糖的合成代谢
生物化学 糖代谢

6 ATP
第三阶段:三羧酸循环
2*异柠檬酸→2*α -酮戊二酸 2*α -酮戊二酸 →2*琥珀酰CoA
辅酶
NAD+ NAD+ FAD
ATP
2*3 2*3
2*琥珀酰CoA →2*琥珀酸
2*琥珀酸→2*延胡索酸
2*1
2*2
2*苹果酸→2*草酰乙酸
NAD+
2*3
24ATP
总ATP数: 第一阶段——6或8 第二阶段——6 第三阶段——24 36 或 38ATP
活性受NADP+/NADPH比值的调节,NADPH能强烈
抑制6-磷酸葡萄糖脱氢酶。磷酸戊糖途径的流
量取决于机体对NADPH的需求。
• 概念:有氧,葡萄糖(糖原) → CO2 + H2O • 反应部位:细胞液、线粒体 cytoplasm mitochondria
+ ATP
有氧氧化的概况
有氧氧化的反应过程
• 第一阶段:葡萄糖→ →丙酮酸(胞液) • 第二阶段:丙酮酸→ →乙酰CoA (线粒体) • 第三阶段:乙酰CoA → →CO2 + H2O + ATP (三羧酸循环)(线粒体)
植物和某些藻类能够利用太阳能,将二氧化碳和水合成
糖类化合物,即光合作用。光合作用将太阳能转变成化 学能(主要是糖类化合物),是自然界规模最大的一种 能量转换过程。
一、多糖和低聚糖的酶促降解
1.概述 多糖和低聚糖只有分解成小分子后才 能被吸收利用,生产中常称为糖化。 2. 淀粉
3.淀粉水解 淀粉 糊精
7.无氧发酵 (Fermentation)
⑴乙醇发酵
COOH C CH3
CO2
糖的合成代谢

糖的合成代谢糖的合成代谢是生物体内繁重且至关重要的生物化学过程之一。
在有氧条件下,合成代谢主要涉及两个方面的过程:糖异生和糖原合成。
这两个过程基本上体现了糖的生物合成和降解的动态平衡。
糖异生是指机体从非糖高碳化合物中,在无氧或低氧情况下产生糖的过程。
在这个过程中,生物体通过解释质、谷氨酸、丙酮酸等物质,生成新的葡萄糖,以供进行能量代谢。
糖异生过程涉及的酶和复杂的调节机制,为机体提供了在紧急情况下保持能量平衡的手段。
糖原合成是通过糖原的合成酶将多个葡萄糖分子的简单单元沟成一个大分子的过程。
这个过程主要发生在肝脏和骨骼肌中,以便在高强度的长时间运动或长时间饥饿的情况下提供充足的营养支持。
糖的代谢主要存在于肝脏、骨骼肌和脂肪组织中。
在肝脏中有一个中枢机构,称为肝酸酯化酶,它能够协调糖异生和糖原合成的过程。
在糖异生过程中,肝酸酯化酶将解释质转化为聚糖,并导致糖原的合成。
而当需要糖分进行能量代谢时,肝酸酯化酶会在葡萄糖水平下降时释放糖原。
当血糖水平过低时,胰岛素的释放也会减慢,从而促进肝脏释放糖原并协助糖异生。
而在血糖过高的情况下,胰岛素将促进肝脏中糖原的合成和葡萄糖的上传。
糖的合成代谢对生物体的能量平衡至关重要。
当机体还有足够的营养储备时,合成代谢将持续进行,并促进能量储存。
而当机体处于饥饿状态时,糖异生和糖原合成的过程将被激活,以获得额外的能量支持。
总结来说,糖的合成代谢是生物体通过从非糖高碳化合物中合成糖或将多个葡萄糖分子的简单单元合成为一个大分子的生物化学过程。
这个过程涉及复杂的酶和调节机制,对于生物体的能量平衡至关重要。
第十一章 糖类代谢--王镜岩《生物化学》第三版笔记(完美打印版)

反应放能,在生理条件下不可逆(K大于300)。由己糖激酶或葡萄糖激酶催化,需要Mg2+或Mn2+。己糖激酶可作用于D-葡萄糖、果糖和甘露糖,是糖酵解过程中的第一个调节酶,受6-磷酸葡萄糖的别构抑制。有三种同工酶。葡萄糖激酶存在于肝脏中,只作用于葡萄糖,不受6-磷酸葡萄糖的别构抑制肌肉的己糖激酶Km=0.1mM,肝脏的葡萄糖激酶Km=10mM,平时细胞中的葡萄糖浓度时5mM,只有进后葡萄糖激酶才活跃,合成糖原,降低血糖浓度,葡萄糖激酶是诱导酶,胰岛素可诱导它的合成。6-磷酸葡萄糖也可由糖原合成,由糖原磷酸化酶催化,生成1-磷酸葡萄糖,在磷酸葡萄糖变位酶的催化下生成6-磷酸葡萄糖。此途径少消耗1个ATP。6-磷酸葡萄糖由葡萄糖6-磷酸酶催化水解,此酶存在于肝脏和肾脏中,肌肉中没有。
三、能量变化
C6H12O6+2Pi+2ADP+2NAD+=2C3H4O3+2ATP+2NADH+2H++2H2O
有氧时2个NADH经呼吸链可产生6个ATP,共产生8个ATP;无氧时生成乳酸,只有2个ATP。在骨骼肌和脑组织中,NADH进入线粒体要经过甘油磷酸穿梭系统,在细胞质中由3-磷酸甘油脱氢酶催化,将磷酸二羟丙酮还原生成3-磷酸甘油,进入线粒体后再氧化生成磷酸二羟丙酮,返回细胞质。因为其辅酶是FAD,所以生成FADH2,只产生2个ATP。这样其还原当量(2H++2e)被带入线粒体,生成FADH2,进入呼吸链,结果共生成6个ATP。
二、糖的消化和吸收
(一)消化
淀粉是动物的主要糖类来源,直链淀粉由300-400个葡萄糖构成,支链淀粉由上千个葡萄糖构成,每24-30个残基中有一个分支。糖类只有消化成单糖以后才能被吸收。
糖的生物合成与代谢途径

糖的生物合成与代谢途径糖是生命中不可或缺的重要物质,它是生物体的主要能量来源之一,也是构成生物体的重要组成部分。
糖的生物合成与代谢是一系列复杂而精细的过程,它们通过一定的途径在细胞内进行。
在本文中,我们将探讨糖的生物合成与代谢的主要途径和相关机制。
第一节糖的生物合成糖的生物合成是细胞利用光能或化学能将无机物合成糖类化合物的过程。
主要的合成途径有光合作用和糖异生两种形式。
光合作用是指细胞通过叶绿体内的光化学反应,将二氧化碳和水转化为葡萄糖等有机物的过程。
在光照条件下,叶绿体中的叶绿素可以吸收太阳能,光合色素体可将太阳能转化为化学能,进而促使光合作用的进行。
光合作用分为光反应和暗反应两个阶段。
光反应发生在光合体系中,通过光合色素体捕捉光能,产生氧化还原电位,将光能转化为高能物质膜内的质子激励。
暗反应指的是光合作用中的还原和碳固定反应,主要在叶绿体基质内进行。
通过一系列酶的作用,将光反应所得的ATP和NADPH利用碳源还原为葡萄糖或其他有机物。
糖异生是指细胞在无光照条件下,通过有机物合成糖的过程。
糖异生主要发生在细胞质基质内,包括糖异生途径的两个重要过程:糖酵解和有机酸循环。
糖酵解是指将葡萄糖分解为丁醛酸,再将丁醛酸氧化为甲酸,最终合成糖的过程。
有机酸循环是指细胞质基质内的一系列反应,将葡萄糖分解为丙酮酸、柠檬酸等有机酸,最终通过一系列酶的作用合成糖。
第二节糖的代谢途径糖的代谢指的是细胞对糖化合物进行分解和利用的过程。
糖的代谢途径包括糖酵解、糖异生和糖氧化三个主要途径。
糖酵解是指细胞内部一系列酶的作用,将葡萄糖分解为丙酮酸或乙酸,产生ATP和还原能力分子NADH的过程。
糖酵解包括糖原糖酵解和异物糖酵解两种形式。
糖原糖酵解是指细胞内糖原被酵解,通过一系列的反应将糖原分解为葡萄糖,再进一步分解为丙酮酸,转化为乙酸最终释放能量。
异物糖酵解是指细胞利用外源性的碳水化合物,如蔗糖、木糖等进行糖酵解的过程。
糖异生是指细胞利用非糖类有机物合成糖的过程。
糖的合成与代谢

糖的合成与代谢糖是一种重要的碳水化合物,在生物体内扮演着多种角色。
糖的合成与代谢过程是维持生物体正常功能的关键部分。
本文将围绕糖的合成与代谢展开讨论。
一、糖的合成糖的合成主要通过光合作用进行。
在光合作用中,光能被转化为化学能,用于合成葡萄糖等有机物质。
光合作用发生在光合细胞中的叶绿体内,其中最重要的反应是光合系统I和光合系统II的光反应和暗反应。
光合作用的光反应阶段发生在叶绿体的基质内膜上,通过光能将水分解为氧气、电子和质子。
电子随后被传递给光合色素,并在其中形成高能化合物。
这些高能化合物经过一系列的反应,最终使ADP和磷酸根结合生成ATP,这是光合作用产生的化学能。
同时,质子也积累在基质内膜上,形成质子梯度。
光合作用的暗反应阶段是在基质内膜上进行的。
此阶段中,ATP和NADPH被利用来合成糖类物质。
暗反应主要是通过卡尔文循环进行的,其中CO2被固定为糖酮磷酸。
随后,糖酮磷酸经过一系列反应,最终合成葡萄糖。
二、糖的代谢糖的代谢主要包括糖酵解和细胞呼吸两个过程。
1. 糖酵解糖酵解是在无氧环境下进行的代谢过程,产生乳酸或乙醇和二氧化碳。
糖酵解可以分为三个阶段:糖的准备阶段、糖的裂解阶段和乙酸的产生阶段。
糖的准备阶段是将葡萄糖转化为两个分子的三碳糖类物质。
糖的裂解阶段是将三碳糖类物质分解为两个分子的丙酮酸。
乙酸的产生阶段是将两个分子的丙酮酸经过一系列反应,最终转化为乙酸。
2. 细胞呼吸细胞呼吸是在有氧条件下进行的代谢过程,将葡萄糖完全氧化为CO2和H2O,同时产生大量ATP。
细胞呼吸包括三个阶段:糖的燃烧、三羧酸循环和电子运输链。
糖的燃烧阶段是将葡萄糖和氧气进行直接反应,生成CO2、H2O和ATP。
三羧酸循环是将糖类物质逐步分解为二氧化碳,并释放能量。
电子运输链是将通过糖的裂解和三羧酸循环生成的高能电子转移到氧气上,生成水和额外的ATP。
细胞呼吸是产生ATP和维持有氧呼吸的重要过程,是生物体内能量供应的主要途径。
生物化学第八章糖代谢

§2 糖的分解代谢
主要有以下途径: (一)糖的无氧酵解 (二)糖的有氧氧化 (三)乙醛酸循环 (四)戊糖磷酸途径
途径具体过程
提示
反应实质 个酶作用 进程变化 学习途径时要重点注意噢!
温馨提示
加油!!!
• 酵解过程要学好
• 首条途径很重要 • 总结经验找规律 • 后边学习基础牢
• 举一反三相比较 • 触类旁通有参照 • 事半功倍学的巧 • 一路轻松兴趣高
甘油酸-3-磷酸
磷酸甘油8反酸应变图位酶
甘油酸-2-磷酸
9、2-磷酸甘油酸脱水烯醇化
甘油酸-2-磷酸
烯醇化9反酶应图
磷酸烯醇式丙酮酸
9、2-磷酸甘油酸的脱水生成磷酸烯醇式丙 酮酸
烯醇化酶(enolase) 这一步反应也可看作分子内氧化还原反应,分子 内能量重新分布,又一次产生了高能磷酯键。
反应可以被氟离子抑制,取代天然情况下酶分 子上镁离子的位置,使酶失活。
细胞核
内质网 溶酶体
细胞膜
动物细胞
植物细胞
细胞壁 叶绿体
有色体 白色体 液体 晶体
葡萄糖的主要代谢途径
糖异生
葡萄糖
6-磷酸葡萄糖 (有氧或无氧)
(无氧) 丙酮酸
糖酵解
(有氧)
乳酸 乙醇
乙酰 CoA
磷酸戊糖 途径
三羧酸 循环
第八章:糖代谢
§1 多糖和底聚糖的酶促降解 §2 糖的分解代谢 §3 糖的合成代谢
⑹氧化脱氢,产生 NADH+H+ (磷酸化,使用无机磷酸)
甘油醛-3-磷酸
无机磷酸
甘油醛-3-磷酸 脱氢酶
1,3-二磷酸甘油酸
产生 的 NADH+H+ 的氢,条件不同, H的去向不同,走进的途径不同。
动物生物化学 第六章 糖的代谢

2. 糖原的 合成
(UDP-葡萄 糖焦磷酸化 酶、糖原合 成酶、糖原 分支酶)
糖原合成酶催化的反应
糖原的合成与分解总反应示意图
3. 糖原代谢的调节
• 葡萄糖分解代谢总反应式 • C6H6O6 + 6 H2O + 10 NAD+ + 2 FAD + 4 ADP +
4Pi 6 CO2 + 10 NADH + 10 H+ + 2 FADH2 + 4 ATP • 按照一个NADH能够产生3个ATP,1个FADH2能够产 生2个ATP计算,1分子葡萄糖在分解代谢过程中共产 生38个ATP: • 4 ATP +(10 3)ATP + (2 2)ATP = 38 ATP
Байду номын сангаас
CH2OH CO
HO C H
CHO
H C OH + H C OH
H C OH H C OH
CH2O P
转醛酶
CH2O P
7-磷酸景天庚酮糖 3-磷酸甘油醛
CHO
H C OH +
H C OH CH2O P
4-磷酸赤藓糖
CH2OH CO HO C H HO C H H C OH CH2O P
6-磷酸果糖
H
O
H
OH H HO
H OH
H2O
H C OH
HO C H
O 内酯酶
H C OH
H C OH
G-6-P
6-磷酸葡萄 糖酸内酯
CH2O P 6-磷酸葡萄糖酸
COOH H C OH
NADP+
+ NADPH + H
糖的合成代谢

固氮酶的厌氧微环境:固氮酶的两个蛋白组分对氧是 极端敏感的,而且一旦接触氧就很快导致不可逆失活。 大多数的固氮菌都是好氧菌,它们需要利用氧气进行 呼吸和产生能量。 固氮菌发展出多种机制来解决其既需要氧又须防止氧对 固氮酶损伤的矛盾:呼吸保护、构象保护、蓝细菌异形胞、 豆血红蛋白、不同时间进行固氮作用与光合作用,等。
乙醇酸、草酸、甘氨酸
乳酸 谷氨酸、天冬氨酸 亮氨酸
甘油酸途径
氧化 脱氨基 降解
甘油醛-3-磷酸
丙酮酸 α-酮戊二酸、草酰乙酸 丙酮酸
3. 多糖的合成
微生物中的多糖可分为同型多糖和杂多糖。同型多糖是由相 同单糖分子聚合而成,如糖原、纤维素、甲壳素等。杂多糖 是由不同单糖分子聚合而成,如肽聚糖、脂多糖等。 微生物多糖合成的特点: ①不需要模板,而是由转移酶的特异性来决定亚单位在多聚 链上的次序。 ②合成的开始阶段需要引物,引物通常由小片断多糖充当。 ③多糖合成时,由糖核苷酸作为糖基载体,将单糖分子转移 到受体分子上,使多糖链逐步加长。
2)厌氧乙酰-辅酶A途径
自养微生物的CO2还原途径:1分子CO2被还原成甲醇水平,另一分 子CO2被还原成CO,二者合成产生乙酰-CoA,经丙酮酸合成酶催化由 乙酰-CoA接受第3个CO2分子生成丙酮酸,用于合成各种有机物。
3)还原性TCA循环途径
CO2通过琥珀酰-CoA的还原性羧化生成-酮戊二酸而被固定
(2)化能自养型微生物的生物氧化和产能
化能自养型微生物中,其ATP是通过氧化还原态无机物 产生的,其NAD(P)H2是通过消耗ATP将无机氢(H++e)逆 呼吸链传递产生的。
化能自养型微生物均为细菌,且绝大多数为好氧菌 能量代谢特点: 脱氢酶或氧化还原酶催化无机底物脱氢或脱电子; 无机底物脱下的氢直接进入呼吸链,通过氧化磷酸化产能; (少数菌在无机硫化物存在时,能部分通过底物磷酸化产能) 氢或电子可从多处进入呼吸链,所以,呼吸链多样; 由于从中间进入呼吸链,因此产能效率低,菌体生长缓慢,细 胞产率低。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Glucose 6-phosphatase converts glucose 6-P to glucose in the ER lumen of liver and kidney cells.
() TCA
环
糖 异 生
的 中 间 体
4
可
参
与
-CoA
乙偶 物酰数 中碳 不脂 能的肪 异氨酸 生基及 为酸代 糖 在谢
由非糖前体合成葡萄糖的过程称为糖 异生。糖异生发生于所有动物、植物、 真菌和微生物,过程相似。
2. 糖异生作用(Gluconeogenesis)
糖异生作用的生理意义:
维持血糖平衡
满足组织和细胞对 糖的需求
•哺乳动物糖异生主要发生于肝脏
(1) 糖异生与酵解
• 糖异生过程总体上是酵解过程的逆转反应; • 由于酵解与异生都发生在胞质,两者有相互
AMP ADP F2,6BP
FDP G6P
ATP Citrate Ala Acetyl-CoA
ADP
PEP
GDP C2O GTP
Oxaloacetate
ATP
ADP
Pyruvate
ATP
相同的位点, 独立的调节
Acetyl-CoA
(6)糖的分解与异生的协调 F-2,6dip对酵解和异生的调节
(7)“无效循环”-Futile
光反应 (photo reaction) In plants:
2NADP+ + 2ADP + 2pi + 2H2O→ 2NADPH•H+ + 2ATP+O2 In photobacteria:
NADP+ + ADP + pi + H2A→ NADPH•H+ + ATP + [A]
light
chlorophyl
Cycle
生物组织内由两个不同的酶催化两个相反 的代谢途径,反应的一方需要高能化合物如 ATP参与,而另一方则自动进行,这样循环 的结果只是ATP被水解了,而其他反应物并 无变化,这种循环被称为“无效循环” (Futile cycle)。
Chapter 3 Metabolism of Carbohydrate
第四节 糖的合成代谢
Biosynthesis of carbohydrates
1. 光合作用(photosynthesis)
光反应 (photo reaction) 光合作用分成两个部分
暗反应 (dark reaction)
基质 类囊体
由 简 单 前 体 合 成 糖
(3)从丙酮酸开始的糖异生作用
糖异生不能通过酵解的逆反应实现,需胞质 和线粒体酶的相互协作完成。
①
②
两
种
方
式
丙酮酸羧化支路
PEP
Pyruvate
acetyl-CoA
CO2 GDP
CO2 + ATP ADP + Pi
GTP
oxaloacetate
NADH+H+
NAD+
动为
()
5 生 糖 氨 基 酸 的 糖 异 生
命丙 是运酮 相:酸 互异的 调生两 节和个 的酵不
解同
G6P PEP
葡萄糖
ATP
Pi
Acetyl- CoA ADP
H2O
AMP
G6P
ADP
F2,6BP
ATP Citrate NADH
F1,6P
G6P
ATP Citrate 3-P-Glycerate
ቤተ መጻሕፍቲ ባይዱO2 2H+ + 2e
Actived chlorophyl H2O
NADP
+
ADP
ATP
(CH2O)
NADPH•H+ CO2
三碳循环 — Calvin循环
CO2固定的方式:
四碳循环 — Hatch-Stack 途径
①
逆HMP途径
The initial CO2 fixation is catalyzed by ribulose 1,5bisphosphate carboxylase/oxygenase
• The enzyme is present on the lumen side of the ER membrane of hepatocytes (肝细胞) and renal (肾的) cells.
• The enzyme is not present in muscle or brain cells, where gluconeogenesis does not occur.
①
逆HMP途径
四碳循环 — Hatch-Stack 途径
2. 糖异生作用(Gluconeogenesis)
由非糖物质合成葡萄糖对于哺乳动物 绝对必需,因脑、神经系统、红细胞、 睾丸、肾上腺髓质、胚胎组织等首选血 液中的葡萄糖作为他们唯一的或主要的 燃料分子。人脑每天需要超过120g 的葡 萄糖。
malate
Citrate
Conversion of fructose 1,6-bisphosphate to fructose 6-phosphate is the second bypassing step
• The reaction is catalyzed by Mg 2+ dependent fructose 1,6-bisphosphatase (instead of phosphofructokiase-1).
丙酮酸激酶
3. PEP + ADP —— Pyruvate + ATP
糖酵解与糖异生中的不同酶
(2)糖异生的前体物质
• 凡可生成丙酮酸以及TCA循环中间产物的物 质,均可作为糖异生的前体:
– 大多氨基酸; – 肌肉剧烈运动产生的大量乳酸; – 反刍动物分解纤维素产生的乙酸、丙酸、丁酸等 – 奇数脂肪酸分解产生的琥珀酰CoA等。
协作的调节;
• 酵解过程的三步不可逆反应,因此在糖异生 中必需有不同的酶催化反应逾越三步不可逆 反应。
∴糖异生的中心点就是使能转变为丙酮酸的物 质如何沿着逆酵解途径回到Glc的问题,即如 何解决酵解途径中的三步不可逆反应。
酵解的三步不可逆反应
1. Glucose + ATP —己糖—激酶 G-6-P + ADP 2. F-6-P + ATP —磷酸—果糖—激酶 F-1,6-diP + ADP
The conversion of glucose 6-phosphate to glucose is the last bypassing step
• The reaction is catalyzed by glucose 6phosphatase (instead of hexokiase).