q和R在x轴、y轴和z轴上的坐标分别为x、y和z,那么点M就和有序实数组(x,y,z)是一一对应的关系,有序实数组(x,y,z)叫作点M在此空间直角坐标系中的坐标,记作M(x,y,z) ,其中x叫作点M的横坐标,y叫作点M的纵坐标,z叫作点M的竖坐标.
(4)说明:本书建立的坐标系都是右手直角坐标系,即在空间直角坐标系中,让右手拇指指向x 轴的正方向,食指指向y 轴的正方向,如果中指指向z 轴的正方向,则称这个坐标系为右手直角坐标系.
问题2:(1)平面直角坐标系的建立方法,点的坐标的确定过程、表示方法?
(2).一个点在平面怎么表示?在空间呢?
二、课内探究
探究一:确定空间内点的坐标
例1.如图,在长方体ABCD—A1B1C1D1中,AD=3,AB=5,AA1=4,
建立适当的直角坐标系,写出此长方体各顶点的坐标.
变式1.如图,在正方体ABCD-A'B'C'D'中,E,F,G分别是BB',D'B',DB的中点,棱长为1,求E,F 点的坐标.
探究二:关于一些对称点的坐标求法
(,,)
P x y z关于坐标平面xoy对称的点;
(,,)
P x y z关于坐标平面yoz对称的点;
(,,)
P x y z关于坐标平面xoz对称的点;
(,,)
P x y z关于x轴对称的点;
(,,)
P x y z关于y对轴称的点;
(,,)
P x y z关于z轴对称的点;
三、课后练习
1. 关于空间直角坐标系叙述正确的是().
A.(,,)
P x y z中,,
x y z的位置是可以互换的
B.空间直角坐标系中的点与一个三元有序数组是一种一一对应的关系
C.空间直角坐标系中的三条坐标轴把空间分为八个部分
D.某点在不同的空间直角坐标系中的坐标位置可以相同
2. 已知点(3,1,4)
A--,则点A关于原点的对称点的坐标为().
A.(1,3,4)
--B.(4,1,3)
--C.(3,1,4)
-D.(4,1,3)
-
3.已知ABC
∆的三个顶点坐标分别为(2,3,1),(4,1,2),(6,3,7)
A B C
-,则ABC
∆的重心坐标为 .
4.在空间直角坐标系中,给定点(1,2,3)
M-,求它分别关于坐标平面,坐标轴和原点的对称点的坐标.
四、课后反思
宁师中学“自主参与学习法”数学学科导学稿(学生版)
编号SXBx2-2-3
主编人:余奎审稿人:高二数学组定稿日:
协编人:高二数学备课组使用人:
课题:2.3.2 空间两点的距离公式
考纲解读
学习内容学习目标高考考点考查题型
空间坐标系;
空间距离1.了解空间直角坐标系及空间两点间的距离公
式.
2.会用空间直角坐标系刻画点的位置,即能由点
的位置写出坐标及由坐标描出点的位置.
3.能利用空间两点的坐标求出两点间的距离.
1.空间坐标系
2.空间距离
选择,填空题、
解答题中分支
问题
一、新课导学
问题1:空间直角坐标系该如何建立呢?.建立了空间直角坐标系以后,空间中任意一点M如何用坐标表示呢?
问题2:空间两点间的距离公式
(1)公式:空间中任意两点P1(x1,y1,z1)与P2(x2,y2,z2)之间的距离|P1P2|= ,特别地,任一点P(x,y,z)与原点间的距离|OP|= .
(2)说明:注意此公式与两点的先后顺序无关.空间两点间的距离公式可以看成平面内两点间距离公式的推广.
二、课内探究
探究一:正确建立空间直角坐标系
例1.如图,三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,所有的棱长都是1,建立适当的坐标系,并写出各点的坐标.
变式1:在四棱锥P-ABCD中,底面ABCD是一个直角梯形,∠BAD=90°,AD∥BC,AB=BC=a,AD=2a, PA⊥底面ABCD,∠PDA=30°,AE⊥PD于E.试建立适当的坐标系,求出各点的坐标.
探究二:空间中两点之间的距离
例2.如图,在长方体ABCD-A1B1C1D1中,AD=AA1=2,AB=4,DE⊥AC,垂足为E,求B1E的长.
变式2.如图,已知正方体ABCD-A1B1C1D1的棱长为a,M为BD1的中点,点N在A1C1上,且A1N=3NC1,试求MN的长.
三、课后练习
1.空间两点(3,2,5),(6,0,1)
A B
--之间的距离().
A.6 B.7 C.8 D.9
2.已知ABC
∆的三点分别为(3,1,2),(4,2,2)
A B--,(0,5,1)
C则BC边上的中线长为.
3. 在河的一侧有一塔5
CD m
=,河宽3
BC m
=,另侧有点A,4
AB m
=,求点A与塔顶D的距离.
4. 方程222
(2)(3)(1)36
x y z
-+++-=的几何意义是 .
4.已知(3,5,7)
A-和点(2,4,3)
B-,则线段AB在坐标平面yoz上的射影长度
为.
四、课后反思
语言综合运用新题型专项训练
扩展语句
1.根据下面的文字,完成后面的问题。

古人的清明节是这样过的。

①感受春季“万物生长此时,皆清洁而明净”的美好;②祭拜先祖:男女扫墓,拜者、酹者、哭者、为墓除草添土者,以纸钱置坟头;
③趋芳树,择园圃,列坐尽醉,尽享对生活的热爱。

依据上面的文字,发挥你的想象,描写一段古人过清明的场景。

要求:以上三个场景任选其一进行描写,语言形象、生动,至少使用两种修辞手法,100字左右。

,。


2.《中国诗词大会》中有一个固定项目——画图猜诗词,主持人让人根据诗词意境画一幅图,选手们根据画面内容说出相应的诗词。

假设你也是一位主持人,请以“何当共剪西窗烛,却话巴山夜雨时”为题构思一幅图画,使之富有含蓄的意蕴美。

请用简洁的语言说明你构思出的图画内容,并简要分析。

(不超过120个字)。

相关文档
最新文档