信号源与频谱仪基础
频谱分析仪基础知识-性能指标及实用技巧

频谱分析仪基础知识性能指标及实用技巧频谱分析仪是用来显示频域信号幅度的仪器,在射频领域有“射频万用表”的美称。
在射频领域,传统的万用表已经不能有效测量信号的幅度,示波器测量频率很高的信号也比较困难,而这正是频谱分析仪的强项。
本讲从频谱分析仪的种类与应用入手,介绍频谱分析仪的基本性能指标、操作要点和使用方法,供初级工程师入门学习;同时深入总结频谱分析仪的实用技巧,对频谱分析仪的常见问题以Q/A的形式进行归纳,帮助高级射频的工程师和爱好者进一步提高。
频谱分析仪的种类与应用频谱分析仪主要用于显示频域输入信号的频谱特性,依据信号处理方式的差异分为即时频谱分析仪和扫描调谐频谱分析仪两种。
完成频谱分析有扫频式和FFT两种方式:FFT适合于窄分析带宽,快速测量场合;扫频方式适合于宽频带分析场合。
即时频谱分析仪可在同一时间显示频域的信号振幅,其工作原理是针对不同的频率信号设置相对应的滤波器与检知器,并经由同步多工扫瞄器将信号输出至萤幕,优点在于能够显示周期性杂散波的瞬时反应,但缺点是价格昂贵,且频宽范围、滤波器的数目与最大多工交换时间都将对其性能表现造成限制。
扫瞄调谐频谱分析仪是最常用的频谱分析仪类型,它的基本结构与超外差式接收器类似,主要工作原理是输入信号透过衰减器直接加入混波器中,可调变的本地振荡器经由与CRT萤幕同步的扫瞄产生器产生随时间作线性变化的振荡频率,再将混波器与输入信号混波降频后的中频信号放大后、滤波与检波传送至CRT萤幕,因此CRT萤幕的纵轴将显示信号振幅与频率的相对关系。
基于快速傅立叶转换(FFT)的频谱分析仪透过傅立叶运算将被测信号分解成分立的频率分量,进而达到与传统频谱分析仪同样的结果。
新型的频谱分析仪采用数位方式,直接由类比/数位转换器(ADC)对输入信号取样,再经傅立叶运算处理后而得到频谱分布图。
频谱分析仪透过频域对信号进行分析,广泛应用于监测电磁环境、无线电频谱监测、电子产品电磁兼容测量、无线电发射机发射特性、信号源输出信号品质、反无线窃听器等领域,是从事电子产品研发、生产、检验的常用工具,特别针对无线通讯信号的测量更是必要工具。
频谱仪基本使用方法

频谱仪基本使用方法
频谱仪是一种用于分析信号频谱的仪器,它可以帮助我们了解信号的频率成分和强度分布。
下面是频谱仪的基本使用方法:
1. 连接设备:将被测信号源通过信号线连接到频谱仪的输入端口。
确保连接正确并稳定。
2. 设置参数:打开频谱仪电源并调整显示屏的亮度和对比度。
根据需要,设置频谱仪的中心频率、带宽、参考电平、分辨率带宽等参数。
3. 调整参考电平:参考电平用于设定频谱仪的基准电平,可让功率值正确地显示在频谱图上。
可以使用手动或自动模式调整参考电平。
4. 选择观测模式:频谱仪一般有实时、扫描和跟踪等观测模式。
根据实际需要选择相应模式,并设置相应的参数。
5. 开始观测:开始进行观测前,确保频谱仪正在正常工作并已预热。
按下“Start”按钮或选择触发模式开始信号捕获和分析。
6. 分析信号:观测期间,可以调整参考电平、显示分辨率等参数以获取更清晰的频谱图。
可以使用光标功能来测量信号的频率、功率等参数。
7. 记录数据:观测结果可以通过截屏、保存数据或导出文件的方式记录下来,方便后续分析和比较。
8. 停止观测:观测完成后,按下“Stop”按钮停止信号捕获。
关闭频谱仪电源,断开与被测信号源的连接。
需要注意的是,具体频谱仪的使用方法可能会因品牌和型号的不同而略有差异,请在使用前仔细阅读设备的说明书或寻求专业人员的指导。
史上最好的频谱分析仪基础知识(收藏必备)

频谱分析是观察和测量信号幅度和信号失真的一种快速方法,其显示结果可以直观反映出输入信号的傅立叶变换的幅度。
信号频域分析的测量范围极其宽广,超过140dB,这使得频谱分析仪成为适合现代通信和微波领域的多用途仪器。
频谱分析实质上是考察给定信号源,天线,或信号分配系统的幅度与频率的关系,这种分析能给出有关信号的重要信息,如稳定度,失真,幅度以及调制的类型和质量。
利用这些信息,可以进行电路或系统的调试,以提高效率或验证在所需要的信息发射和不需要的信号发射方面是否符合不断涌现的各种规章条例。
现代频谱分析仪已经得到许多综合利用,从研究开发到生产制造,到现场维护。
新型频谱分析仪已经改名叫信号分析仪,已经成为具有重要价值的实验室仪器,能够快速观察大的频谱宽度,然后迅速移近放大来观察信号细节已受到工程师的高度重视。
在制造领域,测量速度结合通过计算机来存取数据的能力,可以快速,精确和重复地完成一些极其复杂的测量。
有两种技术方法可完成信号频域测量(统称为频谱分析)。
1.FFT分析仪用数值计算的方法处理一定时间周期的信号,可提供频率;幅度和相位信息。
这种仪器同样能分析周期和非周期信号。
FFT 的特点是速度快;精度高,但其分析频率带宽受ADC采样速率限制,适合分析窄带宽信号。
2.扫频式频谱分析仪可分析稳定和周期变化信号,可提供信号幅度和频率信息,适合于宽频带快速扫描测试。
v1.0 可编辑可修改图1 信号的频域分析技术快速傅立叶变换频谱分析仪快速傅立叶变换可用来确定时域信号的频谱。
信号必须在时域中被数字化,然后执行FFT算法来求出频谱。
一般FFT分析仪的结构是:输入信号首先通过一个可变衰减器,以提供不同的测量范围,然后信号经过低通滤波器,除去处于仪器频率范围之外的不希望的高频分量,再对波形进行取样即模拟到数字转换,转换为数字形式后,用微处理器(或其他数字电路如FPGA,DSP)接收取样波形,利用FFT计算波形的频谱,并将结果记录和显示在屏幕上。
频谱仪基本使用方法

频谱仪基本使用方法频谱仪是一种用于测量信号频谱的仪器。
它可以将信号的时域波形转换为频域图像,显示信号在不同频率上的能量分布情况。
频谱仪广泛应用于电子通信、音频处理、无线电频谱监测等领域。
下面将介绍频谱仪的基本使用方法。
1.连接设备将频谱仪与待测试的设备连接。
通常,频谱仪的输入端口使用BNC接口,需要使用合适的电缆将待测试设备的信号输入到频谱仪。
2.打开频谱仪并调整参数打开频谱仪的电源,等待其启动。
启动后,可以看到频谱仪的屏幕上显示了一片空白画面。
在进行测试之前,需要调整一些基本参数:-设置频谱范围:频谱范围表示频谱仪能够显示的频率范围。
根据需要,可以选择较小的范围以查看较细微的细节,或选择较大的范围以覆盖更广泛的频率范围。
-设置中心频率:中心频率表示频谱仪显示的中心频率。
可以根据需要设置中心频率。
-设置带宽:带宽表示频谱仪显示的频率范围的宽度。
较宽的带宽能够显示更广泛的频率范围,但会丧失分辨率。
-设置参考电平:参考电平表示频谱仪显示的参考响应电平。
可以根据需要设置参考电平,以确保显示的信号在合理的范围内。
3.观察频谱图像当参数设置完成后,可以开始观察频谱图像了。
频谱图像通常以柱状图的形式显示,横轴表示频率,纵轴表示信号的能量。
-可以观察到信号的频率分布情况,以及不同频率上的能量情况。
-可以通过调整带宽和参考电平来获得更好的观察效果。
-可以根据不同的需要选择不同的显示方式,如线性、对数等。
4.测量信号参数频谱仪除了可以显示信号的频谱图像外,还可以通过对信号进行一些测量,来获取更详细的信号参数:-峰值测量:可以通过设置峰值测量功能,自动检测并显示信号的最大峰值。
-带宽测量:可以通过设置带宽测量功能,自动测量信号的带宽。
-占空比测量:可以通过设置占空比测量功能,测量信号的占空比。
-谐波测量:可以通过设置谐波测量功能,测量信号的谐波含量。
5.导出数据频谱仪通常具备数据导出的功能,可以将测量得到的数据保存到计算机或其他设备中,以备后续分析和处理。
频谱仪原理及使用方法

频谱仪原理及使用方法频谱仪是一种用来分析信号频谱的仪器,它能够将信号的频谱分解为不同频率成分的幅度或相位信息,从而提供了对信号频谱特性的详细了解。
频谱仪广泛应用于无线通信、音频处理、雷达系统、天文观测等领域。
一、频谱仪原理:频谱分析基于信号的傅里叶分析原理,将时域中的信号转换为频域中的频谱信息。
频谱仪的工作原理主要包括三个步骤:采样、转换和显示。
1.采样:频谱仪通过将信号进行采样,将连续的时域信号转化为离散的时序数据。
采样定理要求采样率必须大于信号的最大频率,以确保不会发生混叠现象。
2.转换:采样的信号需要通过电子转换器进行模拟到数字的转换。
最常见的转换方式是快速傅里叶变换(FFT),它可以将时域信号转换为频域信号。
3.显示:转换后的频域数据通过显示单元在频谱仪的屏幕上进行显示。
频谱仪通常可以显示频谱的幅度信息或相对相位信息,用户可以根据实际需要选择不同的显示模式。
二、频谱仪使用方法:1.连接设备:首先将待分析的信号源与频谱仪相连,可以通过电缆连接、无线连接等方式进行。
2.设置参数:根据需要设置频谱仪的采样率、带宽、分辨率等参数。
采样率和带宽的选择需根据信号的特点进行调整,以保证能够正确捕获信号的频谱信息。
3.观测目标:确定待测信号的特点和需求,如频率范围、幅度范围等。
根据实际需求选择适当的显示模式和触发模式,并调整触发电平、触发延时等参数。
4.分析信号:开始对信号进行分析,根据实际需要选择合适的时间窗口、分辨率、峰值保持等参数,以获取准确的频谱信息。
5.解读结果:根据频谱仪显示的频谱图,观察信号的频率分布和幅度特征。
可以通过缩放、平移、峰值等功能,对结果进行详细的分析和解读。
6.数据处理:对采集到的频谱数据进行处理,可以进行谱线拟合、峰值提取、频偏校正等操作,得到更准确的频谱信息。
7.存储和输出:频谱仪通常具有数据存储和输出功能,可以将频谱数据保存到存储器中,并通过接口将数据输出到计算机或其他设备进行后续处理或记录。
频谱仪基本使用方法

频谱仪基本使用方法频谱仪是一种用于测量信号频谱的仪器,广泛应用于无线通信、音频、视频、雷达等领域。
本文将介绍频谱仪的基本使用方法,包括设置测量参数、观察信号频谱、分析信号特征等。
一、设置测量参数1.首先,插入电源线并打开频谱仪的开关。
2.设置中心频率:通过旋转频谱仪上的中心频率控制按钮,可以设置要观察的信号所在的中心频率。
3.设置带宽:使用带宽控制按钮可以设置频谱仪的测量带宽。
带宽越大,可以显示的频率范围越广。
4.设置扫描时间:通过扫描时间设置按钮可以设置频谱仪的扫描时间。
较长的扫描时间可以更好地显示信号的频谱特征。
5.设置参考电平:参考电平是用来调整频谱仪的显示范围的。
通过参考电平控制按钮可以调整信号的显示幅度。
二、观察信号频谱1.连接输入信号:将要测量的信号源与频谱仪的输入端口连接。
2.使频谱仪进入扫描模式:按下开始扫描按钮使频谱仪进入扫描模式,开始对输入信号进行测量。
3.观察频谱显示:在频谱仪的显示屏上,可以看到输入信号的频谱特征图。
频谱图一般以频率为横坐标,幅度为纵坐标显示。
4.调整显示参数:可以根据需要调整频谱仪的显示参数,如中心频率、带宽、参考电平等,以便更好地展示信号的频谱特征。
三、分析信号特征1.寻找信号峰值:在频谱显示图上,可以通过观察峰值点来查找信号的频率分布情况。
峰值一般表示信号的主要频率分量。
2.计算信号带宽:可以通过测量频谱图上信号的半功率带宽来计算信号的带宽。
半功率带宽是指信号功率下降到峰值功率的一半时的频率范围。
3.分析信号幅度:通过观察信号在频谱图上的幅度,可以了解信号的强弱情况。
信号幅度一般在频谱图上以颜色深浅表示,颜色越深表示信号越强。
4.检测杂散和谐波:利用频谱仪可以监测杂散和谐波的频率和幅度,以便进行相关的干扰分析和调整。
四、其他常用功能1.记录和保存数据:一些频谱仪具有数据记录和保存功能,可以将测量的频谱数据保存到内存或外部存储设备中,方便后续分析和比较。
频谱仪 操作 方法

频谱仪操作方法
一、目的
本操作方法旨在指导用户正确使用频谱仪,确保测量结果的准确性和仪器的安全。
二、操作步骤
1. 开机与自检
打开频谱仪的电源,仪器进行自检,确保正常工作。
2. 连接信号源
将信号源通过适当的线缆连接到频谱仪的输入端口。
确保连接稳固,避免信号损失。
3. 设置参数
根据测量需求,设置频谱仪的参数,如频率范围、分辨率带宽、视频带宽等。
4. 校准仪器
在进行测量之前,对仪器进行校准,确保测量结果的准确性。
5. 开始测量
按下频谱仪的开始按钮,仪器开始进行测量。
观察屏幕上的信号波形,确保信号正常。
6. 保存与记录结果
将测量结果保存到本地计算机或记录本上,便于后续分析。
7. 关机与清理
完成测量后,断开信号源与频谱仪的连接,关闭频谱仪电源。
清理测试场地,确保整洁。
三、注意事项
1. 使用前应仔细阅读仪器说明书,了解仪器的基本操作和注意事项。
2. 避免在强电磁场环境下使用频谱仪,以免影响测量结果。
3. 定期对仪器进行维护和保养,确保其正常工作。
4. 如遇问题,及时联系专业人员处理,避免造成不必要的损失。
频谱分析仪培训资料

2023-11-10contents •频谱分析仪基础知识•频谱分析仪操作方法•频谱分析仪高级应用•频谱分析仪维护与保养•常见问题及解决方案•实际应用案例分享目录频谱分析仪基础知识频谱分析仪简介频谱分析仪是一种用于测量信号频率、幅度和相位等参数的电子测试仪器。
它能够将输入信号按照频率进行分解,并测量每个频率分量的幅度和相位等信息。
频谱分析仪广泛应用于雷达、通信、电子对抗、电子侦察等领域。
频谱分析仪的工作原理将输入信号通过混频器与本振信号进行混频,得到一系列中频信号,再经过中放和检波等处理后得到频域数据。
通过FFT技术对中频信号进行处理,得到频域数据,从而得到输入信号的频率、幅度和相位等信息。
频谱分析仪通常采用快速傅里叶变换(FFT)技术对输入信号进行频谱分析。
频谱分析仪的种类和用途频谱分析仪按照工作原理可以分为实时频谱分析仪和扫频式频谱分析仪等。
实时频谱分析仪可以实时监测信号的变化,适用于雷达、通信等领域的信号监测和分析。
扫频式频谱分析仪可以对一定范围内的频率进行扫描测量,适用于电子对抗、电子侦察等领域。
频谱分析仪操作方法连接设备030201启动频谱分析仪调整设置选择测量模式根据测试需求,设置合适的扫描范围、分辨率带宽等参数。
设置扫描参数设置显示参数观察实时数据在显示器上观察实时测量数据,记录需要的数据。
开始测量按下测量按钮,开始进行信号测量。
分析数据根据测量结果,进行分析和计算,得出结论。
记录和分析数据频谱分析仪高级应用频率范围分辨率带宽设置频率范围和分辨率带宽信号质量信号稳定性观察信号的质量和稳定性频率分析对信号进行频率分析,包括频率成分、谐波分量、调制频率等参数的测量和分析。
模式识别通过对信号的特征提取和模式识别,对信号进行分类和鉴别,对于未知信号,可以通过模式识别技术进行信号源的判断和识别。
进行频率分析和模式识别频谱分析仪维护与保养清洁和保养内部部件检查和更换部件检查射频系统检查机械部件检查光学系统03避免极端温度存储和运输注意事项01存储环境02运输防护常见问题及解决方案如何解决无法启动的问题?电源故障检查电源插头是否牢固连接在电源插座上,确保电源线不损坏。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
优点: 小波形因子 => 更高的灵敏度 快速扫描 更高的带宽精度 测量可以得到更高的电平精度 • 用于噪声或类噪声信号 没有温度或老化漂移 •
中频滤波器: FFT 滤波器
深圳易新翔科技
中频滤波器(RBW)特性
深圳易新翔科技
不同分辨带宽的滤波器对测试结 果的影响
深圳易新翔科技
BPSK、2PSK
Q = 180° 0 1 0 = 0° I
TBit
t
- fBit fC fBit + fBit
深圳易新翔科技
QPSK
"10"
Q
"00"
1
0
0
1
1
1
0
0
I 1 0 1 0
I (t) "11" "01"
0
1
1
0
Q (t)
10 01 11 00
- 1 fBit 2
fC 1f 2 Bit
C
ÛC
U
fC
t
f
时域
频域
深圳易新翔科技
相位域
调制基本概念
–模拟调制 (AM, FM, PhM, Pulse) –数字调制 (ASK,FSK,PSK,QAM,OFDM)
V= A(t) cos[2f(t) + (t)]
AM, Pulse ASK
FM FSK
PhM PSK
深圳易新翔科技
模拟通信系统 vs 数字通信系统
Baseband In-phase component 基带同相分量 •CQ(t)= a(t) ·sinφ(t) Baseband Quadrature component 基带正交分量 •cos2·π·f·t or sin2·π·f·t 高频振荡 •三角公式: cos(x+y)=cosx ·cosy - sinx ·siny -sin2·π·f·t=cos(2·π·f·t + π/2)
常见的基带滤波器
H(f) 1 S1(t)
h(t)
H(f)
S2(t) = S1(t)卷积 h(t)
BN H(f) 1 0.5
f
Ideal Lowpass BN = ½ fBit
TBit TBit
t
. . . ½ fBit
f
cos2 Roll off r = 0.5
H(f) 1 0.7 0.5
TBit TBit
• • • • • • 接收机的固有噪声 系统非线性 1dB压缩点 动态范围 频率测量精度 幅度测量精度
深圳易新翔科技
本振信号相位噪声
深圳易新翔科技
频谱分析仪的固有噪声
LDANL DANL10 Hz 10dB (10 lg
LDANL DANL10Hz RBWNoise RFAtt -2.5 dB
深圳易新翔科技
I/Q 是什么?-- I/Q调制过程
•已调载波 s(t): •s(t)=a(t)·cos[2·π·f·t+φ(t)] = a(t) ·cosφ(t) ·cos2·π·f·t - a(t) ·sinφ(t) ·sin2·π·f·t •其中: •CI(t)= a(t) ·cosφ(t) In-phase component of s(t) 已调载波s(t)的同相分量 Quadrature component of s(t) 已调载波s(t)的正交分量
深圳易新翔科技
调幅AM
UMod(t) = UC(t) . cos(C(t).t + C(t))
AM 时域 频域
深圳易新翔科技
调频FM与调相PhM
UMod(t) = UC(t) . cos(C(t).t + C(t))
FM 时域 M 频域
t
f
深圳易新翔科技
ASK幅移键控
UMOD (t) = ÛC (t) cos [C t + C(t) ] ASK
RBWNoise )dB RFATT 2.5dB Hz
平均显示噪声电平 指标平均噪声电平 (R&S 数据表: RBW=10 Hz, RFATT = 0 dB) RBW滤波器的等效噪声带宽 RF 衰减器 修正因子 (对数定标的平均)
不同的滤波器6 dB带宽和等效噪声带宽与 3 dB带宽的关系
滤波器类型 6 dB 带宽 等效噪声带宽 4-极点滤波器 5-极点滤波器 (模拟) (模拟) 1.480 * B3dB 1.464 * B3dB 1.129 * B3dB 1.114 * B3dB
任意波形发生器
深圳易新翔科技
任意波形发生器
深圳易新翔科技
任意波形发生器
深圳易新翔科技
ENF860xA射频信号发生器的结构框图
深圳易新翔科技
射频矢量信号发生器
深圳易新翔科技
软件界面
深圳易新翔科技
EVM:矢量幅度误差
Q
幅度误 差 误差矢 量 实际测试信 号 理想基准信 号 相位误 差
I
深圳易新翔科技
IF
I
12 bit A D 32 MHz
LO 90° I mixer IF LO
filter coefficients Lowpass filter
I 2 + Q2
IF envelope voltage
Q
filter coefficients NCO
•
特点: 真正的高斯形状 波形因子4.6 最小扫描时间 k = 1 通过补偿可以达 到
频谱仪和信号源基础与测量
深圳易新翔科技有限公司
深圳易新翔科技
信号源图片
深圳易新翔科技
信号源的原理和结构
• 信号源的结构框图
Scalar(M ) Scalar(N ) R efer. C O PD L oopFilter V C O A L CD river O utput A ttenuator
深圳易新翔科技
理想高斯滤波器 (数字) 1.415 * B3dB 1.065 * B3dB
显示的本底噪声电平依赖于RF衰 减器
深圳易新翔科技
显示的本底噪声电平依赖于与 RBW带宽
深圳易新翔科技
1dB 压缩点
深圳易新翔科技
三阶截止点IP3
• 三阶互调的大小通常用三阶交截点(IP3)来表示,它是 三阶互调功率达到和基波功率相等时所对应的点。
FrequencyS ynthesisP art
S ignal O utput P art
深圳易新翔科技
PLL:锁相环
fref 1 f0
N1
PD
LPF
VCO
1
N2
稳定时鉴相器两个输入端频率相同 f0/N2=fref/N1 f0=fref*N2/N1
深圳易新翔科技
PLL:锁相环实例
深圳易新翔科技
Gaussian B TBit = 0.3 B 3dB bandwidth
t
. . 0.3 ½ fBit
. . . . . .
f
TBit =
1 fBit
TBit TBit
t
深圳易新翔科技
频谱分析仪原理
深圳易新翔科技
信号分析及频谱分析概述
信 号
时域 示波器
信号的波形信息 幅度 周期 频率
频域 频谱分析仪
检波器
本地振荡器 x
y
显示 锯齿波发生器
深圳易新翔科技
检波器
“对数检波器” 最大 峰值 线性/对数查找表: 有效值、平均值检波器 线性 最小 峰值 采样 对数 微 处理器 显示
视 频 信 号
有效值
检波器的选择
水平轴 500个 像素点
平均值
平均值检波器
有效值检波器
UAV
“线性检波器”
1 N ui N i1
相位噪声
• 在偏离载波固定位置处fn,单位带宽1Hz内的噪声功率Pn与信号总功 率Ps的比值。 • 反映单载波信号的频谱纯度的重要指标。 • 单位为dBc/Hz@ fn offset,如-135dBc/Hz@10kHz,c指Carrier
深圳易新翔科技
输出部分
深圳易新翔科技
调制与解调
深圳易新翔科技
信号的频率分布信息 频率、功率 谐、杂波 噪声、干扰 失真
深圳易新翔科技
调制域 矢量分析仪
信号的矢量信息 幅度误差 矢量误差 相位误差
理想单载波信号在时域和频域的 测量结果
深圳易新翔科技
频域测量对信号分析的作用
深圳易新翔科技
周期信号的频谱
深圳易新翔科技
时域测试与频域测试
深圳易新翔科技
傅立叶分析仪(FFT分析仪)
分辨相邻的信号
红色踪迹: RBW=30 kHz
红色踪迹: RBW=30 kHz
蓝色踪迹: RBW= 3 kHz
蓝色踪迹: RBW= 3 kHz
深圳易新翔)
包络检波器 混频器 中频滤波器 视频滤波器
输入
中频放大器
对数放大器
视频滤波器 (平滑)
A A
RAM RAM
DD
FFT FFT
滤波
存储
显示
深圳易新翔科技
调谐式扫描分析仪
深圳易新翔科技
超外差式扫描调谐分析仪
RF IF
Input
Lo
深圳易新翔科技
频谱分析仪的工作原理
低通 滤波器 a (t) H f 衰减器 混频器 IF 中频 放大器 中频滤波器 RBW 对数 放大器
RF
检波器 f LO 视频滤波器 VBW 压控 振荡器 锯齿波 发生器 显示 参考振荡器 延迟
深圳易新翔科技
衰减器
RF