初中数学一元二次方程的根与系数的关系讲义

合集下载

一元二次方程的根与系数的关系 ppt课件

一元二次方程的根与系数的关系 ppt课件

把n=4m 代入代数式4m2-5mn+n2,
得4m2-5m×4m+(4m)2=0.
综上所述,代数式4m2-5mn+n2 的值为0 .
知1-练
(3)若关于x 的一元二次方程ax2+bx+c=0(a ≠ 0)是“倍根
方程”,求a,b,c 之间的关系.
解:由“倍根方程”的定义可设ax2x2=

=1.

知1-练
2-1.[中考·宜昌] 已知x1,x2 是方程2x2-3x+1=0 的两根,
则代数式


的值为 ______.
1
知1-练
例 3 已知关于x 的一元二次方程x2+(2m+1)x+m2-2=0.
(1)若该方程有两个实数根,求m 的最小整数值;
知1-练
3-1.[中考·襄阳] 关于x 的一元二次方程x2+2x+3-k=0 有
两个不相等的实数根.
(1)求k 的取值范围;
解:b2-4ac=22-4×1×(3-k)=-8+4k.
∵方程有两个不相等的实数根,
∴-8+4k>0,解得k>2.
知1-练
(2)若方程的两个根为α ,β , 且k2=αβ +3k,求k 的值.
8=0 就是“倍根方程”
解题秘方:紧扣“倍根方程”的定义及根与系数的
关系解题,理解“倍根方程”的概念是解题关键.
知1-练
(1)若关于x 的一元二次方程x2-3x+c=0 是“倍根方程”,
2
则c=________;
知1-练
(2)若(x- 2)(mx-n) =0(m ≠ 0)是“倍根方程”,求代数式
4m2-5mn+n2 的值;
解方程(x-2)(mx-n)= 0(m ≠

一元二次方程的根与系数的关系课件

一元二次方程的根与系数的关系课件

x1 x2 2 2x1x2
3 2
2
2
1 2
13 4
;
2
1 x1
1 x2
x1 x2 x1 x2
3 2
1 2
3.
巩固练习
变式题3 设x1, x2为方程x2-4x+1=0的两个根,则:
(1)x1+x2= 4 , (2) x1·x2= 1 ,
(3) (x1 x2 )2 12 ,
即:x2=5 .
由于x1·x2=1×5=
m, 3
得:m=15.
答:方程的另一个根是5,m=15.
巩固练习
变式题2 已知方程x2-(k+1)x+3k=0的一个根是 2 ,求它的另一个根及k的值.
解:设方程的另一个根为x1. 把x=2代入方程,得 4-2(k+1)+3k=0 解这方程,得 k= - 2 由根与系数关系,得x1●2=3k 即 2 x1 =-6 ∴ x1 =-3
九年级数学上册
21.2 解一元二次方程
21.2.4 一元二次方程的根与系数 的关系
回顾旧知
1. 一元二次方程的求根公式是什么?
x b b2 4ac (b2 4ac 0) 2a
2. 如何用判别式 b2 - 4ac 来判断一元二次方程根的情况? 对一元二次方程: ax2 + bx +c = 0(a≠0) b2 - 4ac > 0 时,方程有两个不相等的实数根. b2 - 4ac = 0 时,方程有两个相等的实数根. b2 - 4ac < 0 时,方程无实数根.
x1,, x2 − 12,2
13,1
x1,+ x2
3 2
4 3
x1. x2

一元二次的根与系数的关系讲解

一元二次的根与系数的关系讲解

一元二次的根与系数的关系讲解一元二次方程,听起来是不是有点高深?别担心,今天我们就来轻松聊聊它的根与系数的关系,让数学变得更亲民,顺便让你对这个公式有个更深的了解。

1. 一元二次方程的基础知识1.1 方程的样子首先,一元二次方程的标准形式是 ( ax^2 + bx + c = 0 )。

听起来像是天书,但其实这就像是我们的日常生活,有点复杂却又很普通。

这里的 ( a )、( b )、和 ( c ) 就是方程的系数,分别代表不同的“角色”。

记住哦,( a ) 不能等于零,因为那样就变成了一元一次方程了。

1.2 方程的根接下来,咱们来聊聊根。

方程的根就是能让方程成立的 ( x ) 值,也就是那些“救世主”。

一元二次方程的根可以通过求根公式来找到,公式是:。

x = frac{b pm sqrt{b^2 4ac{2a 。

看,这个公式是不是有点吓人?但其实,简单的说就是,我们用系数来计算 ( x )的值,得出根。

2. 根与系数的关系2.1 根的和与积好啦,咱们现在进入重点了。

根与系数的关系有两个重要的概念:根的和和根的积。

根的和是 ( x_1 + x_2 = frac{b{a ),根的积是 ( x_1 cdot x_2 = frac{c{a )。

这就像是人生中的搭档,两个根在方程里一起工作,和谐又有趣。

比如说,假设你有两个好朋友,他们的性格互补,一个内向,一个外向,正好平衡了你们的生活。

2.2 实际应用那么,这些公式有什么实际用处呢?想象一下,你在做生意,或者计划一个活动,常常会遇到需要计算最佳方案的情况。

通过一元二次方程的根与系数关系,你能找到最优解。

就像找到了通往成功的“密码”,让你事半功倍。

3. 总结与思考3.1 乐趣无穷的数学数学其实是个充满乐趣的世界,像是拼图一样,只要你找到合适的拼块,就能看到完整的画面。

一元二次方程就像是其中的一块拼图,让我们看到数字背后的奥秘。

3.2 保持好奇心所以,不要害怕数学的复杂性!保持好奇心,多去探究,才能真正理解它的魅力。

一元二次方程根与系数关系课件

一元二次方程根与系数关系课件

学习目标
掌握一元二次方程根 与系数之间的关系。
培养逻辑推理和数学 思维能力。
学会利用根与系数的 关系解决实际问题。
02
一元二次方程的基本概念
一元二次方程的定义
定义
一元二次方程是只含有一个未知 数,且未知数的最高次数为2的 0$,$x^2 - 3x + 4 = 0$等。
一元二次方程根与系数的 关系
根的和与系数的关系
总结词
一元二次方程的根的和等于二次项系数除以一次项系数所得商的相反数。
详细描述
对于一元二次方程 ax^2 + bx + c = 0,其两个根x1和x2的和为 -b/a。这个性质在 解决一些数学问题时非常有用,例如在寻找两个数的和等于某个特定值的问题中。
数学中的一元二次方程问题
几何问题
例如,在直角三角形中,斜边长为c, 两直角边长分别为a和b,根据勾股定 理,我们可以得到一元二次方程 c^2=a^2+b^2。
代数问题
例如,在解一元二次方程时,我们常 常需要使用一元二次方程的根与系数 的关系来求解。
其他领域的一元二次方程问题
物理学中的问题
例如,在物理学中,当一个物体从静止开始下落时,其下落距离与时间的关系可以用一 元二次方程来表示。
自主学习
在学习的过程中,我积极 思考、自主探究,提高了 自主学习和解决问题的能 力。
对未来学习的展望和计划
深入学习
我计划深入学习一元二次 方程的更多性质和应用, 进一步拓展数学知识体系。
实践应用
我将尝试将所学知识应用 于更广泛的领域,提高解 决实际问题的能力。
自主学习
我将继续保持自主学习的 习惯,不断探索数学知识 的奥秘,提高数学素养。

《一元二次方程的根与系数的关系》一元二次方程PPT优秀课件

《一元二次方程的根与系数的关系》一元二次方程PPT优秀课件

(1)x2-2x-1=0
x1+x2=2
x1x2=-1
(2) 2x2 - 3x +12 =0 x1+x2=
(3) 2x2 - 6x =0 (4) 3x2 = 4
x1+x2=3 x1+x2=0
x1x2= x1x2=0 x1x2= -
例1:方程2x2-3x+1=0的两根记作x1,x2 不解方程,求下列代数式的值:
方程
x1
x2
x1+x2
x1x2
x2+3x+2=0 6x2+x-2=0 2x2-3x +1=0
一元二次方程ax2+bx+c=0(a≠0);
当b2-4ac≥0时有两个根:
x1 b
b2 4ac 2a
x2 b -
b2 4ac 2a
则x1 x2 b
b2 4ac b 2a
b2 4ac - 2b b
一元二次方程的根与系数的关系
-.
回顾旧知
1.一元二次方程的一般形式是什么? ax2+bx+c=0(a≠0)
2.一元二次方程的求根公式是什么?
x b b2 4ac (b2 4ac 0) 2a
同学们,我们来做一个游戏,看谁能更快速的说出 下列一元二次方程的两根和与两根积?
(1)x2+3x+2=0 (2)6x2+x-2=0 (3)2x2-3x +1=0
解法一: 设方程的另一个根为x1 由根与系数的关系,得
2 + x2 = k+1 2 x2 = 3k
解得 x2 =-3 k =-2
答:方程的另一个根是-3,k的值是-2.
例2、已知方程x2-(k+1)x+3k=0的一个根是2 , 求它的另一个根及k的值.

一元二次方程根与系数关系(知识讲解)九年级数学上册基础知识讲与练

一元二次方程根与系数关系(知识讲解)九年级数学上册基础知识讲与练

专题2.14 一元二次方程根与系数关系(知识讲解)【学习目标】掌握一元二次方程的根与系数的关系以及在各类问题中的运用. 【要点梳理】一元二次方程的根与系数的关系 1.一元二次方程的根与系数的关系如果一元二次方程的两个实数根是, 那么,. 注意它的使用条件为a ≠0, Δ≥0.也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商.2. 一元二次方程的根与系数的关系的应用⎧⎪⎪⎪→→⎨⎪⎪⎪⎩知识框图:1、求代数式的值2、求待定系数一元二次方程求根公式根与系数关系应用3、构造方程4、解特殊的二元二次方程组5、二次三项式的因式分解【典型例题】类型一、由根与系数关系直接求值1.已知x 1,x 2是一元二次方程x 2-3x -1=0的两根,不解方程求下列各式的值:(1)2211+x x (2)1211+x x 【答案】(1)11;(2) -3. 【分析】由一元二次方程的根与系数的关系可得12123,1x x x x +=⋅=-;(1)将所求式子变形为(x 1+x 2)2-2x 1x 2 ,然后整体代入上面两个式子计算即可; (2)将所求式子变形为1212x x x x +⋅,然后整体代入上面两个式子计算即可.解:∵x 1,x 2是一元二次方程x 2-3x -1=0的两根,∵12123,1x x x x +=⋅=-,(1)2211+x x = (x 1+x 2)2-2x 1x 2 =32-2×(-1)=11;)0(02≠=++a c bx ax 21x x ,a b x x -=+21ac x x =21(2)12121211331x x x x x x ++===-⋅-. 【点拨】本题考查了一元二次方程的根与系数的关系,属于基本题目,熟练掌握一元二次方程的两根之和与两根之积与系数的关系是解题关键.举一反三:【变式1】利用根与系数的关系,求下列方程的两根之和、两根之积: (1)2760x x ++=; (2)22320x x --=.【答案】(1)12127,6x x x x +=-=;(2)12123,12x x x x +==-【分析】直接运用一元二次方程根与系数的关系求解即可. 解:(1)这里1,7,6a b c ===.22Δ474164924250b ac =-=-⨯⨯=-=>,∵方程有两个实数根. 设方程的两个实数根是12,x x , 那么12127,6x x x x +=-=. (2)这里2,3,2a b c ==-=-.22Δ4(3)42(2)916250b ac =-=--⨯⨯-=+=>,∵方程有两个实数根.设方程的两个实数根是12,x x ,那么12123,12x x x x +==-.【点拨】本题考查了一元二次方程根与系数的关系,熟知1212,b cx x x x a a+=-=是解题的关键.【变式2】 甲、乙两人同解一个二次项系数为1的一元二次方程,甲抄错了常数项,解得两根分别为3和2,乙抄错了一次项系数,解得两根分别为-5和-1,求原来的方程.【答案】2550x x -+= 【分析】解法一:利用甲乙解出的根,可以得出两个一元二次方程,取甲方程的一次项系数,取乙方程的常数项,即可重新组合出原来正确的方程.解法二:利用根与系数的关系,取甲方程的一次项系数,取乙方程的常数项,即可重新组合出原来正确的方程.解:解法一:设原一元二次方程为2+a b 0+=x x ,代入甲解出的两根3、2得9+3a+b=04+2a+b=0⎧⎨⎩,解得a=5b=6-⎧⎨⎩,因为甲抄错常数项,所以取a=5-同理,代入乙解出的两根-5和-1,可得a=6b=5⎧⎨⎩,而乙抄错了常数项,所以取b=5,综上可得原方程为2550x x -+=解法二:甲抄错常数项,解得两个为3和2,两根之和正确;乙抄错了一次项系数,解得两根为-5和-1,则两根之积正确.设原方程的两根分别为1x 、2x ,可得12+=5x x ,12=5x x ,所以原方程就是2550x x -+=.【点拨】在没有学习根与系数关系之前,可用方程的解的性质,代入两根求出方程系数,学习之后可直接利用根与系数关系得出方程系数,更为简单.类型二、由根与系数关系求参数的值2.关于x 的一元二次方程22(21)0x m x m --+=的两根为,a b ,且4a b ab +=-,求m 的值.嘉佳的解题过程如下: 解:221,a b m ab m +=-=,2214m m ∴-=-, 整理,得2230m m --=, 解得121,3m m =-=.嘉佳的解题过程漏了考虑哪个条件?请写出正确的解题过程. 【答案】m 的值为1-. 【分析】根据一元二次方程根的判别式结合根与系数的关系解答.解:嘉佳的解题过程漏了考虑0∆这一条件.正确的解题过程如下:根据题意得22(21)40m m ∆=--,解得14m. 221,a b m ab m +=-=,2214m m ∴-=-,整理得2230m m --=,解得121,3m m =-=(舍去), m ∴的值为1-.【点拨】本题中忽略0∆这一条件导致错解针对这一类题,我们一定要看清题目中所给的条件,考虑一元二次方程有解的条件是“0∆”,才能得出正确结果.举一反三:【变式1】已知1x 、2x 是方程2220x kx k k -+-=的两个实根,是否存在常数k ,使122132x x x x +=成立?若存在,请求出k 的值;若不存在,请说明理由. 【答案】不存在.理由见分析【分析】根据根与系数关系列出关于k 的方程,根据方程有实数根列出关于k 的不等式,求解即可.解:不存在.∵1x 、2x 是方程2220x kx k k -+-=的两个实根, ∵240b ac -≥,即22(2)4()0k k k ---≥, 解得,0k ≥;由题意可知122x x k +=,212x x k k =-,∵12121212122221122()232x x x x x x x x x x x x x x +=+-=+=, ∵222(2)32)2(k k k k k --=-,解得120,7k k ==-,经检验,27k =-是原方程的解,∵0k ≥,∵不存在常数k ,使122132x x x x +=成立. 【点拨】本题考查了一元二次方程根与系数关系和解方程,解题关键是根据根与系数关系列出方程并求解,注意:根的判别式要大于或等于0.【变式2】 已知方程2 420x x m +-=的一个根比另一个根小4,求这两个根和m 的值.【答案】10x =,24x =-,0m =【分析】设两根为x 1和x 2,根据根与系数的关系得x 1+x 2,x 1·x 2,由|x 2-x 1|=4两边平方,得(x 1+x 2)2-4x 1·x 2=16,代入解得m ,此时方程为x 2+4x=0,解出两根 .解:x 2+4x -2m=0设两根为x 1和x 2,则∵=16+8m>0, 且x 1+x 2=-4,x 1·x 2=-2m 由于|x 2-x 1|=4两边平方得x 12-2x 1·x 2+x 22=16 即(x 1+x 2)2-4x 1·x 2=16 所以16+8m=16 解得:m=0此时方程为x 2+4x=0, 解得 x 1=0 , x 2=−4 .【点拨】本题考查一元二次方程的根与系数的关系,解题的关键是灵活利用一元二次方程根与系数的关系,以及完全平方公式进行变形,求出两根.类型三、根的判断别与根与系数关系综合3、已知一元二次方程220x x m -+=. (1)若方程有两个实数根,求m 的范围;(2)若方程的两个实数根为12x x 、,且1233x x +=,求m 的值. 【答案】(1)1m ≤;(2)34m = 【分析】(1)一元二次方程220x x m -+=有两个实数根,∵≥0,把系数代入可求m 的范围; (2)利用根与系数的关系,已知122x x +=结合1233x x +=,先求12x x 、,再求m . 解:(1)∵方程220x x m -+=有两个实数根,∵()22424440b ac m m =-=--=-≥, 解得1m ≤;(2)由根与系数的关系可知,122x x +=,12x x m =,解方程组1212233x x x x +=⎧⎨+=⎩,解得123212x x ⎧=⎪⎪⎨⎪=⎪⎩,∵12313224m x x ==⨯=.【点拨】本题考查了一元二次方程根的判别式以及根与系数的关系,熟练掌握根的判别式、根与系数的关系是解题的关键.【变式1】已知关于x 的一元二次方程2(8)80x k x k -++=. (1)证明:无论k 取任何实数,方程总有实数根.(2)若221268x x +=,求k 的值.(3)若等腰三角形的一边长为5,另两边长恰好是这个方程的两个根,求这个等腰三角形的周长.【答案】(1)证明见分析;(2)2k =±;(3)这个等腰三角形的周长为21或18. 【分析】(1)根据根的判别式即可得到结论;(2)先计算∵=(8+k )2−4×8k ,整理得到∵=(k−8)2,根据非负数的性质得到∵≥0,然后根据∵的意义即可得到结论;(3)先解出原方程的解为x 1=k ,x 2=8,然后分类讨论:腰长为8时,则k =8;当底边为8时,则得到k =5,然后分别计算三角形的周长.解:(1)22(8)48(8)k k k ∆=+-⨯=-.2(8)0k -,0∴∆,∴无论k 取任何实数,方程总有实数根;(2)221212128,8,68x x k x x k x x +=+=+=,()2221212122x x x x x x +=++,2(8)6816k k ∴+=+,解得2k =±;(3)解方程2(8)80x k x k -++=得12,8x k x ==.∵当腰长为8时,8k . 85138+=>,能构成三角形,∴周长为88521++=.∵当底边长为8时,5k =.55108+=>∴能构成三角形,周长为55818++=.综上,这个等腰三角形的周长为21或18.【点拨】本题考查了一元二次方程ax 2+bx +c =0(a≠0)的根与系数的关系:若方程两个为x 1,x 2,则x 1+x 2=−b a ,x 1•x 2=ca.也考查了一元二次方程的判别式和等腰三角形的性质,掌握这些知识点是解题关键.【变式2】 已知关于x 的一元二次方程()22121202x k x k -++-=.(1)求证:无论k 为何实数,方程总有两个不相等的实数根; (2)若方程的两个实数根1x ,2x 满足123x x -=,求k 的值. 【答案】(1)见分析 (2)0,-2 【分析】(1)根据根的判别式即可求证出答案;(2)可以根据一元二次方程根与系数的关系得k 与的1x 、2x 的关系式,进一步可以求出答案.解:(1)证明:∵()222121422492k k k k ⎛⎫∆=+-⨯-=++ ⎪⎝⎭()2217k =++,∵无论k 为何实数,()2210k +≥, ∵()22170k +∆=+>,∵无论k 为何实数,方程总有两个不相等的实数根;(2)由一元二次方程根与系数的关系得: 1221x x k +=+,212122x x k =-, ∵123x x -=, ∵()2129x x -=, ∵()2121249x x x x +-=,∵()221214292k k ⎛⎫+-⨯-= ⎪⎝⎭,化简得:220k k +=,解得0k =,2-.【点拨】本题主要考查根的判别式和根与系数的关系,熟练掌握概念和运算技巧即可解题.类型四、根与系数关系拓展应用14、已知m ,n 是方程x 2﹣2x ﹣1=0的两个根,是否存在实数a 使﹣(m +n )(7m 2﹣14m +a )(3n 2﹣6n ﹣7)的值等于8?若存在,求出a 的值;若不存在,请说明理由.【答案】存在,a =-6 【分析】根据方程的解的定义得出m 2-2m =1,n 2-2n =1,m +n =2,再整体代入即可得出a 的值. 解:存在,理由如下:∵m ,n 是方程x 2﹣2x ﹣1=0的两个根, ∵m 2﹣2m =1,n 2﹣2n =1,m +n =2, ∵﹣(m +n )(7m 2﹣14m +a )(3n 2﹣6n ﹣7) =﹣(m +n )[7(m 2﹣2m )+a ][3(n 2﹣2n )﹣7] =﹣2×(7+a )(3﹣7) =8(7+a ),由8(7+a )=8得a =﹣6,∵存在实数a =﹣6,使﹣(m +n )(7m 2﹣14m +a )(3n 2﹣6n ﹣7)的值等于8. 【点拨】本题考查了一元二次方程的解、根与系数的关系,解题的关键是得出m 2-2m =1,n 2-2n =1,m +n =2,注意解题中的整体代入思想.【变式1】阅读材料:已知方程p 2﹣p ﹣1=0,1﹣q ﹣q 2=0且pq ≠1,求1pq q+的值. 解:由p 2﹣p ﹣1=0,及1﹣q ﹣q 2=0可知p ≠0, 又∵pq ≠1,∵p ≠1q.∵1﹣q ﹣q 2=0可变形为211()-q q ﹣1=0,根据p 2﹣p ﹣1=0和211()-q q﹣1=0的特征,∵p 、1q 是方程x 2﹣x ﹣1=0的两个不相等的实数根,则p +1q,即11pq q +=. 根据阅读材料所提供的方法,完成下面的解答. 已知:2m 2﹣5m ﹣1=0,21520n n+-=,且m ≠n ,求: (1)mn 的值; (2)2211m n +. 【答案】(1)12-;29.【分析】(1)由题意可知:可以将方程22510m m --=化简为21520m m+-=的形式,根据根与系数的关系直接得:11m n的值; (2)将2211m n +变形为2112m n mn ⎛⎫=+- ⎪⎝⎭求解.解:由22m 5m 10--=知m≠0,∵21520m m+-=, ∵21520n n+-=,m ≠n , ∵11m n≠, ∵1m 和1n是方程2520x x +-=的两个根, (1)由1m 和1n 是方程2520x x +-=的两个根得112m n⋅=-, ∵12mn =-;经检验:12mn =-是原方程的根,且符合题意.(2)由1m和1n是方程2520x x+-=的两个根得115m n+=-,112m n⋅=-,∵2221111225429 m n m n mn⎛⎫+=+-=+=⎪⎝⎭.【点拨】本题考查一元二次方程根与系数关系,代数式的值,乘法公式,掌握一元二次方程根与系数关系与乘法公式恒等变形是解题关键.【变式2】定义:若关于x的一元二次方程ax2+bx+c=0(a≠0)的两个实数根为x1,x2(x1<x2),分别以x1,x2为横坐标和纵坐标得到点M(x1,x2),则称点M为该一元二次方程的衍生点.(1)若方程为x2﹣2x=0,写出该方程的衍生点M的坐标.(2)若关于x的一元二次方程x2﹣(2m+1)x+2m=0(m<0)的衍生点为M,过点M向x轴和y轴作垂线,两条垂线与坐标轴恰好围成一个正方形,求m的值.(3)是否存在b,c,使得不论k(k≠0)为何值,关于x的方程x2+bx+c=0的衍生点M始终在直线y=kx﹣2(k﹣2)的图象上,若有请直接写出b,c的值,若没有说明理由.【答案】(1)衍生点为M(0,2);(2)12-;(3)存在,b=﹣6,c=8;【分析】(1)求出方程的两根,根据一元二次方程的衍生点即可解决问题;(2)求出方程的两根,根据一元二次方程的衍生点的定义,再利用正方形的性质构建方程即可解决问题;(3)求出定点,利用根与系数的关系解决问题即可;解:(1)∵x2﹣2x=0,∵x(x﹣2)=0,解得:x1=0,x2=2故方程x2﹣2x=0的衍生点为M(0,2).(2)x2﹣(2m+1)x+2m=0(m<0)∵m<0∵2m<0解得:x1=2m,x2=1,方程x2﹣(2m+1)x+2m=0(m<0)的衍生点为M(2m,1).点M在第二象限内且纵坐标为1,由于过点M向两坐标轴做垂线,两条垂线与x 轴y轴恰好围城一个正方形,所以2m =﹣1,解得12m =-.(3)存在.直线y =kx ﹣2(k ﹣2)=k (x ﹣2)+4,过定点M (2,4), ∵x 2+bx+c =0两个根为x 1=2,x 2=4, ∵2+4=﹣b ,2×4=c , ∵b =﹣6,c =8.【点拨】本题考查一元二次方程的解法及根与系数的关系、正方形的性质等知识,解题的关键是理解题意,学会用转化的思想思考问题.类型五、根与系数关系拓展应用25、如图,在平面直角坐标系中,∵ABC 的BC 边与x 轴重合,顶点A 在y 轴的正半轴上,线段OB ,OC (OB OC <)的长是关于x 的方程2760x x -+=的两个根,且满足CO =2AO .(1)求直线AC 的解析式;(2)若P 为直线AC 上一个动点,过点P 作PD ∵x 轴,垂足为D ,PD 与直线AB 交于点Q ,设∵CPQ 的面积为S (0S ≠),点P 的横坐标为a ,求S 与a 的函数关系式;(3)点M 的坐标为()m,2,当∵MAB 为直角三角形时,直接写出m 的值.【答案】(1)132y x =+; (2)22721,6042721,6042a a a a S a a a ⎧+-⎪⎪=⎨⎪---<<⎪⎩或;(3)m 的值为-3或-1或2或7;【分析】(1)根据一元二次方程的解求出OB 和OC 的长度,然后得到点B ,点C 坐标和OA 的长度,进而得到点A 坐标,最后使用待定系数法即可求出直线AC 的解析式;(2)根据点A ,点B 坐标使用待定系数法求出直线AB 的解析式,根据直线AB 解析式和直线AC 解析式求出点P ,Q ,D 坐标,进而求出PQ 和CD 的长度,然后根据三角形面积公式求出S ,最后对a 的值进行分类讨论即可;(3)根据∵MAB 的直角顶点进行分类讨论,然后根据勾股定理求解即可.(1)解:解方程2760x x -+=得16x =,21x =,∵线段OB ,OC (OB OC <)的长是关于x 的方程2760x x -+=的两个根,∵OB =1,OC =6,∵()10B ,,()6,0C -, ∵CO =2AO ,∵OA =3,∵()0,3A ,设直线AC 的解析式为()0y kx b k =+≠,把点()0,3A ,()6,0C -代入得603k b b -+=⎧⎨=⎩, 解得123k b ⎧=⎪⎨⎪=⎩, ∵直线AC 的解析式为132y x =+; (2)解:设直线AB 的解析式为y =px +q ,把()0,3A ,()10B ,代入直线AB 解析式得30q p q=⎧⎨=+⎩, 解得33p q =-⎧⎨=⎩, ∵直线AB 的解析式为33y x =-+,∵PD ∵x 轴,垂足为D ,PD 与直线AB 交于点Q ,点P 的横坐标为a , ∵1,32P a a ⎛⎫+ ⎪⎝⎭,(),33Q a a -+,(),0D a , ∵()1733322PQ a a a ⎛⎫=-+-+= ⎪⎝⎭,6CD a =+, ∵1176222S PQ CD a a =⋅=⨯⋅+,当点P 与点A 或点C 重合时,即当a =0或6a =-时,此时S =0,不符合题意,当6a <-时,()21772162242S a a a a ⎛⎫⎡⎤=⨯--+=+ ⎪⎣⎦⎝⎭, 当60a -<<时,()21772162242S a a a a ⎛⎫=⨯-+=-- ⎪⎝⎭, 当0a >时,()21772162242S a a a a =⨯+=+, ∵22721,6042721,6042a a a a S a a a ⎧+-⎪⎪=⎨⎪---<<⎪⎩或; (3)解:∵()0,3A ,()10B ,,(),2M m , ∵AB ==AM ==,BM =当∵MAB =90°时,222AM AB BM +=,∵222+=, 解得3m =-,当∵ABM =90°时,222AB BM AM+=,∵222+=, 解得m =7, 当∵AMB =90°时,222AM BM AB +=,∵222+=, 解得11m =-,22m =,∵m 的值为-3或-1或2或7.【点拨】本题考查解一元二次方程、待定系数法求一次函数解析式、三角形面积公式、勾股定理,正确应用分类讨论思想是解题关键.【变式1】PAC △在平面直角坐标系中的位置如图所示,AP 与y 轴交于点(0,2)B ,点P 的坐标为(1,3)-,线段OA ,OC 的长分别是方程29140x x -+=的两根,OC OA >.(1)求线段AC 的长;(2)动点D 从点O 出发,以每秒1个单位长度的速度沿x 轴负半轴向终点C 运动,过点D 作直线l 与x 轴垂直,设点D 运动的时间为t 秒,直线l 扫过四边形OBPC 的面积为S ,求S 与t 的关系式;(3)M 为直线l 上一点,在平面内是否存在点N ,使以A ,P ,M ,N 为顶点的四边形为正方形?若存在,请直接写出点N 的坐标;若不存在,请说明理由.【答案】(1)9 (2)()()221201217317424t t t S t t t ⎧+<≤⎪⎪=⎨⎪-+-<≤⎪⎩ (3)存在满足条件的N 点,其坐标为(2,3)或(-4,0)或(-1,-3).【分析】(1)解方程可求得OA 、OC 的长,则可求得A 、C 的坐标,从而可得AC 长;(2)分两种情况:∵当0<t ≤1时;∵当1<t ≤7时,利用梯形的面积公式即可求解; (3)分两种情况:∵AP 为正方形的对角线时,∵AP 为正方形的边时,根据正方形以及等腰直角三角形的性质,可求得N 点坐标.(1)解:解方程x 2﹣9x +14=0可得x =2或x =7,∵线段OA ,OC 的长分别是方程x 2﹣9x +14=0的两根,且OC >OA ,∵OA =2,OC =7,∵A (2,0),C (﹣7,0),279.AC(2) 解:过点P 作PH ∵OC 于H ,而()1,3P - ,1OH ∴=,3PH = ,6CH =设直线AB 解析式为y =kx +b ,而点B (0,2),∵32k b b -+=⎧⎨=⎩, 解得12k b =-⎧⎨=⎩, ∵直线AB 解析式为y =﹣x +2,∵如图1所示,当0<t ≤1时,点E (﹣t ,t +2),∵S =S 梯形OBED =21122222t t t t (0<t ≤1); ∵如图2所示,当1<t ≤7时,设直线CP 解析式为y =mx +n ,∵C (﹣7,0),点P 的坐标为(﹣1,3),∵703m n m n -+=⎧⎨-+=⎩ ,解得1272m n ⎧=⎪⎪⎨⎪=⎪⎩, ∵直线CP 解析式为1722y x =+, 设17,22E t t , ∵DE =1722t , ∵S =S 梯形OBPH +S 梯形HPED =11172+31+132222t t 217317424t t t ;综上,()()221201217317424t t t S t t t ⎧+<≤⎪⎪=⎨⎪-+-<≤⎪⎩;图1 图2(3) 分两种情况:∵AP 为正方形的对角线时,如图3所示,∵A (2,0),B (0,2),∵∵OAB =45°,∵四边形AMPN 是正方形,∵∵P AN =45°,∵NAM =90°,∵∵OAB +∵P AN =90°,∵点M 在x 轴上,NA ∵x 轴,NP x ∥轴,∵N (2,3);∵AP 为正方形的边时,如图4所示,∵∵OAB =45°,四边形AMNP 是正方形,∵∵NAM =∵OAB =45°,AP =AM ,∵HN =PH =3,∵N (-4,0);如图5所示,四边形ANMP 是正方形,∵PH =NH =3,∵()1,3N --;∵N (-4,0)或(-1,-3),综上可知,存在满足条件的N 点,其坐标为(2,3)或(-4,0)或(-1,-3).图3 图4 图5【点拨】本题为四边形的综合题,考查了一元二次方程、勾股定理、待定系数法、正方形的性质、等腰直角三角形的性质等知识.在(1)中求得OA 、OC 的长是解题的关键,在(2)中分类讨论是解题的关键,在(3)中分类思想的运用是解题的关键.本题考查知识点较多,综合性较强,难度适中.【变式2】 菱形ABCD 的边长为5,两条对角线AC 、BD 相交于O 点,且AO ,BO 的长分别是关于x 的方程22(21)30x m x m +-++=的两根,求m 的值.【答案】3m =-.【分析】由题意可知:菱形ABCD 的边长是5,则AO 2+BO 2=25,则再根据根与系数的关系可得:AO +BO =−(2m −1),AO ∙BO =m 2+3;代入AO 2+BO 2中,得到关于m 的方程后,即可求得m 的值.解:∵AO ,BO 的长分别是关于x 的方程22(21)30x m x m +-++=的两根,设方程的两根为1x 和2x ,可令1OA x =,2OB x =,∵四边形ABCD 是菱形,∵AC BD ⊥,在Rt AOB 中:由勾股定理得:222OA OB AB +=,∵222125+=x x ,则()21212225x x x x +-=,由根与系数的关系得:12(21)x x m +=--,2123x x m ⋅=+,∵[]()22(21)2325m m ---+=, 整理得:22150m m --=,解得:15m =,23m =-又∵0∆>,∵()22(21)430--+>m m ,解得114m <-, ∵3m =-.【点拨】此题主要考查了菱形的性质、勾股定理、以及根与系数的关系,将菱形的性质与一元二次方程根与系数的关系,以及代数式变形相结合解题是一种经常使用的解题方法.。

初三数学一元二次方程根与系数的关系及其应用知识精讲

初三数学一元二次方程根与系数的关系及其应用知识精讲

初三数学一元二次方程根与系数的关系及其应用知识精讲一元二次方程根与系数的关系及其应用一元二次方程ax bx c a 200++=≠()的根x x 12、是由系数a 、b 、c 决定的,它们之间有密切的关系。

x x b a x x c a1212+=-=, 这就是根与系数的关系,也称为韦达定理。

反之,一元二次方程的两根也制约着这个方程的系数,当a =1时,有()b x x =-+12,c x x =12,从而有以两个数x x 12、为根的二次项系数为1的一元二次方程是()x x x x x x 212120-++=。

需要指出,韦达定理应该是在判别式大于等于零的前提下使用,即在保证一元二次方程有实数根的条件下使用。

一元二次方程的韦达定理,揭示了根与系数的一种必然联系,利用这个关系,我们可以解决诸如已知一根求另一根,求根的代数式的值,构造方程,确定系数等问题,它是中学数学中的一个有用的工具。

例(2002·南京)已知:关于x 的方程x kx 220--= (1)求证:方程有两个不相等的实数根;(2)设方程的两根为x x 12、,如果()21212x x x x +>,求k 的取值范围。

解:(1)证明: ∆=-=+>b ac k 22480 ∴原方程有两个不相等的实数根 (2) x x k x x 12122+==-, 又() 21212x x x x +>∴>-∴>-221k k说明:本题侧重考察对基本知识点的掌握,难度不大,可以说是中考中的送分题,同学们应该把这类题的分数拿到手。

例(2000上海)已知关于x 的一元二次方程()mx m x m m 221200--+-=>()(1)求证:这个方程有两个不相等的实数根;(2)如果这个方程的两个实数根分别为x x 12、,且()()x x m 12335--=,求m 的值。

解:(1)证明:()[]()∆=----21422m m m=-+-+=+441484122m m m m mm m >∴4+>010, ∴方程有两个不相等的实数根 (2)由()()x x m 12335--= ()x x x x m 12123950-++-=x x m mx x m m1212212+=-=-()∴---+-=m m m mm 2321950 解得:m m 12115==-,经检验m m 12、都是方程的根。

2022年九年级数学上册《一元二次方程的根与系数的关系》教材预习辅导讲义(附解析)

2022年九年级数学上册《一元二次方程的根与系数的关系》教材预习辅导讲义(附解析)

初中数学《一元二次方程的根与系数的关系》教材讲义及过关练一元二次方程根的判别式 1.一元二次方程根的判别式一元二次方程中,叫做一元二次方程的根的判别式,通常用“”来表示,即(1)当△>0时,一元二次方程有2个不相等的实数根; (2)当△=0时,一元二次方程有2个相等的实数根; (3)当△<0时,一元二次方程没有实数根.【点拨】利用根的判别式判定一元二次方程根的情况的步骤: ①把一元二次方程化为一般形式; ②确定的值; ③计算的值;④根据的符号判定方程根的情况. 2. 一元二次方程根的判别式的逆用 在方程中,(1)方程有两个不相等的实数根﹥0;(2)方程有两个相等的实数根=0;(3)方程没有实数根﹤0.【点拨】(1)逆用一元二次方程根的判别式求未知数的值或取值范围,但不能忽略二次项系数不为0这一条件;(2)若一元二次方程有两个实数根则 ≥0. 一元二次方程的根与系数的关系 1.一元二次方程的根与系数的关系如果一元二次方程的两个实数根是,那么,. 注意它的使用条件为a ≠0, Δ≥0.)0(02≠=++a c bx ax ac b 42-)0(02≠=++a c bx ax ∆ac b 42-=∆c b a .,ac b 42-ac b 42-()002≠=++a c bx ax ⇒ac b 42-⇒ac b 42-⇒ac b 42-ac b 42-)0(02≠=++a c bx ax 21x x ,a b x x -=+21acx x =21教材知识总结也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商. 2.一元二次方程的根与系数的关系的应用(1)验根.不解方程,利用根与系数的关系可以检验两个数是不是一元二次方程的两个根; (2)已知方程的一个根,求方程的另一根及未知系数;(3)不解方程,可以利用根与系数的关系求关于x 1、x 2的对称式的值.此时,常常涉及代数式的一些重要变形;如:①;②; ③;④; ⑤;⑥;⑦⑧; ⑨; ⑩.(4)已知方程的两根,求作一个一元二次方程; 以两个数为根的一元二次方程是.(5)已知一元二次方程两根满足某种关系,确定方程中字母系数的值或取值范围; (6)利用一元二次方程根与系数的关系可以进一步讨论根的符号. 设一元二次方程的两根为、,则 ①当△≥0且时,两根同号.当△≥0且,时,两根同为正数; 当△≥0且,时,两根同为负数. ②当△>0且时,两根异号.当△>0且,时,两根异号且正根的绝对值较大;222121212()2x x x x x x +=+-12121211x x x x x x ++=2212121212()x x x x x x x x +=+2221121212x x x x x x x x ++=2121212()2x x x x x x +-=22121212()()4x x x x x x -=+-12()()x k x k ++21212()x x k x x k =+++2212121212||()()4x x x x x x x x -=-=+-22212121222222121212()211()x x x x x x x x x x x x ++-+==2212121212()()4x x x x x x x x -=±-=±+-22212121212||||(||||)+2||x x x x x x x x +=+=+2121212()22||x x x x x x =+-+20(0)ax bx c a ++=≠1x 2x 120x x >120x x >120x x +>120x x >120x x +<120x x <120x x <120x x +>当△>0且,时,两根异号且负根的绝对值较大.【点拨】(1)利用根与系数的关系求出一元二次方程中待定系数后,一定要验证方程的.一些考试中,往往利用这一点设置陷阱;(2)若有理系数一元二次方程有一根,则必有一根(,为有理数).【例题1】设方程2320x x --=两个根为1x 、2x ,则2212x x +=( )A .922+B .922-C .92+D .92-【例题2】若1x 、2x 是一元二次方程2350x x +-=的两根,则12x x ⋅的值是( ) A .3B .-3C .5D .-5【例题3】已知一元二次方程2202210x x -+=的两个根分别为12,x x ,则21202212x x -+的值为( ) A .1- B .0 C .2022- D .2021-一、单选题1.若关于x 的方程250x x a -+=有一个根是2,则另一个根是( ) A .6B .3C .3-D .7-2.已知1x 、2x 是一元二次方程2630x x -+=的两个实数根,则1211+x x 的值为( ) A .2B .2-C .12D .12-3.已知关于x 的一元二次方程x 2+mx +3=0有两个实数根x 1=1,x 2=n ,则代数式(m +n )2022的值为( ) A .1B .0C .20223D .202274.在解一元二次方程x 2+px +q =0时,小红看错了常数项q ,得到方程的两个根是﹣4,2,小明看错了一次项系数p ,得到方程两个根是4,﹣3,则原来的方程是( ) A .x 2+2x ﹣8=0B .x 2+2x ﹣12=0C .x 2﹣2x ﹣12=0D .x 2﹣2x ﹣8=05.已知方程220x mx ++=的一个根是1,则它的另一个根是( ) A .1B .2C .2-D .36.关于方程2320x x -+=的根的说法中,正确的是( ) A .没有实数根B .两实数根的和为2-C .有两个不相等的实数根D .两实数根的积为3二、填空题120x x <120x x +<∆a b +a b -a b 看例题,涨知识课后习题巩固一下7.已知m ,n 是一元二次方程2320x x --=的两个根,则22m n mn +=_______.8.写出一个一元二次方程,使它的两根之和是4,并且两根之积是2,这个一元二次方程是________. 9.已知方程2210x x --=的两根分别是1x ,2x ,则12x x +的值为_________. 10.若一元二次方程2320x x --=的两个实数根为a ,b ,则a ab b -+的值为_______. 三、解答题11.已知,关于x 的一元二次方程()22210x a x a a --+-=,(1)求证:方程有两个不相等的实数根; (2)若方程两根的绝对值相等,求a 的值.12.已知12,x x 是一元二次方程23260x x +-=的两个根,求1233x x +的值. 13.已知关于x 的方程22x 2mx m 90-+-=. (1)求证:此方程有两个不相等的实数根;(2)设此方程的两个根分别为1x ,2x ,若126x x +=,求m 的值.14.已知关于x 的一元二次方程()222120x a x a a --+--=有两个不相等的实数根1x ,2x .(1)求a 的取值范围;(2)若1x ,2x 满足22121216x x x x +-=,求a 的值.1.3 一元二次方程的根与系数的关系答案解析一元二次方程根的判别式 1.一元二次方程根的判别式一元二次方程中,叫做一元二次方程的根的判别式,通常用“”来表示,即(1)当△>0时,一元二次方程有2个不相等的实数根;)0(02≠=++a c bx ax ac b 42-)0(02≠=++a c bx ax ∆ac b 42-=∆教材知识总结(2)当△=0时,一元二次方程有2个相等的实数根; (3)当△<0时,一元二次方程没有实数根.【点拨】利用根的判别式判定一元二次方程根的情况的步骤: ①把一元二次方程化为一般形式; ②确定的值; ③计算的值;④根据的符号判定方程根的情况. 2. 一元二次方程根的判别式的逆用 在方程中,(1)方程有两个不相等的实数根﹥0;(2)方程有两个相等的实数根=0;(3)方程没有实数根﹤0.【点拨】(1)逆用一元二次方程根的判别式求未知数的值或取值范围,但不能忽略二次项系数不为0这一条件;(2)若一元二次方程有两个实数根则 ≥0. 一元二次方程的根与系数的关系 1.一元二次方程的根与系数的关系如果一元二次方程的两个实数根是,那么,. 注意它的使用条件为a ≠0, Δ≥0.也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商. 2.一元二次方程的根与系数的关系的应用(1)验根.不解方程,利用根与系数的关系可以检验两个数是不是一元二次方程的两个根; (2)已知方程的一个根,求方程的另一根及未知系数;(3)不解方程,可以利用根与系数的关系求关于x 1、x 2的对称式的值.此时,常常涉及代数式的一些重要变形;如:①;②; c b a .,ac b 42-ac b 42-()002≠=++a c bx ax ⇒ac b 42-⇒ac b 42-⇒ac b 42-ac b 42-)0(02≠=++a c bx ax 21x x ,a b x x -=+21acx x =21222121212()2x x x x x x +=+-12121211x x x x x x ++=③;④; ⑤;⑥;⑦;⑧; ⑨; ⑩.(4)已知方程的两根,求作一个一元二次方程; 以两个数为根的一元二次方程是.(5)已知一元二次方程两根满足某种关系,确定方程中字母系数的值或取值范围; (6)利用一元二次方程根与系数的关系可以进一步讨论根的符号. 设一元二次方程的两根为、,则 ①当△≥0且时,两根同号.当△≥0且,时,两根同为正数; 当△≥0且,时,两根同为负数. ②当△>0且时,两根异号.当△>0且,时,两根异号且正根的绝对值较大; 当△>0且,时,两根异号且负根的绝对值较大.【点拨】(1)利用根与系数的关系求出一元二次方程中待定系数后,一定要验证方程的.一些考试中,往往利用这一点设置陷阱;(2)若有理系数一元二次方程有一根,则必有一根(,为有理数).【例题1】设方程2320x x --=两个根为1x 、2x ,则2212x x +=( )A .922+B .922-C .92+D .92-【答案】A2212121212()x x x x x x x x +=+2221121212x x x x x x x x ++=2121212()2x x x x x x +-=22121212()()4x x x x x x -=+-12()()x k x k ++21212()x x k x x k =+++2212121212||()()4x x x x x x x x -=-=+-22212121222222121212()211()x x x x x x x x x x x x ++-+==2212121212()()4x x x x x x x x -=±-=±+-22212121212||||(||||)+2||x x x x x x x x +=+=+2121212()22||x x x x x x =+-+20(0)ax bx c a ++=≠1x 2x 120x x >120x x >120x x +>120x x >120x x +<120x x <120x x <120x x +>120x x <120x x +<∆a b +a b -a b 看例题,涨知识【分析】()2221212122x x x x x x +=+-,由韦达定理可知,123x x +=,122x x =-,代入即可求解. 【解析】()2221212122x x x x x x +=+- 由韦达定理可知,123x x +=,122x x =-则2212x x +=(2322922-⨯-=+故选A .【例题2】若1x 、2x 是一元二次方程2350x x +-=的两根,则12x x ⋅的值是( ) A .3 B .-3 C .5 D .-5【答案】D【分析】根据一元二次方程根与系数的关系计算求值即可; 【解析】解:∵1x 、2x 是一元二次方程2350x x +-=的两根, ∴12551x x -==-, 故选:D .【例题3】已知一元二次方程2202210x x -+=的两个根分别为12,x x ,则21202212x x -+的值为( ) A .1- B .0 C .2022- D .2021-【答案】B【分析】根据一元二次方程解的定义及根与系数的关系可得21120221x x =-,121x x ⋅=,再代入通分计算即可求解.【解析】∵方程2202110x x -+=的两根分别为1x 、2x ,∴211202210x x -+=,121x x ⋅=, ∴21120221x x =-,∴21220221x x -+=121220221202x x --+ =12222202212022x x x x x ⋅--+ =222022120221x x ⨯--+=221x x -+ 11=-+0=故选:B .一、单选题1.若关于x 的方程250x x a -+=有一个根是2,则另一个根是( ) A .6 B .3 C .3- D .7-【答案】B【解析】解:设另一个根为m ,由根和系数的关系有:25m += 解得3m = 故选:B .2.已知1x 、2x 是一元二次方程2630x x -+=的两个实数根,则1211+x x 的值为( ) A .2 B .2- C .12D .12-【答案】A【分析】通分:21121212121211x x x x x x x x x x x x ++=+=⋅⋅⋅,根据韦达定理:一元二次方程根与系数的关系:12b x x a+=-,12cx x a⋅=可得出答案. 【解析】解: 由韦达定理:12bx x a +=-,12c x x a⋅=可得211212*********23x x x x x x x x x x x x ++=+===⋅⋅⋅, 故选:A .3.已知关于x 的一元二次方程x 2+mx +3=0有两个实数根x 1=1,x 2=n ,则代数式(m +n )2022的值为( ) A .1 B .0C .20223D .20227【答案】A【分析】直接利用根与系数的关系得出两根之和,进而得出答案.【解析】解:∵关于x 的一元二次方程x 2+mx +3=0有两个实数根x 1=1,x 2=n , ∴1+n =-m , 解得:m +n =-1, 故(m +n )2022=1. 故选:A .4.在解一元二次方程x 2+px +q =0时,小红看错了常数项q ,得到方程的两个根是﹣4,2,小明看错了一次项系数p ,得到方程两个根是4,﹣3,则原来的方程是( ) A .x 2+2x ﹣8=0 B .x 2+2x ﹣12=0C .x 2﹣2x ﹣12=0D .x 2﹣2x ﹣8=0【答案】B课后习题巩固一下【分析】先设这个方程的两根是α、β,根据一元二次方程根与系数的关系,从而得出符合题意的方程. 【解析】解:设此方程的两个根是α、β,根据题意得:α+β=﹣p =-4+2=﹣2,αβ=q =4×(-3)=﹣12, 原来的一元二次方程是x 2+2x ﹣12=0. 故选:B5.已知方程220x mx ++=的一个根是1,则它的另一个根是( ) A .1 B .2 C .2- D .3【答案】B【分析】设方程的另一个根为x 1,根据两根之积等于ca,即可得出关于x 1的一元一次方程,解之即可得出结论.【解析】解:设方程的另一个根为x 1,根据题意得:11x ⨯ =2,解得 x 1=2. 故选:B .6.关于方程2320x x -+=的根的说法中,正确的是( ) A .没有实数根B .两实数根的和为2-C .有两个不相等的实数根D .两实数根的积为3【答案】C【分析】根据一元二次方程的判别式得到根的情况,根据一元二次方程的根与系数的关系得到两根之和与两根之积,最后对四个选项进行判断即可. 【解析】解:∵2320x x -+=, ∴2(3)41210∆=--⨯⨯=>. ∴该方程有两个不相等的实数根. 故A 选项不符合题意,C 选项符合题意. ∵2320x x -+=有两个不相等的实数根, ∴两实数根之和为331--=,两实数根之积为221=. 故B 选项不符合题意,D 选项不符合题意. 故选:C . 二、填空题7.已知m ,n 是一元二次方程2320x x --=的两个根,则22m n mn +=_______. 【答案】6-【分析】利用一元二次方程根与系数的关系可知:m +n =3,mn =-2,由此即可求解. 【解析】解:由题意得,m +n =3,mn =-2,∴()()22326m n mn mn m n +=+=⨯-=-,故答案为:-6.8.写出一个一元二次方程,使它的两根之和是4,并且两根之积是2,这个一元二次方程是________. 【答案】2420x x -+=【分析】设此一元二次方程为()200++=≠ax bx c a ,根据两根之和是4,两根之积是2,利用a 表示b ,c ,即可得出一元二次方程.【解析】解:设此一元二次方程为()200++=≠ax bx c a ,且1x ,2x 为一元二次方程的两个根,∵它的两根之各是4,两根之积是2 ∴124bx x a +=-=,122c x x a==, ∴4b a =-,2c a =,代入一元二次方程得:()24200ax ax a a -+=≠,即2420x x -+=, 故答案为:2420x x -+=.9.已知方程2210x x --=的两根分别是1x ,2x ,则12x x +的值为_________. 【答案】14【分析】由根与系数的关系122bx x a+=-,即可求出答案. 【解析】解:∵方程2210x x --=的两根分别是1x ,2x , ∴12112224b x x a -+=-=-=⨯; 故答案为:14. 10.若一元二次方程2320x x --=的两个实数根为a ,b ,则a ab b -+的值为_______. 【答案】5【分析】先根据根与系数的关系得到3,2,a b ab +==-然后利用整体代入的方法计算. 【解析】解:根据题意得3,2,a b ab +==-()32 5.a ab b a b ab -+=+-=--=故答案为:5. 三、解答题11.已知,关于x 的一元二次方程()22210x a x a a --+-=,(1)求证:方程有两个不相等的实数根; (2)若方程两根的绝对值相等,求a 的值. 【答案】(1)证明见解析;(2)12【分析】(1)只需证明0∆>即可;(2)利用根与系数的关系列出两根之和的表达式,因为两根互为相反数,故由两根之和等于0即可求出a 的值.【解析】(1)解:[]22(21)4()10a a a ∆=----=>, ∴该方程有两个不相等的实数根.(2)解:12x x ≠,且12x x =,∴12x x =-,即120x x +=,∴210a -=,解得12a =. 12.已知12,x x 是一元二次方程23260x x +-=的两个根,求1233x x +的值. 【答案】1 【分析】利用一元二次方程根与系数的关系求出x 1+x 2=-23,x 1x 2=-2的值,将所求式子变形后,代入即可求出值.【解析】解:∵x 1,x 2是一元二次方程3x 2+2x -6=0的两个根,∴x 1+x 2=-23,x 1x 2=63-=-2, ∴()121212333x x x x x x ++= 23312⎛⎫⨯- ⎪⎝⎭==-. 13.已知关于x 的方程22x 2mx m 90-+-=.(1)求证:此方程有两个不相等的实数根;(2)设此方程的两个根分别为1x ,2x ,若126x x +=,求m 的值.【答案】(1)见解析;(2)3【分析】(1)根据方程的系数结合根的判别式,即可得出Δ>0,由此可证出此方程有两个不相等的实数根; (2)利用根与系数的关系可得122x x m +=即可找出关于m 的一元一次方程,解之即可得出结论.【解析】(1)根据题意可知:22(2)4(9)360m m ∆=--=>,∴方程有两个不相等的实数根;(2)有题意得:122x x m +=∴1226x x m +==,解得3m =14.已知关于x 的一元二次方程()222120x a x a a --+--=有两个不相等的实数根1x ,2x .(1)求a 的取值范围;(2)若1x ,2x 满足22121216x x x x +-=,求a 的值. 【答案】(1)3a <;(2)1a =-【分析】(1)由一元二次方程根的情况与判别式的关系得出不等式求解即可;(2)由一元二次方程根与系数关系,结合题中条件得出方程求解即可.【解析】(1)解:∵关于x 的一元二次方程()222120x a x a a --+--=有两个不相等的实数根,∴()()2221420a a a ∆=----->⎡⎤⎣⎦,解得:3a <;(2)解:∵关于x 的一元二次方程()222120x a x a a --+--=, ∴()1221x x a +=-,2122x x a a =--,∵22121216x x x x +-=, ∴()21212316x x x x +-=,即()()22213216a a a ----=⎡⎤⎣⎦,十字相乘因式分解得:11a =-,26a =, ∵3a <,∴1a =-.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学一元二次方程的根与系数的关系讲义
1.探索一元二次方程的根与系数的关系.
2.会不解方程利用一元二次方程的根与系数解决问题.
一、情境导入
一般地,对于关于x的方程x2+px+q=0(p,q为已知常数,p2-4q≥0),试用求根
公式求出它的两个解x 1、x 2,算一算x 1+x 2、x 1·x 2的值,你能得出什么结果?
二、合作探究
探究点:一元二次方程根与系数的关系
【类型一】利用一元二次方程根与系数的关系求关于方程根的代数式的值
已知m 、n 是方程2x 2-x -2=0的两
实数根,则1m +1
n
的值为( )
A .-1 B.12 C .-1
2
D .1
解析:根据根与系数的关系,可以求出m +n 和mn 的值,再将原代数式变形后,整体代入计算即可.因为m 、n 是方程
2x 2-x -2=0
的两实数根,所以m +n =1
2
,mn =-
1,1
m +1
n

n +m mn

1
2
-1=-1
2
.故选C. 方法总结:解题时先把代数式变形成与两根和、积有关的形式,注意前提:方程有两个实数根时,判别式大于或等于0.
【类型二】根据方程的根确定一元二次方程
已知一元二次方程的两根分别是4和-5,则这个一元二次方程是( )
A.x2-6x+8=0 B.x2+9x-1=0
C.x2-x-6=0 D.x2+x-20=0
解析:∵方程的两根分别是4和-5,设两根为x1,x2,则x1+x2=-1,x1·x2=-20.如果令方程ax2+bx+c=0中,a=1,则-b=-1,c=-20.∴方程为x2+x-20=0.故选D.
方法总结:先把所构造的方程的二次项系数定为1,利用一元二次方程根与系数的关系确定一元二次方程一次项系数和常数项.
【类型三】根据根与系数的关系确定方程的解
(2014·云南曲靖)已知x=4是一元二次方程x2-3x+c=0的一个根,则另一个根为________.
解析:设另一根为x1,则由根与系数的关系得x1+4=3,∴x1=-1.故答案为x=-1.
方法总结:解决这类问题时,利用一元二次方程的根与系数的关系列出方程即可解决.【类型四】利用一元二次方程根与系数的关系确定字母系数
(2014·山东烟台)关于x的方程x2-ax +2a=0的两根的平方和是5,则a的值是( )
A.-1或5 B.1
C.5 D.-1
解析:将两根平方和转化为用两根和、积表示的形式,从而利用一元二次方程根与系数的关系解决.设方程两根为x1,x2,由题意,得x21+x22=5.∴(x1+x2)2-2x1x2=5.∵x1+x2=a,x1x2=2a,∴a2-2×2a=5.解得a1=5,a2=-1.又∵Δ=a2-8a,当a=5时,Δ<0,此时方程无实数根,所以舍去a=5.当a=-1时,Δ>0,此时方程有两实数根.所以取a =-1.故选D.
方法总结:解答此类题的关键是将与方程两根有关的式子转化为用两根和、积表示的形式,从而利用一元二次方程根与系数的关系解决问题.注意不要忽略题目中的隐含条件Δ≥0,导致解答不全面.
【类型五】一元二次方程根与系数的关系和根的情况的综合应用
已知x1、x2是一元二次方程(a-6)x2+2ax+a=0的两个实数根.
(1)是否存在实数a,使-x1+x1x2=4+x2成立?若存在,求出a的值;若不存在,请你说明理由;
(2)求使(x1+1)(x2+1)为负整数的实数a的整数值.
解:(1)根据题意,得Δ=(2a)2-4×a(a-6)=24a≥0.解得a≥0.又∵a-6≠0,∴a≠6.由
根与系数关系得:x1+x2=-
2a
a-6,
x1x2=
a
a-6.由-
x1+x1x2=4+x2得x1+x2+4=x1x2,
∴-2a
a-6+4=a
a-6,解得a=24.经检验a=24是方程-
2a
a-6+4=
a
a-6的解.即存在
a=
24,使-x1+x1x2=4+x2成立.
(2)原式=x1+x2+x1x2+1=-2a
a-6+
a
a-6+1=
6
6-a
为负整数,则6-a为-1或-2,
-3,-6.解得a=7或8,9,12.
三、板书设计
教学过程中,强调一元二次方程的根与系数的关系是通过求根公式得到的,在利用此关系确定字母的取值时,一定要记住Δ≥0这个前提条件.。

相关文档
最新文档