PID-比例积分微分控制方法:原理浅释及相关资料搜集

合集下载

简述pid控制算法原理

简述pid控制算法原理

简述pid控制算法原理PID控制算法原理PID控制算法是一种常用的控制算法,用于实现对于某个系统的精确控制。

PID算法的全称是“比例-积分-微分”算法,它是通过不断地对系统的误差进行计算和调整,来实现对系统控制的目标的。

比例控制比例控制是PID控制算法的第一个步骤。

它通过计算系统当前的误差,来确定需要进行的调整。

比例控制的计算方式是将当前的误差乘以一个比例系数,然后将结果作为控制信号输出给系统。

比例控制的主要作用是对于系统的误差做出快速的反应和调整,但是它无法解决系统的稳定性问题。

积分控制积分控制是PID控制算法的第二个步骤。

它通过对于系统误差的积分来确定需要进行的调整。

积分控制的计算方式是将误差的积分值乘以一个积分系数,然后将结果作为控制信号输出给系统。

积分控制的主要作用是对于系统的稳态误差做出调整,以实现系统的稳定性。

微分控制微分控制是PID控制算法的第三个步骤。

它通过对于系统误差的微分来确定需要进行的调整。

微分控制的计算方式是将误差的微分值乘以一个微分系数,然后将结果作为控制信号输出给系统。

微分控制的主要作用是对于系统的瞬态误差做出调整,以实现系统的快速响应和稳定性。

PID控制将比例控制、积分控制和微分控制三个步骤合并在一起,就形成了PID控制算法。

PID控制算法通过不断地对于系统误差的计算和调整,来实现对于系统的精确控制。

同时,PID控制算法也可以通过对于比例系数、积分系数和微分系数的调整,来实现对于系统控制的精准度和响应速度的优化。

总结PID控制算法是一种常用的控制算法,它可以通过对于系统误差的计算和调整,来实现对于系统的精确控制。

PID控制算法包括比例控制、积分控制和微分控制三个步骤,同时也可以通过对于比例系数、积分系数和微分系数的调整,来实现对于系统控制的精准度和响应速度的优化。

PID控制原理及参数设定

PID控制原理及参数设定

PID控制原理及参数设定PID控制是一种常用的自动控制算法,它通过反馈控制的方式,根据控制对象的输出与期望目标的差异来调整输入信号,实现对控制对象的稳定控制。

PID控制由比例(P)、积分(I)和微分(D)三部分组成,分别对应了不同的控制机制。

P(比例)控制是指控制信号与误差的线性比例关系,P控制主要用于快速响应系统,能够快速减小误差,但不能完全消除误差。

P控制的公式为:u(t)=Kp*e(t),其中u(t)表示控制信号,Kp为比例增益,e(t)为误差。

通过调节比例增益Kp的大小,可以控制系统的响应速度。

I(积分)控制是指控制信号与误差的累积关系,I控制主要用于消除系统的稳态误差。

I控制的公式为:u(t) = Ki * ∫e(t)dt,其中Ki为积分增益。

通过调节积分增益Ki的大小,可以控制系统的稳态误差。

D(微分)控制是指控制信号与误差的变化率关系,D控制主要用于抑制系统的超调和震荡。

D控制的公式为:u(t) = Kd * de(t)/dt,其中Kd为微分增益,de(t)/dt为误差的变化率。

通过调节微分增益Kd的大小,可以控制系统的稳定性和响应速度。

根据PID控制的原理,控制信号可以表示为:u(t) = Kp * e(t) +Ki * ∫e(t)dt + Kd * de(t)/dt。

其中,e(t)为误差,t为时间。

在实际应用中,PID控制器还需要设置参数,包括比例增益Kp、积分增益Ki和微分增益Kd。

如何设置这些参数是设计一个有效的PID控制器的关键。

参数设定方法有很多种,常用的方法包括经验法、试验法和自整定法等。

经验法是一种基于经验规则的参数设定方法,它根据控制对象的特性和应用经验来选取参数。

经验法比较简单易用,但通常需要根据实际情况进行适当的调整。

试验法是通过试验分析控制对象的动态响应来选取参数,常用的试验方法有阶跃响应法、脉冲响应法和频率响应法等。

试验法的参数设定相对准确,但需要进行一定的试验工作,并且需要对试验数据进行分析。

pid算法的原理和算法

pid算法的原理和算法

pid算法的原理和算法【最新版】目录1.PID 算法的概念和组成2.PID 算法的工作原理3.PID 算法的应用范围和优势4.PID 算法的参数调整方法5.PID 算法的发展和展望正文一、PID 算法的概念和组成PID 算法,即比例 - 积分 - 微分算法,是一种在自动控制领域中应用最为广泛的调节器控制规律。

它主要由比例控制、积分控制和微分控制三个部分组成,简称为 PID 控制。

PID 控制器问世至今已有近 70 年历史,以其结构简单、稳定性好、工作可靠、调整方便等优点,成为工业控制主要技术之一。

二、PID 算法的工作原理PID 算法的工作原理主要基于对被控对象的偏差(实际值与期望值之间的差值)进行控制。

比例控制根据偏差的大小调整控制量,积分控制则根据偏差的累积值调整控制量,微分控制则根据偏差的变化速度调整控制量。

这三种控制方式相互结合,可以有效地提高控制系统的稳定性和响应速度。

三、PID 算法的应用范围和优势PID 算法在工程实际中应用广泛,尤其适用于那些结构和参数不能完全掌握或无法得到精确数学模型的对象。

当控制理论的其他技术难以采用时,PID 算法可以依靠经验和现场调试来确定控制器的结构和参数。

此外,PID 算法具有结构简单、参数相互独立、选定方便等优点,可以有效地提高控制系统的性能。

四、PID 算法的参数调整方法PID 算法的参数调整方法有很多,例如试凑法、临界比例度法、扩充临界比例度法等。

这些方法都可以在一定程度上提高控制系统的性能,但需要根据具体的实际情况选择合适的方法。

五、PID 算法的发展和展望随着科学技术的不断发展,PID 算法也在不断地完善和提高。

未来的发展趋势主要包括进一步提高 PID 算法的性能,例如通过引入智能优化算法、神经网络等技术;另一方面,则是将 PID 算法应用于更广泛的领域,如机器人控制、自动驾驶等。

综上所述,PID 算法作为一种经典的自动控制算法,在工程实际中具有广泛的应用和优越的性能。

PID控制的原理和特点

PID控制的原理和特点

PID控制的原理和特点PID控制是一种广泛应用于工业自动控制系统中的控制算法,它能够根据系统的实时反馈信息和设定值进行调整,以实现系统的稳定性和精确性控制。

PID控制器由比例(P)、积分(I)和微分(D)三个控制参数组成,其原理和特点如下。

1.原理:-比例控制(P):比例控制是根据误差信号的大小,调整控制量的变化速度。

比例控制参数的增大会增加控制量的调整速度,但可能导致过冲和振荡。

-积分控制(I):积分控制通过累积误差信号,调整控制量的累积变化。

积分控制能够消除稳态误差,但会增加系统的响应时间。

-微分控制(D):微分控制通过测量误差信号的变化率,调整控制量的变化速度。

微分控制可以快速响应系统变化,并减小过冲和振荡,但对噪声信号敏感。

2.特点:-稳定性:PID控制器能够稳定系统的控制量,使其不受外界干扰和变化的影响。

通过比例、积分和微分控制的协调作用,可以使系统快速响应并抑制过冲和振荡。

-精确性:PID控制器能够实现精确的控制,使系统的实际值与设定值之间的差异最小化。

通过实时调整比例、积分和微分参数,PID控制器能够实现精确的控制效果。

-适应性:PID控制器可以适应不同的被控对象和工作环境。

通过调整比例、积分和微分参数,PID控制器能够适应不同的工艺需求和系统特性。

-简单性:PID控制器的实现较为简单,只需要调整三个控制参数。

同时,PID控制器具有较好的工程实践经验,为工程师提供了便利。

-但是,PID控制器对被控对象的具体性质和系统参数较为敏感,需要经验和调试来优化参数的选择。

对于一些具有非线性和时变特性的系统,PID控制器的效果可能不理想。

3.优化方法:为了更好地适应不同的控制需求和系统特性,人们对PID控制器进行了多种优化方法的研究。

其中一些常见的优化方法包括:自整定(Autotuning)方法、模型预测控制(MPC)方法和自适应控制方法。

-自整定方法:通过对被控对象进行特定的激励信号输入,然后根据输出信号对PID参数进行在线调整,以自动找到最佳参数配置,提高系统控制性能。

pid原理简述

pid原理简述

pid原理简述PID(比例-积分-微分)控制是一种广泛应用于工业控制系统中的基本控制算法。

它通过测量过程变量与设定值之间的偏差,并基于该偏差计算出的控制信号来驱动执行器,使得过程变量能够尽快地接近设定值并保持稳定。

本文将对PID原理进行简要介绍,包括比例控制、积分控制和微分控制的作用及其相互关系。

1. 比例控制(Proportional Control)比例控制是PID控制中最基本的部分,它直接根据偏差的大小,按比例调整控制信号。

比例控制通过将偏差乘以一个比例系数来计算输出信号,比例系数决定了输入信号对输出信号的影响程度。

相对于其他两个控制部分,比例控制可以快速响应系统变化,但在大多数情况下无法完全消除偏差。

2. 积分控制(Integral Control)积分控制用于解决比例控制无法完全消除稳态偏差的问题。

它根据偏差的积分值来调整控制信号。

积分控制对于长期稳定性非常重要,因为它可以逐渐减小系统偏差并使其接近零。

然而,积分控制存在一定的缺陷,例如可能引起系统的超调和振荡。

3. 微分控制(Derivative Control)微分控制通过检测偏差的变化率来调整控制信号。

它可以在偏差变化较大的情况下加快系统响应速度,并减小系统的超调和振荡。

然而,微分控制也存在一些问题,例如对噪声和干扰敏感,可能导致系统不稳定。

PID控制器通过将比例控制、积分控制和微分控制结合起来,可以在不同的工业应用中实现精确的控制。

PID控制的关键在于设置合适的比例系数、积分时间和微分时间,这些参数需要根据具体的控制对象和控制要求进行调整。

除了基本的PID控制,还有一些改进的PID控制算法被广泛应用,如增量式PID控制、自整定PID控制等。

这些算法通过优化PID参数的调整方法和控制策略,进一步提高了控制系统的性能和鲁棒性。

总结:PID原理是一种通过比例控制、积分控制和微分控制来实现工业控制系统的基本控制算法。

比例控制根据偏差大小按比例调整控制信号,积分控制逐渐减小系统稳态偏差,微分控制根据偏差变化率加快系统响应速度。

pid控制的基本原理及其应用

pid控制的基本原理及其应用

PID控制的基本原理及其应用1. 概述PID控制(Proportional-Integral-Derivative Control),即比例-积分-微分控制,是一种常用的闭环控制算法。

它基于系统的测量值与给定值之间的差异来调整控制量,使系统输出更接近给定值。

PID控制是工业自动化领域中最常见和最基础的控制算法之一,广泛应用于温度、压力、流量和位置等控制系统中。

2. 基本原理PID控制器的核心是三个部分,即比例控制、积分控制和微分控制。

下面分别介绍这三个部分的基本原理:2.1 比例控制比例控制器通过将系统测量值与给定值的差异进行线性放大,生成一个输出量,用于调整控制量。

其数学表达式为:P = Kp * e(t)其中,P为比例控制的输出量,Kp为比例增益系数,e(t)为系统测量值与给定值的差异。

比例控制的作用是根据差异的大小直接调整控制量,但由于没有考虑到系统过去的变化历史,可能出现超调或震荡。

2.2 积分控制积分控制器通过累积系统测量值与给定值之间的差异,并乘以一个增益系数,生成一个输出量,用于补偿系统的稳态误差。

其数学表达式为:I = Ki * ∫e(t)dt其中,I为积分控制的输出量,Ki为积分增益系数,∫e(t)dt为系统测量值与给定值的差异的积分。

积分控制的作用是消除系统的稳态误差,但过大的积分增益可能导致超调或振荡。

2.3 微分控制微分控制器通过系统测量值的变化率乘以一个增益系数,来预测系统未来的变化趋势,进而调整控制量。

其数学表达式为:D = Kd * de(t)/dt其中,D为微分控制的输出量,Kd为微分增益系数,de(t)/dt为系统测量值的变化率。

微分控制的作用是抑制系统的超调和振荡,提高系统的动态响应速度,但过大的微分增益可能导致控制量的快速变化,引入噪音。

3. 应用PID控制在实际工程中广泛应用于各种控制系统中,下面列举一些典型的应用场景:3.1 温度控制PID控制在温度控制系统中起到关键作用。

比例-积分-微分(pid)控制算法

比例-积分-微分(pid)控制算法

PID(Proportional-Integral-Derivative)控制算法是一种广泛应用于工业控制系统的
反馈控制算法。

PID控制器通过测量过程变量和设定点之间的差异(误差),通过
比例项、积分项和微分项来计算控制输出,以调整系统的行为,使其更接近设定点。

下面详细解释PID控制算法的三个部分:
1.比例项(P):
–比例项与当前误差成正比。

其作用是根据误差的大小,产生一个与误差成比例的控制输出。

–公式:P=K p×e(t)
其中,K p是比例增益,e(t)是当前的误差。

2.积分项(I):
–积分项与误差的积分成正比。

它的作用是消除系统的静态误差,特别是当系统处于稳态时仍然存在的误差。

–公式:I=K i×∫e(t) dt
其中,K i是积分增益,∫e(t) dt表示误差的积分。

3.微分项(D):
–微分项与误差的变化率成正比。

其作用是抑制系统的振荡和提高系统的稳定性。

–公式:D=K d×de(t)
dt
表示误差的导数。

其中,K d是微分增益,de(t)
dt
最终的控制输出(u(t))是这三个项的线性组合:
u(t)=P+I+D
在实际应用中,调整PID控制器的性能通常需要调整比例增益K p、积分增益K i和
微分增益K d,这需要一定的经验和实验。

综合来说,PID控制器可以通过对比实际输出和设定点,调整控制输出,使系统更
加稳定、快速地达到设定点,并且在面对不同的工业控制问题时具有广泛的适用性。

pid比例微分积分

pid比例微分积分

pid比例微分积分摘要:1.PID 控制器的概念与组成2.PID 控制器的工作原理3.PID 控制器的比例、积分、微分参数4.PID 控制器在实际应用中的优势与局限性正文:一、PID 控制器的概念与组成PID 控制器,全称为比例- 积分- 微分控制器,是一种广泛应用于工业控制系统的闭环控制算法。

它主要由比例控制器、积分控制器和微分控制器三部分组成,通过协同作用对被控对象的误差进行实时调节,以实现控制目标。

二、PID 控制器的工作原理PID 控制器的工作原理可以概括为以下三个部分:1.比例控制:当系统出现误差时,比例控制器会根据误差的大小生成一个控制信号,使得系统输出与期望输出之间的误差减小。

比例系数越大,控制系统对误差的响应越快,但可能导致系统震荡。

2.积分控制:积分控制器对系统误差进行积分处理,生成一个控制信号,以消除系统的稳态误差。

积分作用使得控制系统对长时间存在的误差有更好的响应,但过大的积分系数可能导致系统响应变慢。

3.微分控制:微分控制器通过对系统误差的变化速度进行检测,生成一个控制信号,以预测系统的变化趋势。

微分作用可以提高系统的稳定性,消除系统的超调,但过大的微分系数可能导致系统不稳定。

三、PID 控制器的比例、积分、微分参数PID 控制器的三个参数分别为比例系数(Kp)、积分时间常数(Ti)和微分时间常数(Td)。

这三个参数的选取对控制系统的性能有着重要影响。

1.比例系数(Kp):决定了控制系统对误差的响应速度,取值范围为0-1。

2.积分时间常数(Ti):决定了积分作用的强度,取值范围为0-1。

3.微分时间常数(Td):决定了微分作用的强度,取值范围为0-1。

四、PID 控制器在实际应用中的优势与局限性PID 控制器在实际应用中具有较强的鲁棒性和适应性,广泛应用于温度控制、速度控制、流量控制等领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

PID-比例积分微分控制方法:原理浅释及相关资料搜集2010-05-13 21:39:22| 分类:软件技术编程开| 标签:|字号大中小订阅PID原理和调节(转贴)目前工业自动化水平已成为衡量各行各业现代化水平的一个重要标志。

同时,控制理论的发展也经历了古典控制理论、现代控制理论和智能控制理论三个阶段。

智能控制的典型实例是模糊全自动洗衣机等。

自动控制系统可分为开环控制系统和闭环控制系统。

一个控制系统包括控制器﹑传感器、变送器、执行机构、输入输出接口。

控制器的输出经过输出接口、执行机构,加到被控系统上;控制系统的被控量,经过传感器,变送器,通过输入接口送到控制器。

不同的控制系统,其传感器、变送器、执行机构是不一样的。

比如压力控制系统要采用压力传感器。

电加热控制系统的传感器是温度传感器。

目前,PID控制及其控制器或智能PID控制器(仪表)已经很多,产品已在工程实际中得到了广泛的应用,有各种各样的PID控制器产品,各大公司均开发了具有PID参数自整定功能的智能调节器(intelligent regulator),其中PID控制器参数的自动调整是通过智能化调整或自校正、自适应算法来实现。

有利用PID控制实现的压力、温度、流量、液位控制器,能实现PI D控制功能的可编程控制器(PLC),还有可实现PID控制的PC系统等等。

可编程控制器(PLC)是利用其闭环控制模块来实现PID控制,而可编程控制器(PLC)可以直接与ControlNet相连,如Rockwell的PLC-5等。

还有可以实现PID控制功能的控制器,如Rockwell 的Logix产品系列,它可以直接与ControlNet相连,利用网络来实现其远程控制功能。

1、开环控制系统开环控制系统(open-loop control system)是指被控对象的输出(被控制量)对控制器(cont roller)的输出没有影响。

在这种控制系统中,不依赖将被控量反送回来以形成任何闭环回路。

2、闭环控制系统闭环控制系统(closed-loop control system)的特点是系统被控对象的输出(被控制量)会反送回来影响控制器的输出,形成一个或多个闭环。

闭环控制系统有正反馈和负反馈,若反馈信号与系统给定值信号相反,则称为负反馈(Negative Feedback),若极性相同,则称为正反馈,一般闭环控制系统均采用负反馈,又称负反馈控制系统。

闭环控制系统的例子很多。

比如人就是一个具有负反馈的闭环控制系统,眼睛便是传感器,充当反馈,人体系统能通过不断的修正最后作出各种正确的动作。

如果没有眼睛,就没有了反馈回路,也就成了一个开环控制系统。

另例,当一台真正的全自动洗衣机具有能连续检查衣物是否洗净,并在洗净之后能自动切断电源,它就是一个闭环控制系统。

3、阶跃响应阶跃响应是指将一个阶跃输入(step function)加到系统上时,系统的输出。

稳态误差是指系统的响应进入稳态后﹐系统的期望输出与实际输出之差。

控制系统的性能可以用稳、准、快三个字来描述。

稳是指系统的稳定性(stability),一个系统要能正常工作,首先必须是稳定的,从阶跃响应上看应该是收敛的﹔准是指控制系统的准确性、控制精度,通常用稳态误差来(Steady-state error)描述,它表示系统输出稳态值与期望值之差﹔快是指控制系统响应的快速性,通常用上升时间来定量描述。

4、PID控制的原理和特点在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。

PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。

当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。

即当我们不完全了解一个系统和被控对象﹐或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。

PID控制,实际中也有PI和PD控制。

PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。

(1)比例(P)控制比例控制是一种最简单的控制方式。

其控制器的输出与输入误差信号成比例关系。

当仅有比例控制时系统输出存在稳态误差(Steady-state error)。

(2)积分(I)控制在积分控制中,控制器的输出与输入误差信号的积分成正比关系。

对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统(System w ith Steady-state Error)。

为了消除稳态误差,在控制器中必须引入“积分项”。

积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。

这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。

因此,比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差。

(3)微分(D)控制在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。

自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。

其原因是由于存在有较大惯性组件(环节)或有滞后(delay)组件,具有抑制误差的作用,其变化总是落后于误差的变化。

解决的办法是使抑制误差的作用的变化“超前”,即在误差接近零时,抑制误差的作用就应该是零。

这就是说,在控制器中仅引入“比例”项往往是不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“微分项”,它能预测误差变化的趋势,这样,具有比例+微分的控制器,就能够提前使抑制误差的控制作用等于零,甚至为负值,从而避免了被控量的严重超调。

所以对有较大惯性或滞后的被控对象,比例+微分(PD)控制器能改善系统在调节过程中的动态特性。

5、PID控制器的参数整定PID控制器的参数整定是控制系统设计的核心内容。

它是根据被控过程的特性确定PID控制器的比例系数、积分时间和微分时间的大小。

PID控制器参数整定的方法很多,概括起来有两大类:一是理论计算整定法。

它主要是依据系统的数学模型,经过理论计算确定控制器参数。

这种方法所得到的计算数据未必可以直接用,还必须通过工程实际进行调整和修改。

二是工程整定方法,它主要依赖工程经验,直接在控制系统的试验中进行,且方法简单、易于掌握,在工程实际中被广泛采用。

PID控制器参数的工程整定方法,主要有临界比例法、反应曲线法和衰减法。

三种方法各有其特点,其共同点都是通过试验,然后按照工程经验公式对控制器参数进行整定。

但无论采用哪一种方法所得到的控制器参数,都需要在实际运行中进行最后调整与完善。

现在一般采用的是临界比例法。

利用该方法进行PID控制器参数的整定步骤如下:(1)首先预选择一个足够短的采样周期让系统工作;(2)仅加入比例控制环节,直到系统对输入的阶跃响应出现临界振荡,记下这时的比例放大系数和临界振荡周期;(3)在一定的控制度下通过公式计算得到PID控制器的参数。

==============================================================================PID控制算法2008年07月15日星期二14:05。

1,PID是一个闭环控制算法。

因此要实现PID算法,必须在硬件上具有闭环控制,就是得有反馈。

比如控制一个电机的转速,就得有一个测量转速的传感器,并将结果反馈到控制路线上,下面也将以转速控制为例。

2,PID是比例(P)、积分(I)、微分(D)控制算法。

但并不是必须同时具备这三种算法,也可以是PD,PI,甚至只有P算法控制。

我以前对于闭环控制的一个最朴素的想法就只有P控制,将当前结果反馈回来,再与目标相减,为正的话,就减速,为负的话就加速。

现在知道这只是最简单的闭环控制算法。

3,比例(P)、积分(I)、微分(D)控制算法各有作用:比例,反应系统的基本(当前)偏差e(t),系数大,可以加快调节,减小误差,但过大的比例使系统稳定性下降,甚至造成系统不稳定;积分,反应系统的累计偏差,使系统消除稳态误差,提高无差度,因为有误差,积分调节就进行,直至无误差;微分,反映系统偏差信号的变化率e(t)-e(t-1),具有预见性,能预见偏差变化的趋势,产生超前的控制作用,在偏差还没有形成之前,已被微分调节作用消除,因此可以改善系统的动态性能。

但是微分对噪声干扰有放大作用,加强微分对系统抗干扰不利。

积分和微分都不能单独起作用,必须与比例控制配合。

4,控制器的P,I,D项选择。

下面将常用的各种控制规律的控制特点简单归纳一下:1、比例控制规律P:采用P控制规律能较快地克服扰动的影响,它的作用于输出值较快,但不能很好稳定在一个理想的数值,不良的结果是虽较能有效的克服扰动的影响,但有余差出现。

它适用于控制通道滞后较小、负荷变化不大、控制要求不高、被控参数允许在一定范围内有余差的场合。

如:金彪公用工程部下设的水泵房冷、热水池水位控制;油泵房中间油罐油位控制等。

2、比例积分控制规律(PI):在工程中比例积分控制规律是应用最广泛的一种控制规律。

积分能在比例的基础上消除余差,它适用于控制通道滞后较小、负荷变化不大、被控参数不允许有余差的场合。

如:在主线窑头重油换向室中F1401到F1419号枪的重油流量控制系统;油泵房供油管流量控制系统;退火窑各区温度调节系统等。

3、比例微分控制规律(PD):微分具有超前作用,对于具有容量滞后的控制通道,引入微分参与控制,在微分项设置得当的情况下,对于提高系统的动态性能指标,有着显著效果。

因此,对于控制通道的时间常数或容量滞后较大的场合,为了提高系统的稳定性,减小动态偏差等可选用比例微分控制规律。

如:加热型温度控制、成分控制。

需要说明一点,对于那些纯滞后较大的区域里,微分项是无能为力,而在测量信号有噪声或周期性振动的系统,则也不宜采用微分控制。

如:大窑玻璃液位的控制。

4、例积分微分控制规律(PID):PID控制规律是一种较理想的控制规律,它在比例的基础上引入积分,可以消除余差,再加入微分作用,又能提高系统的稳定性。

它适用于控制通道时间常数或容量滞后较大、控制要求较高的场合。

如温度控制、成分控制等。

鉴于D规律的作用,我们还必须了解时间滞后的概念,时间滞后包括容量滞后与纯滞后。

其中容量滞后通常又包括:测量滞后和传送滞后。

测量滞后是检测元件在检测时需要建立一种平衡,如热电偶、热电阻、压力等响应较慢产生的一种滞后。

而传送滞后则是在传感器、变送器、执行机构等设备产生的一种控制滞后。

纯滞后是相对与测量滞后的,在工业上,大多的纯滞后是由于物料传输所致,如:大窑玻璃液位,在投料机动作到核子液位仪检测需要很长的一段时间。

相关文档
最新文档