第一章 核反应堆类型

合集下载

CHAPTER 1-1-核反应堆和核电站概述

CHAPTER 1-1-核反应堆和核电站概述

压水堆燃料组件
棒束长 : 约3~4m 燃料棒的排列:15×15或17×17
燃料棒的排列 15×15 或 17×17
燃料元件与燃料组件
燃料元件
燃料组件
控制棒组件及控制棒驱动机构
控制棒驱动 机构 控制棒组件
控 制 棒
冷却剂泵(主泵) 冷却剂泵
飞轮
电机
电机轴
泵轴
冷却剂出口
冷却剂入口
蒸汽发生器
汽水分离器 给水入口
第一座核电站
Obninsk(奥布宁斯克)RBMK (27 July 1954, Soviet)
堆 型:石墨水冷反应堆 慢化剂:石墨 冷却剂:轻水 电功率: 5MW 投入运行:1954年 退 役:2002年 地 址:苏联
标志:人类开始了和平利用原子能的历史
美国Nautilus(鹦鹉螺号) SSN-571,1954
舰艇名:鹦鹉螺号 SSN-571 堆 型:压水堆 下 水:1954年 国 家:美国 退 役:1983年 可在水下连续航行30天 1960年USS海神号未出 水面围绕着地球航行了一周
第一艘核潜艇
第一个商用核电厂
First Commercial NPP
电站名:希平港(
Shippinport )核电站 堆 型:压水反应堆 地 址:美国宾西法尼 亚州匹兹堡希平港 建 造:1954年建造 并 网:1957年并网 热功率:230MW 电功率:60MW 退役:1982年
4 Circulating pump 5 Control rod drive 9 Low pressure turbine 10 Generator Generator 14 Preheater 15 Feedwater pump

核反应堆工程 第1章(2009.3.3)(1)

核反应堆工程 第1章(2009.3.3)(1)

绪论一、课程简介及要求1课程简介本课程是核能科学与技术专业的基础课程之一。

本课程较全面地介绍与核反应堆工程相关的专业知识,内容包括核反应堆物理,反应堆热工,堆结构和反应堆结构材料,燃料循环,各种核动力系统,核反应堆安全等知识,使学员在短时间内对核反应堆工程有一个较全面的了解。

为从事与核反应堆工程有关的工作打下知识基础。

绪论大学物理、核物理、传热学、热力学,流体力学等方面有一定的基础。

成绩:平时作业记录, ~20%作业要求: 依据充分,思路清晰,过程完备,书写工整; 按时,每周交上周作业。

期末测验: ~80%。

2 课程要求及考核办法3 课程特点:多学科知识基础;内容涵盖面广;涉及反应堆物理,核反应堆热工,反应堆材料,燃料循环,核反应堆安全。

内容多,知识面广。

4 教学方式:讲课+自学绪论5 教科书及参考书:教材:核反应堆工程,阎昌琪编,哈尔滨工程大学出版社等,2004,8。

面向核工程专业研究生,内容适合本科非核工程专业学生。

参考书:Nuclear Reactor Engineering ,S.Glasstone & A.sesonske ,Third edition ,1986.有中译本。

内容丰富,面广,96万字。

核反应堆工程原理,凌备备、杨延洲主编,原子能出版社原子能工业,连培生,原子能出版社,2002,5。

内容丰富,86万字绪论目录1第一章核裂变能2第二章核反应堆物理基本知识3 第三章反应堆结构与材料(非燃料材料) 4 第四章反应堆燃料系统5 反应堆热量导出6 反应堆安全7 各种核动力反应堆系统第一章核裂变能1.1 核能基础1.2 核裂变1.3 核裂变反应堆1.4 反应堆的发展史1.5 我国的核反应堆工程发展成就引言在1939年发现了核裂变现象这一件具有划时代意义的事件。

这一事件为一种全新的能源—原子能—的利用开辟了前景。

核能的发展与和平利用是20世纪科技史上最杰出的成就之一。

核能的利用中,核电的发展相当迅速,核电已被公认为是一种经济、安全、可靠、清洁的能源。

核反应堆

核反应堆

核反应堆物理分析第一章核反应堆的核物理基础1、反应堆:能够实现可控、自续链式核反应的装置。

2、反应堆物理:研究反应堆内中子行为的科学。

有时称neutronics。

或:研究、设计反应堆使得裂变反应所产生的中子与俘获反应及泄露所损失的中子相平衡。

3、在反应堆物理中,除非对于能量非常低的中子,都将中子视为粒子,不考虑其波动性及中子的不稳定性。

4、反应堆内,按中子与原子核的相互作用方式可分为三大类:势散射、直接相互作用和复合核的形成;按中子与原子核的相互作用可分为两大类:散射和吸收。

5、σ :微观截面表示平均一个入射中子与一个靶核发生相互作用的几率大小的一种量度,6、宏观截面:表征一个中子与单位体积内所有原子核发生核反应的平均概率;表征一个中子在介质中穿行单位距离与核发生反应的概率。

单位:1/m7、平均自由程λ: 中子在介质中运动时,与原子核连续两次相互作用之间穿行的平均距离。

或:平均每飞行λ距离发生一次碰撞。

λ= 1/8、核反应率:单位时间、单位体积内的中子与介质原子核发生作用的总次数(统计平均值)。

9、中子通量密度:表示1立方米内所有的中子在1秒钟内穿行距离的总和。

10、中子能谱分布:在核反应堆内,中子并不具有同一速度v或能量E,中子数关于能量E的分布称为中子能谱分布。

11、平均截面(等效截面):12、截面随中子能量的变化:一、微观吸收截面:①低能区(E<1eV)::中、重核在低能区有共振吸收现象②高能区(1eV<E<keV):重核:随着中子能量的增加,共振峰间距变小,共振峰开始重叠,以致不再能够分辨。

因此随E的变化,虽有一定起伏,但变得缓慢平滑了,而且数值甚小,一般只有几个靶。

轻核:一般要兆电子伏范围内才出现共振现象,且其共振峰宽而低。

二、微观散射截面:弹性散射截面σe :多数元素与较低能量中子的散射都是弹性的。

基本上为常数,截面值一般为几靶。

轻核、中等核:近似为常数;重核:在共振能区将出现共振弹性散射。

《核反应堆物理分析》名词解释及重要概念整理

《核反应堆物理分析》名词解释及重要概念整理

E E r 第一章—核反响堆的核物理根底直接相互作用:入射中子直接与靶核内的某个核子碰撞,使其从核里放射出来,而中子却留在了靶核内的核反响。

中子的散射:散射是使中于慢化(即使中子的动能减小)的主要核反响过程。

非弹性散射:中子首先被靶核吸取而形成处于激发态的复合核,然后靶核通过放出中子并放射 γ 射线而返回基态。

弹性散射:分为共振弹性散射和势散射。

微观截面:一个中子和一个靶核发生反响的几率。

宏观截面:一个中子和单位体积靶核发生反响的几率。

平均自由程:中子在介质中运动时,与原子核连续两次相互作用之间穿行的平均距离叫作平均自由程。

核反响率:每秒每单位体积内的中子与介质原子核发生作用的总次数(统计平均值)。

中子通量密度:某点处中子密度与相应的中子速度的乘积,表示单位体积内全部中子在单位时间内穿行距离的总和。

多普勒效应:由于靶核的热运动随温度的增加而增加,所以这时共振峰的宽度将随着温度的上升而增加,同时峰值也渐渐减小,这种现象称为多普勒效应或多普勒展宽。

瞬发中子和缓发中子:裂变中,99%以上的中子是在裂变的瞬间(约 10-14s)放射出来的,把这些中子叫瞬发中子;裂变中子中,还有小于1%的中子是在裂变碎片衰变过程中放射出来的,把这些中子叫缓发中子。

其次章—中子慢化和慢化能谱慢化时间:裂变中子能量由裂变能慢化到热能所需要的平均时间。

集中时间:无限介质内热中子在自产生至被俘获以前所经过的平均时间。

平均寿命:在反响堆动力学计算中往往需要用到快中子自裂变产生到慢化成为热中子,直至最终被俘获的平均时间,称为中子的平均寿命。

慢化密度:在 r 处每秒每单位体积内慢化到能量E 以下的中子数。

分界能或缝合能:通常把某个分界能量 以下的中子称为热中子, 称为分界能或缝合能。

c c第三章—中子集中理论中子角密度:在 r 处单位体积内和能量为 E 的单位能量间隔内,运动方向为 的单位立体角内的中子数目。

慢化长度:中子从慢化成为热中子处到被吸取为止在介质中运动所穿行的直线距离。

核反应堆类型简介

核反应堆类型简介

核反应堆类型简介核反应堆类型简介核反应堆(Nuclear Reactor),又称原子反应堆或反应堆,是装配了核燃料以实现大规模可控制裂变链式反应的装置,是一种启动、控制并维持核裂变或核聚变链式反应的装置。

在反应堆之中,核变的速率可以得到精确的控制,其能量能够以较慢的速度向外释放,供人们利用。

核反应堆,是一种启动、控制并维持核裂变或核聚变链式反应的装置。

相对于核武爆炸瞬间所发生的失控链式反应,在反应堆之中,核变的速率可以得到精确的控制,其能量能够以较慢的速度向外释放,供人们利用。

核反应堆分类有:按时间分可以分为四代:第一代核电站是早期的原型堆电站,即1950年至1960年前期开发的轻水堆核电站,如美国的希平港压水堆、德累斯顿沸水堆以及英国的镁诺克斯石墨气冷堆等。

第二代核电站是1960年后期到1990年前期在第一代核电站基础上开发建设的大型商用核电站,如、加拿大坎度堆、苏联的压水堆等。

目前世界上的大多数核电站都属于第二代核电站。

第三代是指先进的轻水堆核电站,即1990年后期到2010年开始运行的核电站。

第三代核电站采用标准化、最佳化设计和安全性更高的非能动安全系统,如先进的沸水堆、系统80+、AP600、欧洲压水堆等。

第四代是待开发的核电站,其目标是到2030年达到实用化的程度,主要特征是经济性高(与天燃气火力发电站相当)、安全性好、废物产生量小,并能防止核扩散。

按用途分:动力核反应堆;研究核反应堆;生产核反应堆(快滋生反应器)。

按反应堆慢化剂和冷却剂分:轻水堆(压水反应堆、沸水反应堆):轻水型反应堆使用相对分子质量为18的轻水作为慢化剂和冷却剂;重水堆:重水堆可按结构分为压力容器式和压力管式两类。

两者都使用重水做慢化剂,但前者只能用重水做冷却剂,后者却可用重水、轻水、气体等物质做冷却剂;石墨气冷堆;石墨液冷堆。

按反应堆中中子的速度分:热中子堆;快中子堆。

核反应堆有许多用途,最重要的用途是产生热能,用以代替其他燃料,产生蒸汽发电或驱动航空母舰等设施运转。

核反应堆的主要类型

核反应堆的主要类型

目前,在以发电为目的的核能动力领域,世界上应用比较普遍或具有良好发展前景的,主要有压水堆(PWR)、沸水堆(BWR)、重水堆(PHWR)、高温气冷堆(HTGR)和快中子堆(LMFBR)五种堆型。

一、压水堆压水堆(PWR)最初是美国为核潜艇设计的一种热中子堆堆型。

四十多年来,这种堆型得到了很大的发展,经过一系列的重大改进,.己经成为技术上最成熟的一种堆型。

压水堆核电站采用以稍加浓铀作核然料,燃料芯块中铀-235的富集度约3%。

核燃料是高温烧结的圆柱形二氧化铀陶瓷燃料芯块。

柱状燃料芯块被封装在细长的铬合金包壳管中构成燃料元件,这些燃料元件以矩形点阵排列为燃料组件,组件横断面边长约20cm,长约3m。

几百个组件拼装成压水堆的堆芯。

堆芯宏观上为圆柱形。

压水堆的冷却剂是轻水。

轻水不仅价格便宜,而且具有优良的热传输性能。

所以在压水堆中,轻水不仅作为中子的慢化剂.同时也用作冷却剂。

轻水有一个明显的缺点,就是沸点低。

要使热力系统有较高的热能转换效率,根据热力学原理.核反应堆应有高的堆芯出口温度参数:要获得高的温度参数,就必须增加冷却剂的系统压力使其处于液相状态。

所以压水堆是一种使冷却剂处于高压状态的轻水堆。

压水堆冷却剂入口水温一般在290℃左右,出口水温330℃左右,堆内压力15.5MPa大亚湾核电站就是一座压水堆核电站。

高温水从压力容器上部离开反应堆堆芯以后,进入蒸汽发生器,如图1-7所示。

压水堆堆芯和蒸汽发生器总体上像一台大锅炉,核反应堆堆芯内的燃料元件相当于加热炉,而蒸汽发生器相当于生产蒸汽的锅,通过冷却剂回路将锅与炉连接在一起。

冷却剂从蒸汽发生器的管内流过后,经过冷却剂回路循环泵又回到反应堆堆芯。

包括压力容器、蒸汽发生器、主泵、稳压器及有关阀门的整个系统,是冷却剂回路的压力边界。

它们都被安置在安全壳内,称之为核岛。

蒸汽发生器内有很多传热管,冷却剂回路和二回路通过蒸汽发生器传递热量。

传热管外为二回路的水,冷却剂回路的水流过蒸汽发生器传热管内时,将携带的热量传输给二回路内流动的水,从而使二回路的水变成280℃左右的、6-7MPa的高温蒸汽。

核反应堆工程 第1章(2009.3.3)(1)

核反应堆工程 第1章(2009.3.3)(1)

绪论一、课程简介及要求1课程简介本课程是核能科学与技术专业的基础课程之一。

本课程较全面地介绍与核反应堆工程相关的专业知识,内容包括核反应堆物理,反应堆热工,堆结构和反应堆结构材料,燃料循环,各种核动力系统,核反应堆安全等知识,使学员在短时间内对核反应堆工程有一个较全面的了解。

为从事与核反应堆工程有关的工作打下知识基础。

绪论大学物理、核物理、传热学、热力学,流体力学等方面有一定的基础。

成绩:平时作业记录, ~20%作业要求: 依据充分,思路清晰,过程完备,书写工整; 按时,每周交上周作业。

期末测验: ~80%。

2 课程要求及考核办法3 课程特点:多学科知识基础;内容涵盖面广;涉及反应堆物理,核反应堆热工,反应堆材料,燃料循环,核反应堆安全。

内容多,知识面广。

4 教学方式:讲课+自学绪论5 教科书及参考书:教材:核反应堆工程,阎昌琪编,哈尔滨工程大学出版社等,2004,8。

面向核工程专业研究生,内容适合本科非核工程专业学生。

参考书:Nuclear Reactor Engineering ,S.Glasstone & A.sesonske ,Third edition ,1986.有中译本。

内容丰富,面广,96万字。

核反应堆工程原理,凌备备、杨延洲主编,原子能出版社原子能工业,连培生,原子能出版社,2002,5。

内容丰富,86万字绪论目录1第一章核裂变能2第二章核反应堆物理基本知识3 第三章反应堆结构与材料(非燃料材料) 4 第四章反应堆燃料系统5 反应堆热量导出6 反应堆安全7 各种核动力反应堆系统第一章核裂变能1.1 核能基础1.2 核裂变1.3 核裂变反应堆1.4 反应堆的发展史1.5 我国的核反应堆工程发展成就引言在1939年发现了核裂变现象这一件具有划时代意义的事件。

这一事件为一种全新的能源—原子能—的利用开辟了前景。

核能的发展与和平利用是20世纪科技史上最杰出的成就之一。

核能的利用中,核电的发展相当迅速,核电已被公认为是一种经济、安全、可靠、清洁的能源。

核反应堆的主要类型

核反应堆的主要类型

目前,在以发电为目的的核能动力领域,世界上应用比较普遍或具有良好发展前景的,主要有压水堆(PWR)、沸水堆(BWR)、重水堆(PHWR)、高温气冷堆(HTGR)和快中子堆(LMFBR)五种堆型。

一、压水堆压水堆(PWR)最初是美国为核潜艇设计的一种热中子堆堆型。

四十多年来,这种堆型得到了很大的发展,经过一系列的重大改进,.己经成为技术上最成熟的一种堆型。

压水堆核电站采用以稍加浓铀作核然料,燃料芯块中铀-235的富集度约3%。

核燃料是高温烧结的圆柱形二氧化铀陶瓷燃料芯块。

柱状燃料芯块被封装在细长的铬合金包壳管中构成燃料元件,这些燃料元件以矩形点阵排列为燃料组件,组件横断面边长约20cm,长约3m。

几百个组件拼装成压水堆的堆芯。

堆芯宏观上为圆柱形。

压水堆的冷却剂是轻水。

轻水不仅价格便宜,而且具有优良的热传输性能。

所以在压水堆中,轻水不仅作为中子的慢化剂.同时也用作冷却剂。

轻水有一个明显的缺点,就是沸点低。

要使热力系统有较高的热能转换效率,根据热力学原理.核反应堆应有高的堆芯出口温度参数:要获得高的温度参数,就必须增加冷却剂的系统压力使其处于液相状态。

所以压水堆是一种使冷却剂处于高压状态的轻水堆。

压水堆冷却剂入口水温一般在290℃左右,出口水温330℃左右,堆内压力15.5MPa大亚湾核电站就是一座压水堆核电站。

高温水从压力容器上部离开反应堆堆芯以后,进入蒸汽发生器,如图1-7所示。

压水堆堆芯和蒸汽发生器总体上像一台大锅炉,核反应堆堆芯内的燃料元件相当于加热炉,而蒸汽发生器相当于生产蒸汽的锅,通过冷却剂回路将锅与炉连接在一起。

冷却剂从蒸汽发生器的管内流过后,经过冷却剂回路循环泵又回到反应堆堆芯。

包括压力容器、蒸汽发生器、主泵、稳压器及有关阀门的整个系统,是冷却剂回路的压力边界。

它们都被安置在安全壳内,称之为核岛。

蒸汽发生器内有很多传热管,冷却剂回路和二回路通过蒸汽发生器传递热量。

传热管外为二回路的水,冷却剂回路的水流过蒸汽发生器传热管内时,将携带的热量传输给二回路内流动的水,从而使二回路的水变成280℃左右的、6-7MPa的高温蒸汽。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中子与原子核的相互作用
✓ 中子的能量不同,它与原子核相互作用的 概率、方式也就不同。在反应堆物理分析中, 通常按中子能量大小将它们分成三类: 快中子 E>0.1 MeV 中能中子 1 eV<E<0.1 MeV 热中子 E<1
eV
中子与原子核的相互作用
❖中子与原子核相互作用机理 根据中子与靶 核相互作用结果的不同,
核技术应用与辐射防护
1954年问世的世界第一座试验性核电站(莫斯科附近)
核技术应用与辐射防护
20世纪60年代初到70年代初是核电发展的黄金时期。 1979年美国宾州三哩岛事故和1986年前苏联切尔诺贝利核电 站事故使得人们更加冷静地对待核能,世界各国更加重视核 电的安全,在核电安全上投入了大量的资金,使核电的安全 性得到了进一步保证,促进核能利用事业进一步向前发展。
核技术应用与辐射防护
图 秦山核电站外景
秦山30万千瓦核电站,自1991年12月15日并网发电以来, 已安全运行十多年,累计发电200多亿度。
核技术应用与辐射防护
秦山2期的一些资料
核技术应用与辐射防护
反应堆发展历史
Current First Reactors reactors
Advanced Reactor
良19性73循,环19:79改年进两技次术石,油降危低机成本及大规模出口 这➢M➢11要o99一d美法78求e96l国国时4年年更1:、4期;苏3压日安美第➢➢月沸水本基加联全二国水堆美、拿英本切堆的M韩世-大国国苏形(o国:尔第,d界三Be:天联成法l诺W三国2M然哩应国1引了R贝2o铀代际):、d岛运导目e重利原Ml核积事4水而核前o型1核电d2极堆故天e、生电世l电核站然3跟S雪1。y电发界2铀事s,进,t站上e石展核m故M第墨加8o电0致d气三等e霜的l冷命标代31堆格准4一核核,核局击电能M电站o站系del统412、
法国建成59座发电用原子能反应堆,原子能发电量占其 整个发电量的78%;日本建成54座,原子能发电量占其整个 发电量的25%;美国建成104座,原子能发电量占其整个发电 量的20%;俄罗斯建成29座,原子能发电量占其整个发电量 的15% 。
核技术应用与辐射防护
核反应堆发展历史
• 实验示范阶段(1946-1965)-------第一代核能系统 • 高速发展阶段(1966-1980)-------第二代核能系统 • 滞缓发展阶段(1980-2000)-------第三代核能系统
Generation4
?
本章主要知识点
❖掌握反应堆的基本工作原理 ❖了解反应堆的分类 ❖了解核电厂基本工作原理
核物理基础
❖中子与原子核的相互作用 ❖中子截面 ❖核裂变过程 ❖链式裂变反应
中子与原子核的相互作用
❖中子
✓ 中子是组成原子核的核子之一,它的静止质量稍 大于质子的静止质量。 ✓ 中子不带电荷,因此在靠近原子核时不受核内正 电的斥力。
Gen IV REACTORS
1960
1980
2000
2020
2040
2060
2080
Generationation2
USSR-1 (50-60 built)
Operating PWR (PWR,BWR, CANDU,WWER)
Generation3
AP1000, EPR
图\ 世界上第一座核反应堆
核技术应用与辐射防护
1951年12月,美国利用它的“增殖一号”快堆产生的高 温蒸汽,带动发电机发出200 kW的电,从此核能的应用掀开 了新的篇章。
1954年,前苏联建成了世界第一座核电站。英国和美国 分别于1956年(克得霍尔,Calder Hall )和1959年(宾州 船运港,Shipping-port )建成原子能发电站。
我国于1991年建成第一座原子能发电站(秦山),包括 这一座在内,现在投入运行的有9座发电用原子能反应堆,总 容量为660万千瓦,占国家发电总量的比重很小,不仅远低于 欧美发达国家的水平,而且与东亚相邻国家、地区相比,也 存在相当大的差距。1995年日本和韩国的原子能发电占总发 电量的比重分别是30%和36.2%,台湾地区是31%,而我国大陆 只有1.29%。
中子与原子核的相互作用
✓ 中子在原子核外存在时是不稳定的,其回通过β衰变 转变成质子,半衰期为10.3 min。在热中子反应堆 中,瞬发中子寿命约为10-3~10-4s,因此可以不考 虑中子的不稳定性问题。
✓ 中子与其它粒子一样具有波粒二重性。它的波长随 能量的降低而变长。在反应堆物理分析中,将中子 当作粒子来描述。
第一章 核反应堆类型
主要内容
1
概述
2
压水堆PWR
3
沸水堆BWR
4
重水堆
5
气冷堆
6
钠冷快中子堆
7 舰船用核动力反应堆
8 特殊用途的小型核反应堆
9 第三代反应堆和第四代反应堆
核能应用的历程、现状 1941年12月到1942 年12 月,费米领导一批物理学家
在芝加哥大学斯塔克运动场的西看台下,成功地建造了世 界上第一座核反应堆,发出了200W的电,解决了受控自持 链式反应的众多技术问题,这标志着原子能时代的到来。
1979年3月28日,美国宾州哈里斯堡东南16公里处三哩岛核 电厂2号反应堆发生放射性物质外泄事故,导致电厂周围80公里 范围内生态环境受到污染。这是人类发展核电以来第一次引起世 人瞩目的核电厂事故,对社会生活、舆论和世界核能利用的发展 都曾带来重大影响。
核技术应用与辐射防护
美国宾州三哩岛核电站
据世界银行统计,到2004年9月28日,在世界上31个国 家和地区,有439座发电用原子能反应堆在运行,总容量为 364.6百万千瓦,约占世界发电总容量的16% 。
将中子与原子核的作用分为两大类:
(1)散射 包括弹性散射和非弹性散射。
(2)吸收 包括辐射俘获、核裂变、(n,α)和(n, p)反应等。
中子与原子核的相互作用
✓ 中子的散射 散射时入射粒子是中子,与靶核作用后放出 的粒
子仍然是中子。散射是在热中子反应堆中使 中子 慢化的主要核反应过程。
(1) 非弹性散射 具有阈能的特点。 在现代碰撞理 论中是分子碰撞时能发生指定 态-态反应所需的最低能量值(th) (2) 弹性散射 所有能量范围中子都可能发生。
相关文档
最新文档