matlab二维平面图形的绘制
实验4 MATLAB绘图

实验四 MATLAB 绘图
4)在第一小题的基础上加入网格和标注。 3 绘制单位圆。 提示:使用 axis( ‘ square’ )命令保证图形的纵横坐标刻度比例相同。 4 设 R 分别为 1, 5, 10 和 20,绘制伏安特性曲线, U=RI。 5
⎧ x = t ⎪ 绘制方程 ⎨ y = sin(t ) 在 t=[0 ⎪ z = cos(t ) ⎩
三 实验内容
1 已知向量 [1, 2, 4, 0, 5, 10, 11, 21, 3, 1],请绘图表示。 2 绘制一条正弦曲线和一条余弦曲线,分别满足以下条件: 1)在同一窗口,正弦曲线用红色的点线表示,余弦曲线用蓝色的星型线表示; 2)在同一个窗口中,要求分割为一行两列的子图,子图 1 为正弦曲线,子图 2 为余弦曲线 ;(线形与上题一致 ); 3)在两个不同的窗口中绘制这两条曲线;
1
实验四 MATLAB 绘图
1) . 单 窗 口 单 曲 线 绘 图 x=[0, 0.48,0.84,1,0.91,0.6,0.14] plot (x) 2) . 单 窗 口 多 曲 线 绘 图 例: t=0:pi/100:2*pi; y=sin(t);y1=sin(t+0.25);y2=sin(t+0.5); plot(t,y,t,y1,t,y2) 3) . 单 窗 口 多 曲 线 分 图 绘 图 subplot —— 子图分割命令 调用格式: subplot(m,n,p) —— 按从左至右,从上至下排列 4) . 多 窗 口 绘 图 figure(n) —— 创建窗口函数, n 为窗口顺序号。 例 t=0:pi/100:2*pi; y=sin(t);y1=sin(t+0.25);y2=sin(t+0.5); plot(t,y) —— 自动出现第一个窗口 figure(2) plot(t,y1) —— 在第二窗口绘图 figure(3) plot(t,y2) ——在第三窗口绘图 5) .可 任 意 设 置 颜 色 与 线 型 plot(t,y,'r-',t,y1,'g:',t,y2,'b*') 6) .图 形 加 注 功 能 将标题、坐标轴标记、网格线及文字注释加注到图形上,这些函数为: title —— 给图形加标题 xlable —— 给 x 轴加标注 ylable —— 给 y 轴加标注 text —— 在图形指定位置加标注 gtext —— 将标注加到图形任意位置 grid on(off) —— 打开、关闭坐标网格线 legend —— 添加图例 axis —— 控制坐标轴的刻度 例: t=0:0.1:10 y1=sin(t);y2=cos(t);plot(t,y1,'r',t,y2,'b--'); x=[1.7*pi;1.6*pi]; y=[-0.3;0.8]; s=['sin(t)';'cos(t)']; text(x,y,s); title('正弦和余弦曲线 '); legend('正弦 ','余弦 ') xlabel('时间 t'),ylabel('正弦、余弦 ') grid
实验二MATLAB绘制图形

grid on %在所画出的图形坐标中加入栅格
绘制图形如下
50
10
1
0.8
40
10
0.6
0.4
30
10
0.2
0
1020
-0.2
-0.4
1010
-0.6
-0.8
0
10
-1
-2
0
2
-2
0
2
10
10
10
10
10
10
如果在图中不加栅格
程序如下:
clear x=logspace(-1,2);%在10^(-1)到10^2之间产生50个 对数等分的行向量 subplot(121); loglog(x,10*exp(x),'-p') subplot(122); semilogx(x,cos(10.^x))
(2)plot(x,y): 基本格式,x和y可为向量或矩阵. 1. 如果x,y是同维向量,以x元素为横坐标,以y元素 为纵坐标绘图. 2. 如果x是向量,y是有一维与x元素数量相等的矩阵, 则以x为共同横坐标, y元素为纵坐标绘图,曲线数目 为y的另一维数. 3. 如果x,y是同维矩阵,则按列以x,y对应列元素为 横、纵坐标绘图,曲线数目等于矩阵列数.
y=2*exp(-0.5*x).*cos(4*pi*x);
2
plot(x,y)
1.5
1
0.5
0
-0.5
-1
-1.5
-2
0
1
2
3
4
5
6
7
例4 绘制曲线
t=(0:0.1:2*pi);
x=t.*sin(3*t);
y=t.*sin(t).*sin(t);
数学2-用MATLAB绘制二维-三维图形(lq)

[i,j,v]=find(A) 返回矩阵A中非零元素所在的行i,
列j,和元素的值v(按所在位置先后 顺序输出)
A=[3 2 0; -5 0 7; 0 0 1]; [i,j,v]=find(A)
i= 1 2 1 2 3 j= 1 1 2 3 3 v = 3 -5 2 7 1
[X,Y]=meshgrid(x,y) 3)根据函数表达式生成全部网格节点出对应的函数值矩阵z: z=f(X,Y) 4)顺序连接已经产生的空间点(x,y,z)绘制相应曲面: mesh(X,Y,Z) surf(X,Y,Z) shading flat %去除网格线。
例2-7画出矩形域[-1,1]×[-1,1]旋转抛物面:z=x2+y2. x=linspace(-1,1,100); y=x; [X,Y]=meshgrid(x,y); %生成矩形区[-1,1]×[-1,1]的网格坐标矩阵 Z=X.^2+Y.^2; subplot(1,2,1) mesh(X,Y,Z); subplot(1,2,2) surf(X,Y,Z); shading flat; %对曲面z=x2现方式做保护处理对用户上传分享的文档内容本身不做任何修改或编辑并不能对任何下载内容负责
用matlab绘制二维、三维图形
2.1二维图形的绘制
2.1.1 二维绘图的基本命令 matlab中,最常用的二维绘图命令是plot。
使用该命令,软件将开辟一个图形窗口,并 画出连接坐标面上一系列点的连线。
例2-5 采用不同形式(直角坐标、参数、极坐标),画出 单位圆x2+y2=1的图形。
分析:对于直角坐标系方程,y= 1 x2,对于参数方 程x=cost,y=sint,t[0,2 pi] ,利用plot(x,y)命令可以实现。 而在极坐标系中单位圆为r=1(1+0t),利用polar(t,r)命 令实现。
Matlab建模训练3 图形绘制

Matlab 建模训练3 图形绘制一、学习二维平面图形的描绘方法1、 在同一窗口绘制正、余弦函数的图形。
2、绘制三叶玫瑰线r=sin(3θ)3、绘制分段函数311012≤≤≤≤⎩⎨⎧+=x x xx y 的图形。
二、学习空间曲线的绘制1、sin cos cos ,06sin ,06.x t t x t ty t t t y t t t z t z tππ==⎧⎧⎪⎪=≤≤=≤≤⎨⎨==⎪⎪⎩⎩及2、 绘制空间曲线sin ,cos ,x t t y t z ===三、学习空间曲面的绘制例 绘制函数sin z x =4个子图的不同特征。
[X,Y]=meshgrid(-4:0.2:4); Z=X.*sin(sqrt(X.^2+Y .^2)); subplot(2,2,1) mesh(Z)subplot(2,2,2) mesh(X,Y ,Z) subplot(2,2,3)surf(X,Y,Z)subplot(2,2,4)surfc(X,Y,Z)ezsurf命令彩色表面图,调用格式与ezmesh相同。
二维图形的视例 分别用命令ezmesh(22,22x y -≤≤-≤≤)和ezsurf(04,14x y ≤≤-≤≤)作函数例 绘制函数22xy z xe --=的图形,并在各坐标设置点观察图形。
功能在默认区域0,2x y π≤≤上画z=f(x,y)高线图,a x y b ≤≤上画z=f(x,y)的等高线图,a x b c y d ≤≤≤≤上画z=f(x,y)例 绘制函数sin cos(),,,,2222z x x y x y ππππ⎡⎤⎡⎤=++∈-∈-⎢⎥⎢⎥⎣⎦⎣⎦的二维等高线和填充等高线。
例 绘制多峰函数()()()222222211351311053x y x y x y x z x ex y e e--+-+---⎛⎫=----- ⎪⎝⎭,在[][],,,x y ππππ∈-∈-上的图形以及二维等高线、二维填充等高线和三维等高线的图形。
最全面的MATLAB作图

Matlab绘图强大的绘图功能是Matlab的特点之一,Matlab提供了一系列的绘图函数,用户不需要过多的考虑绘图的细节,只需要给出一些基本参数就能得到所需图形,这类函数称为高层绘图函数。
此外,Matlab还提供了直接对图形句柄进行操作的低层绘图操作。
这类操作将图形的每个图形元素(如坐标轴、曲线、文字等)看做一个独立的对象,系统给每个对象分配一个句柄,可以通过句柄对该图形元素进行操作,而不影响其他部分。
本章介绍绘制二维和三维图形的高层绘图函数以及其他图形控制函数的使用方法,在此基础上,再介绍可以操作和控制各种图形对象的低层绘图操作。
一.二维绘图二维图形是将平面坐标上的数据点连接起来的平面图形。
可以采用不同的坐标系,如直角坐标、对数坐标、极坐标等。
二维图形的绘制是其他绘图操作的基础。
一.绘制二维曲线的基本函数在Matlab中,最基本而且应用最为广泛的绘图函数为plot,利用它可以在二维平面上绘制出不同的曲线。
1.plot函数的基本用法plot函数用于绘制二维平面上的线性坐标曲线图,要提供一组x坐标和对应的y坐标,可以绘制分别以x和y为横、纵坐标的二维曲线。
plot函数的应用格式plot(x,y) 其中x,y为长度相同的向量,存储x坐标和y坐标。
例51 在[0 , 2pi]区间,绘制曲线程序如下:在命令窗口中输入以下命令>> x=0:pi/100:2*pi;>> y=2*exp(-0.5*x).*sin(2*pi*x);>> plot(x,y)程序执行后,打开一个图形窗口,在其中绘制出如下曲线注意:指数函数和正弦函数之间要用点乘运算,因为二者是向量。
例52 绘制曲线这是以参数形式给出的曲线方程,只要给定参数向量,再分别求出x,y向量即可输出曲线:>> t=-pi:pi/100:pi;>> x=t.*cos(3*t);>> y=t.*sin(t).*sin(t);>> plot(x,y)程序执行后,打开一个图形窗口,在其中绘制出如下曲线以上提到plot函数的自变量x,y为长度相同的向量,这是最常见、最基本的用法。
matlab绘图方法讲解

对参数方程表示的三维曲线的绘制还有一个简单 形式ezplot3, 调用格式为: ezplot3 (x,y,z,[tmin,tmax]) 功能:绘制区间 tmin tmax 范围内x = x(t), y = y(t)和z = z(t) 的三维曲线。 参数[tmin,tmax]的默认值为 0 2 。
stem:离散杆状图的绘图函数 stem (X,Y, 'filled') 功能:绘制向量X中指定的序列Y的填充的离散 杆状图。
MATLAB 绘图
23
阶梯状图
stairs:阶梯状图的绘图函数 stairs(X,Y,STYLE) 功能:绘制向量X中指定的序列Y的指定线型 的阶梯状图。
MATLAB 绘图
MATLAB 绘图
30
三维曲面图的绘制函数ezsurf的格式为: ezsurf(f,[xmin,xmax,ymin,ymax]) 功能:绘制符号表达式 f代表的x、y二元函数的在 [xmin,xmax,ymin,ymax]范围内的三维曲面。 ezsurf (x,y,z,[smin,smax,tmin,tmax]) 功能:绘制在[smin,smax,tmin,tmax]范围内x = x(s,t), y = y(s,t)和z = z(s,t)的三维曲面。
errorbar:误差条形图的绘图函数 errorbar(x,y,e,s) 功能:绘制向量y对x的误差条形图。误差条 对称地分布在yi的上方和下方,长度为ei。 errorbar(x,y,l,u,s) 功能:绘制向量y对x的误差条形图。误差条 分布在 yi 上方的长度为 ui, 下方的长度为 li 。 字符串s设置颜色和线型。
ezpolar : 在极坐标系中绘制图形 ezpolar(f) 功能:绘制极坐标曲线 rho=f(theta),缺省值 范围为 。 0 2 ezpolar(f,[a,b]) 功能:绘制极坐标曲线 rho=f(theta),范围为 [a b]。
第二章 MATLAB绘图

说明:
(1)当x,y是同维矩阵时,则以x,y对应列元素为
横、纵坐标分别绘制曲线,曲线条数等于矩阵
的列数。 (2)当x是向量,y是有一维与x同维的矩阵时, 则绘制出多根不同色彩的曲线。曲线条数等于 y矩阵的另一维数,x被作为这些曲线共同的横
坐标。
(3)plot函数最简单的调用格式是只包含一个输 入参数:plot(x)。
对图形窗口灵活分割。请看下面的程序。
x=linspace(0,2*pi,60);
y=sin(x);z=cos(x);
t=sin(x)./(cos(x)+eps); ct=cos(x)./(sin(x)+eps); subplot(2,2,1); stairs(x,y); title('sin(x)-1');axis ([0,2*pi,-1,1]); %选择2×2个区中的1号区
2.2.1绘制三维曲线的最基本函数 plot3函数与plot函数用法十分相似,其调用格式为: plot3(x1,y1,z1,选项1,x2,y2,z2,选项2,…,xn,yn,zn,选项n)
4. 对函数自适应采样的绘图函数
fplot函数的调用格式为: fplot(fname,lims,tol,选项) 例2.11 用fplot函数绘制f(x)=cos(tan(πx))的曲线。 先建立函数文件myf.m: function y=myf(x) y=cos(tan(pi*x));
再用fplot函数绘制myf.m函数的曲线:
例2.6 用图形保持功能在同一坐标内绘制曲线
y=2e-0.5xsin(2πx)及其包络线,并加网格线。
程序如下: x=(0:pi/100:2*pi)'; y1=2*exp(-0.5*x)*[1,-1];y2=2*exp(-0.5*x).*sin(2*pi*x); plot(x,y1,'b:'); axis([0,2*pi,-2,2]); %设置坐标 hold on; %设置图形保持状态 plot(x,y2,'k'); grid on; %加网格线 box off; %不加坐标边框 hold off; %关闭图形保持
MATLAB绘图与图形处理

MATLAB绘图与图形处理人们很难从一大堆原始的数据中发现它们的含义,而数据图形恰能使视觉感官直接感受到数据的许多内在本质,发现数据的内在联系。
MATLAB可以表达出数据的二维,三维,甚至四维的图形。
通过图形的线型,立面,色彩,光线,视角等属性的控制,可把数据的内在特征表现得淋漓尽致。
下面我们分别介绍图形的命令。
7.1 二维图形7.1.1 基本平面图形命令命令1 plot功能线性二维图。
在线条多于一条时,若用户没有指定使用颜色,则plot循环使用由当前坐标轴颜色顺序属性(current axes ColorOrder property)定义的颜色,以区别不同的线条。
在用完上述属性值后,plot又循环使用由坐标轴线型顺序属性(axes LineStyleOrder property)定义的线型,以区别不同的线条。
用法plot(X,Y) 当X,Y均为实数向量,且为同维向量(可以不是同型向量),X=[x(i)],Y=[y(i)],则plot(X,Y)先描出点(x(i),y(i)),然后用直线依次相连;若X,Y为复数向量,则不考虑虚数部分。
若X,Y均为同维同型实数矩阵,X = [X(i)],Y = [Y(i)],其中X(i),Y(i)为列向量,则plot(X,Y)依次画出plot(X(i),Y(i)),矩阵有几列就有几条线;若X,Y中一个为向量,另一个为矩阵,且向量的维数等于矩阵的行数或者列数,则矩阵按向量的方向分解成几个向量,再与向量配对分别画出,矩阵可分解成几个向量就有几条线;在上述的几种使用形式中,若有复数出现,则复数的虚数部分将不被考虑。
plot(Y) 若Y为实数向量,Y的维数为m,则plot(Y)等价于plot(X,Y),其中x=1:m;若y 为实数矩阵,则把y按列的方向分解成几个列向量,而y 的行数为n,则plot(Y)等价于plot(X,Y)其中x=[1;2;…;n];在上述的几种使用形式中,若有复数出现,则复数的虚数部分将不被考虑。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、基本图形函数
函数polt是针对向量或矩阵的列来绘制曲线的,其命令格式:(1)plot(x)当x是一向量时,以其元素为纵坐标,其序号为横坐标。
(2)plot(x,y)
(3)plot(x,y1,x,y2,...)绘制多条曲线
例
>> x=0:pi/10:2*pi;
>> y1=sin(x);
>> y2=cos(x);
>> plot(x,y1,x,y2)
参数选项
y黄 m紫 c青 r红 g绿 b蓝 w白 k黑-实线 :点线 -.点划线 --虚线
.点 o圆 x叉号 +加号 *星号 v下三角 ^上三角
>大于号 <小于号 s正方形 d菱形 h六角形 p五角星
例
>> plot(x,y1,'r+-',x,y2,'k*:')
2、图形修饰
图形修饰函数:
grid on(/off) 添加或取消网格
xlabel('string')标记横坐标
ylabel('string')标记横坐标
title('string')添加标题
text(x,y,'string')在图形的任意位置增加文本信息gtext('string')利用鼠标添加文本信息
axis([xmin xmax ymin ymax])设置坐标轴的最小最大值例
>> x=0:pi/10:2*pi;
>> y1=sin(x);
>> y2=cos(x);
>> plot(x,y1,x,y2)
>> grid on
>> xlabel('Independent Variable X') >> ylabel('Dedependent Variable Y1&Y2') >> title('sine and cosine curve')
>> text(1.5,0.3,'cos(x)')
>> gtext('sin(x)')
>> axis([0 2*pi -0.9 0.9])
除此之外,在图形窗口中也提供了图形编辑功能,放大、旋转等等3、图形的比较显示
两种方法:
(1)hold on(/off)将新产生的图形曲线叠加到已有图形上去(2)subplot(n,m,k)将图形窗口进行分割
例
>> x=-pi:pi/10:pi;
>> y1=sin(x);
>> y2=cos(x);
>> y3=x;
>> y4=x.^2;
>> plot(x,y1,x,y2) >> hold on
>> plot(x,y3)
>> plot(x,y4)
>> hold off
>> plot(x,x)
例
>> x=-pi:pi/10:pi; y1=sin(x);
y2=cos(x);
y3=x;
y4=x.^2;
>> subplot(2,2,1); >> plot(x,y1); >> subplot(2,2,2);
>> plot(x,y2);
>> subplot(2,2,3); >> plot(x,y3); >> subplot(2,2,4); >>
plot(x,y4);。