ansys实验报告-参考

合集下载

ANSYS建模

ANSYS建模

轴承座的ANSYS实体建模:实验报告(一)一、实验目的:进一步练习ANSYS软件的操作;学会建立模型的高级操作和步骤;实际操作建立微微机械车轮模型。

(一)基本思路有限元分析的最终目的是还原一个实际工程系统的数学行为特征,即分析必须针对一个物理原型准确的数学模型。

广义上讲,模型包括所有节点、单元、材料属性、实常数、边界条件,以及其他用来表现这个物理系统的特征。

建立模型的典型步骤是:(1)确定分析目标及模型的基本形式,选择合适的单元类型并考虑如何建立适当的网格密度。

(2)进入前处理(PREP7)建立模型,一般情况下利用实体建模创建模型。

(3)建立工作平面。

(4)利用几何元素和布尔运算操作生成基本几何形状。

(5)激活适当的坐标系。

(6)用自底向上方法生成其他实体,即定义关键点后生成线、面和体。

(7) 用布尔运算或编号控制适当地连接各个独立的实体模型域。

四、实验内容及步骤 (一)轴承座建模 1. 创建基座模型(1)、生成基座部分的长方体: 单击Main MenuPreprocessCreateVolumesBlockByDimensions ,输入X1=0,X2=3,Y1=0,Y2=1,Z1=0,Z2=3,然后单击[OK],得长方体基座。

XY Z09060242-44-sunguoliang(2)、平移并旋转工作平面:Utility Menu WorkPlane OffsetWP by IncrementsX,Y,Z Offsets 输入 2.25,1.25,0.75,点击[Apply],XY ,YZ ,ZX Angles 输入0,-90,0,单击[OK]。

(3)、创建圆柱体: 单击Main Menu PreprocessorModelingCreateVolumesCylinderSolid Cylinder,输入 WP X=0,WP Y=0,Radius=0.75/2, Depth=-1.5,单击[OK]。

ANSYS上机报告

ANSYS上机报告

目录1 实验目的 (2)2 实验内容 (3)2.1机械构件的静力分析——带孔薄板两端承受均布载荷 (3)2.1.1问题描述 (3)2.1.2问题分析 (3)2.1.3求解步骤 (3)2.2机械构件的动力学分析——模型飞机机翼模态分析 (14)2.2.1问题描述 (14)2.2.2问题分析 (14)2.2.3求解步骤 (14)3 实验结论 (23)1 实验目的1.熟悉有限元分析的基本原理和方法;2.掌握有限元软件ANSYS的静力分析和动力学分析的基本操作;3.对有限元分析结果进行正确评价。

2 实验内容2.1 机械构件的静力分析——带孔薄板两端承受均布载荷2.1.1 问题描述图3.1所示为一中心带有圆孔的薄板承载示意图,薄板平均厚度为0.2mm,两端承受均布载荷pa,求薄板内部的应力场分布。

(薄板材料弹性模量为220GPa,泊松P1000比为0.3)图2.1薄板承载示意图2.1.2 问题分析对于涉及薄板的结构问题,若只承受薄板长度和宽度方向所构成的平面上的载荷时(厚度方向无载荷),一般沿薄板厚度方向上的应力变化可不予考虑,即该问题简化为平面应力问题。

根据平板结构的对称性,选择整体结构的1/4建立几何模型,进行分析求解。

2.1.3求解步骤1. 定义工作文件名和工作标题1)选择Utility Menu | File | Change Jobname 命令,出现Change Jobname对话框,在[/FILNAM] Enter new jobname文本框中输入工作文件名EXERCISE1,并将New log and error files设置为Yes,单击OK按钮关闭该对话框。

2)选择Utility Menu | File | Change Jobname 命令,出现Change Title 对话框,在[/TITLE]Enter new title 文本框中输入ANALYSIS OF PLATE STRESS WITH SMALLCIRCLE, 单击OK按钮关闭该对话框。

ANSYS实验报告

ANSYS实验报告

一、实验目的:综合训练和培养学生利用有限元技术进行机械系统分析和设计的能力,独立解决本专业方向实际问题的能力;进一步提高学生创新设计、动手操作能力,为将来所从事的机械设计打下坚实的基础。

二、实验环境1.硬件:联想计算机1台2.软件:CAE软件ANSYS三、实验内容任务:主要训练学生对机械结构问题分析规划的能力,能正确利用有限元分析软件ANSYS建立结构的有限元模型,合理定义单元、分析系统约束环境,正确加载求解,能够提取系统分析结果。

通过实验分析使学生了解和掌握有限元技术辅助机械系统设计和分析的特点,推动学生进行创新设计。

本组数据:要求:本实验要求学生以高度的责任感,严肃认真、一丝不苟的态度进行设计,充分发挥主观能动性,树立正确的设计思想和良好的工作作风,严禁抄袭和投机取巧。

同时,按以下要求进行设计:1、按照国家标淮和设计规范进行设计:塔式起重机设计规范GB/T 13752-92;起重机设计规范GB/T3811-2008;钢结构设计规范GB 50017-2003;塔式起重机安全规程GB 5144-2006。

2、进行塔式起重机起重臂的设计,额定起重力矩为630 kN⋅m、800 kN⋅m、1000 kN⋅m、1250kN m分别进行最大幅度为40m、45m、50m、55m、60m的起重臂的设计、计算。

(800kN.m 30m)3、综合运用学过的力学知识和有限元理论,设计起重臂的结构及主肢和腹杆的参数,构造起重臂的有限元模型,选择合适的单元,施加合适的载荷和边界条件,对结构进行静力分析,提取结果,进行强度和刚度校核,撰写实验报告并总结。

四、实验步骤:(一)问题分析设计起重臂的结构及主肢和腹杆的参数,构造起重臂的有限元模型,选择合适的单元,施加合适的载荷和边界条件,对结构进行静力分析,提取结果,进行强度和刚度校核模型简化起重臂根部通过销轴与塔机回转节相连,在臂架起升平面可视为铰接(二)实验过程:1、准备工作双击ansys图标,打开软件进入工作环境,选择存储路径Utility Menu-File-Change Directery-桌面;Utility Menu-File-change Jobname点击使复选框处于yes状态-OK设置优选项Menu –preferences选择Structrure复选框OK。

ansys实例应用实验报告

ansys实例应用实验报告

结构线性静力分析一、问题描述分析如下图所示具有圆孔的矩形板在拉伸状态下的应力分布。

1.0 m×2.0 m的矩形板,厚度为0.03 m,中心圆孔直径为0.25 m,弹性模量为207GPa,泊松比0.3,端部受拉伸载荷600 N。

二、有限元分析步骤1)选用solid45单元。

2)定义材料系数。

弹性模量为207e9Pa,泊松比为0.3。

3)建立模型。

Modeling>create>volumes>block>by dimensions。

X1,x2;y1,y2;z1,z2分别取-1,1;-0.5,0.5;0,0.03,得到矩形板。

创建圆柱体:Modeling>create>volumes>cylinder>by dimensions,半径为0.125m,深度为0.03m。

进行布尔操作:Modeling>operate>booleans>subtruct>volumes,选择矩形板,点击apply,选择圆柱体,点击ok。

4)划分网格。

选择Utility Menu>WorkPlane>Display Working Plane,然后选择Utility>WorkPlane>Offset WP by Increments,在Offset WP对话框的Degrees框中输入:0,-90,0然后点击OK确定。

Modeling>Operate>Booleans>Divide>Volu byWrkPlane,选择Pick All,图形窗口中将显示模型被工作平面一分为二。

类似地,通过移动工作平面的位置,最后将几何模型剖分。

选择Modeling>Operate>Booleans> Glue>Volumes,在对话框中选择Pick All,将剖分开的各部分模型粘接在一起。

选择Size control>Lines>set,将圆孔周边的线段和中线小正方型的线段都设定为10段,厚度方向的线段设定为6段,然后选择Mesh处下拉菜单为volume,shape设定为sweep,点击sweep,然后点击select all,然后点击OK确定。

ansys实验报告

ansys实验报告

有限元上机实验报告姓名柏小娜学号0901510401实验一一已知条件简支梁如图所示,截面为矩形,高度h=200mm,长度L=1000mm,厚度t=10mm。

上边承受均布载荷,集度q=1N/mm2,材料的E=206GPa,μ=0.29。

平面应力模型。

X方向正应力的弹性力学理论解如下:)534()4(622223-+-=hyhyqyxLhqxσ二实验目的和要求(1)在Ansys软件中用有限元法探索整个梁上xσ,yσ的分布规律。

(2)计算下边中点正应力xσ的最大值;对单元网格逐步加密,把xσ的计算值与理论解对比,考察有限元解的收敛性。

(3)针对上述力学模型,对比三节点三角形平面单元和4节点四边形平面等参元的求解精度。

三实验过程概述(1)定义文件名(2)根据要求建立模型:建立长度为1m,外径为0.2m,平行四边行区域(3)设置单元类型、属性及厚度,选择材料属性:(4)离散几何模型,进行网格划分(5)施加位移约束(6)施加载荷(7)提交计算求解及后处理(8)分析结果四实验内容分析(1)根据计算得到应力云图,分析本简支梁模型应力分布情况和规律。

主要考察xσ和yσ,并分析有限元解与理论解的差异。

由图1看出沿X 方向的应力呈带状分布,大小由中间向上下底面递增,上下底面应力方向相反。

由图2看出应力大小是由两侧向中间递增的,得到X 方向上最大应力就在下部中点,为0.1868 MPa 。

根据理论公式求的的最大应力值为0.1895MPa 。

由结果可知,有限元解与理论值非常接近。

由图3看出Y 的方向应力基本相等,应力主要分布在两侧节点处。

图 1 以矩形单元为有限元模型时计算得出的X 方向应力云图图 2 以矩形单元为有限元模型时计算得出的底线上各点x 方向应力图(2)对照理论解,对最大应力点的x σ应力收敛过程进行分析。

列出各次计算应力及其误差的表格,绘制误差-计算次数曲线,并进行分析说明。

答:在下边中点位置最大应力理论值为:MPa h y h y q y x L h q x 1895.0)534()4(622223=-+-=σ网格尺寸(mm) 50 20 10 50.1297 0.1709 0.1815 0.1859 下边中点处应力(MPa)误差(%)33.7 9.8 4.2 1.9网格尺寸越小,越收敛,离散精度越高,离散值越接近于理论解图 3 以矩形单元为有限元模型时计算得出的Y方向应力云图(3)对三角形平面单元和四边形平面单元的精度进行对比分析。

ansys实验报告

ansys实验报告

ansys实验报告ANSYS实验报告一、引言ANSYS是一款广泛应用于工程领域的有限元分析软件,它能够模拟和分析各种结构和物理现象。

本实验旨在通过使用ANSYS软件,对一个具体的工程问题进行模拟和分析,以探究其性能和行为。

二、实验目的本次实验的主要目的是通过ANSYS软件对一个简单的悬臂梁进行分析,研究其在不同加载条件下的应力和变形情况,并进一步了解悬臂梁的力学行为。

三、实验步骤1. 准备工作:安装并启动ANSYS软件,并导入悬臂梁的几何模型。

2. 材料定义:选择适当的材料,并设置其力学性质,如弹性模量和泊松比。

3. 约束条件:定义悬臂梁的边界条件,包括支撑点和加载点。

4. 加载条件:施加适当的力或压力到加载点,模拟实际工程中的加载情况。

5. 分析模型:选择适当的分析方法,如静力学分析或模态分析,对悬臂梁进行计算。

6. 结果分析:根据计算结果,分析悬臂梁在不同加载条件下的应力和变形情况,并进行比较和讨论。

四、实验结果经过计算和分析,我们得到了悬臂梁在不同加载条件下的应力和变形情况。

在静力学分析中,我们观察到加载点附近的应力集中现象,并且应力随着加载的增加而增大。

在模态分析中,我们研究了悬臂梁的固有频率和振型,并发现了一些共振现象。

五、讨论与分析根据实验结果,我们可以得出一些结论和讨论。

首先,悬臂梁在加载点附近容易发生应力集中,这可能导致结构的破坏和失效。

因此,在实际工程中,我们需要采取适当的措施来减轻应力集中的影响,如增加结构的刚度或改变加载方式。

其次,悬臂梁的固有频率和振型对结构的稳定性和动态响应有重要影响。

通过模态分析,我们可以确定悬臂梁的主要振动模态,并根据需要进行结构优化。

六、结论通过本次实验,我们成功地使用ANSYS软件对一个悬臂梁进行了模拟和分析。

通过对悬臂梁的应力和变形情况的研究,我们深入了解了悬臂梁的力学行为,并得出了一些有价值的结论和讨论。

在实际工程中,这些研究结果可以为设计和优化结构提供参考和指导。

ANSYS实验分析报告

ANSYS实验分析报告

ANSYS实验分析报告(张刚机电研1005班)ANSYS实验分析报告(张刚机电研1005班)实验一 ANSYS软件环境1.问题描述如图所示,使用ANSYS分析平面带孔平板,分析在均布载荷作用下板内的应力分布。

已知条件:F=20N/mm,L=200mm,b=100mm,圆孔半径r=20,圆心坐标为(100, 50),E=200Gpa。

板的左端固定。

图1-1 带孔平板模型示意图实例类型:ANSYS结构分析分析类型:线性静力分析单元类型:PLANE822.实验内容图1-2 有限元模型图图1-3 载荷与约束图图1-4 模型变形图图1-5 等值线位移图由上图可知模型从左至右位移量逐渐递增,与实际情况符合。

图1-6 等值应力图从上可知,圆孔的上下端点应力最大,与实际情况符合,证明ANSYS分析正确。

3.实验命令记录ANSYS命令流如下:/BATCH/COM,ANSYS RELEASE 12.0.1UP20090415 14:37:48 03/15/2011 /TITLE,plane/PREP7ET,1,PLANE82KEYOPT,1,3,3KEYOPT,1,5,0KEYOPT,1,6,0R,1,20, MPTEMP,,,,,,,,MPTEMP,1,0MPDATA,EX,1,,200000 MPDATA,PRXY,1,,0.3BLC4,0,0,200,100CYL4,100,50,20ASBA, 1, 2FINISH/SOLFINISH/PREP7AESIZE,ALL,20,MSHKEY,0CM,_Y,AREAASEL, , , , 3CM,_Y1,AREACHKMSH,'AREA'CMSEL,S,_YAMESH,_Y1CMDELE,_YCMDELE,_Y1CMDELE,_Y2SAVEFINISH/SOLFLST,2,1,4,ORDE,1FITEM,2,4/GODL,P51X, ,ALL,FLST,2,1,4,ORDE,1FITEM,2,2/GOSFL,P51X,PRES,-1,/STATUS,SOLUSOLVEFINISH/POST1PLDISP,1 PLDISP,0/EFACET,1 PLNSOL, U,SUM, 0,1.0 /EFACET,1 PLNSOL, S,EQV, 0,1.0 PLNSOL,U,X ANCNTR,10,0.5/EFACET,1 PLNSOL, S,EQV, 0,1.0 SAVEFINISH! /EXIT,ALL实验二 坝体的有限元建模及应力应变分析1.问题描述计算分析模型如图所示,分析坝体的应力、应变。

ansys实验强度分析报告

ansys实验强度分析报告

ansys有限元强度分析一、实验目的1 熟悉有限元分析的基本原理和基本方法;2 掌握有限元软件ANSYS的基本操作;3 对有限元分析结果进行正确评价。

二、实验原理利用ANSYS进行有限元静力学分析三、实验仪器设备1 安装windows XP的微机;2 ANSYS11.0软件。

四、实验内容与步骤1 熟悉ANSYS的界面和分析步骤;2 掌握ANSYS前处理方法,包括三维建模、单元设置、网格划分和约束设置;3掌握ANSYS求解和后处理的一般方法;4 实际应用ANSYS软件对六方孔螺钉头用扳手进行有限元分析。

五、实验报告1)以扳手零件为例,叙述有限元的分析步骤;答:(1)选取单元类型为92号;(2)定义材料属性,弹性模量和泊松比;建立模型。

先生成一个边长为0.0058的六边形平面,再创建三条线,其中z向长度为0.19,x向长度0.075,中间一段0.01的圆弧,然后把面沿着三条线方向拉伸,生成三维实体1如题中所给形状,只是手柄短了0.01;把坐标系沿z轴方向平移0.01,再重复作六边形面,拉伸成沿z轴相反方向的长为0.01的实体2;利用布尔运算处理把实体1和2粘接成整体。

(4)划分网格。

利用智能网格划分工具划分网格,网格等级为4级。

(5)施加约束。

在扳手底部面上施加完全约束;(6)施加作用力。

在实体2的上部面上施加344828pa(20/(0.01*0.0058))的压强,在实体2的下部面的临面上施加1724138pa(100/0.01/0.0058)的压强;(7)求解,进入后处理器查看求解结果,显示应力图。

2)对扳手零件有限元分析结果进行评价;答:结果如图所示:正确的显示出了受力的最大位置及变形量,同时给出了各处受力的值,分析结果基本正确,具有一定的参考意义。

六、回答下列思考题1.什么是CAE技术?答:CAE是包括产品设计、工程分析、数据管理、试验、仿真和制造的一个综合过程,关键是在三维实体建模的基础上,从产品的设计阶段开始,按实际条件进行仿真和结构分析,按性能要求进行设计和综合评价,以便从多个方案中选择最佳方案,或者直接进行设计优化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.单击菜单Main Menu →preprocessor→element type→Add/Edit/Delete.在弹出的对话框中单击"Add";在弹出的对话框的左侧列表中选择"Structural Solid",在右列表中选"Quad 4node 42",单击"Apply"按钮;在右侧列表中选择"Brick 8node 45",单击"OK",单击"Element types"对话框中的"Close"按钮.
4.定义材料特性:单击菜单Main Menu →preprocessor→Material props →Material Models.在弹出的对话框的右侧列表中依次双击"Structural" ."Linear"."Elastic"."Isotropic",在弹出的对话框的"EX"文本框中输入2.07e11,在"PRXY"文本框中输入0.3,单击"OK",然后关闭上一级对话框.
5.创建正六边形面:单击菜单Main Menu →preprocessor→Modeling→Create→Areas→Polygon→Hexagon.在弹出的对话框中,在"WP X","WP Y",和"Radius"文本框中分别输入0,0和0.01,单击"
OK".
6.改变视点:单击菜单Utility Menu→PlotCtrl→Pan Zoom Rotate.在弹出的对话框中,依次单击"Iso',"Fit".
7..显示关键点,线号:单击菜单Utility Menu→PlotCtrl→Numbering.在弹出的对话框中将点号和线号打开,单击"OK"按钮.
8.单击菜单Main Menu →preprocessor→Modeling→Create→Keypoints→In Active CS.在弹出的对话框中,在"NPT"文本框中输入7,在"X,Y,Z"文本框中分别输入0,0,0,单击"Apply'"按钮;在"NPT"文本框中输入8,在"X,Y,Z"文本框中分别输入0,0,-200,单击"Apply'"按钮;在"NPT"文本框中输入9,在"X,Y,Z"文本框中分别输入0,-75,-200,单击"OK"按钮.
9.创建直线:单击菜单Main Menu →preprocessor→Modeling→Create→Lines→Lines→Staight Line.在弹出的对话框中拾取关键点7和8,8和9,创建直线,单击"OK"按钮.
10.创建圆角:单击菜单Main Menu →preprocessor→Modeling→Create→Lines→Line Fillet.在弹出的窗口,分别拾取直线7,8,单击"OK"按钮,在弹出的对话框的"RAD"文本框输入1,弹击"OK"按钮.
11.创建直线:单击菜单Main Menu →preprocessor→Modeling→Create→Lines→Lines→Staight Line.在弹出的对话框中拾取关键点1和4,,单击"OK"按钮.
12.将六边形面划分为两部分:单击菜单Main Menu →preprocessor→Modeling→Operate→Booleans→Divide→Area byline.弹出拾取窗口,拾取六边形面,单击"OK"按钮;再次弹出拾取窗口,拾取上一步在关键点1和4间创建的直线,单击"OK"按钮.
13.拾取菜单Main Menu →preprocessor→Meshing→MeshTool.弹出如图7-11所示的对话框,单击"Size Controls"区域中"lines"后面的"Set"按钮,弹出拾取窗口,拾取直线2,3,4,,单击"OK"按钮,弹出如图7-12所示的对话框,在"NDIV 文本框中输入3,单击"Apply"按钮;再次弹出拾取窗口,拾取直线7,8,9,单击按钮,删除"NDIV"文本框中的3,在"SIZE 文本框中输入0.01,单击按钮.在"Mesh"区域,选择单元形状为"Quad"(四边形),选择划分单元的方法为"Mapped"(影射).单击"Mesh"按钮,弹出拾取窗口,拾取六边行面的两部分,单击"OK"按钮.
14.拾取菜单Utility Menu→Plot→Lines.
15.拾取菜单Main Menu →preprocessor→Modeling→Operate→Extrude→Areas→Along Lines.弹出拾取窗口,拾取六边形面的两部分,单击"OK"按钮,再次弹出拾取窗口,依次拾取直线7,8,9,单击"OK"按钮.
16.拾取菜单Main Menu →preprocessor→Meshing→Clear→Areas.弹出拾取窗口,拾取z=0的两个平面,单击"OK"按钮.
17.拾取菜单Utility Menu→Plot→Elements.
18.拾取菜单Main Menu →Solutions→Define Loads→Apply→Structural→Displacement→On Areas.弹出拾取窗口,
拾取z=0的两个平面,单击"OK"按钮,弹出如图7-13所示的对话框,在列表中选择"All DOF",单击"OK"按钮.
19.拾取菜单Main Menu →Solutions→Define Loads→Apply→Structural→Force/Momentl→On Keypoints.弹出拾取窗口,拾取扳手长臂端面的六个顶点,单击"OK"按钮,弹出如图7-14所示的对话框,选择"Lab"为"FZ",在"VALUE"文本窗口中输入-20,选择"Lab"为"FX",在"VALUE"文本窗口中输入100,单击"OK"按钮.
20.拾取菜单Main Menu →Solutions→Solve→CurrentLS.单击"Solve Current Load Step"对话框中的"OK"按钮.出现"Solution is done!"提示时.求解结束,即可查看结果.
21.拾取菜单Main Menu →General Postproc→Deformed Shape.弹出如图7-15所示的对话框,选种"Def+undef edge"(变形+为变形的模型边界),单击"OK"按钮,结果如下面所示.
二十二查看结果,用登高线显示Von Mises 应力.
拾取菜单Main Menu →General Postproc→Plot Results→Contour Plot →Nodal Solu.在弹出的对话框的"Item Comp"列表中选"Stress","Von Mises stress",单击"OK"按钮.结果如下:
2)对扳手零件有限元分析结果进行评价;
通过实验,我们了解了ansys软件的应用,实验的结果与我们之前的想法基本一致.在扳手的弯曲出出现了应力最大,且整个零件在内侧应力较大,外侧较小;在扳手的柄部应力最小,跟部较大.
六、思考题
1)有限元单元的选取原则有哪些?
1、单元的选取应与实际结构物的受力特征和几何特征相符
2、线性单元和高次单元的选取,应与计算所要求的精度和实体结构的曲率相符
3、考虑结构的复杂性,选取不同类单元的组合
2)网格划分的原则有哪些?实验不同单元大小对计算精度的影响。

1.兼顾计算精度与计算规模的同时,合理的选择网格数量。

2.选择合适的网格疏密。

3.根据结构特点,合理选择单元的阶次,合理划分网格的布局。

4.合理选择网格的分界面和分界点。

5.保证位移的协调性。

单元格画得越细,实验计算的精度就越高,反之则越低。

3)扳手应力云图所示应力集中处是否像估计的那样?如不一样,可能的原因是什么?
实验得出的应力云图与估计的基本一致。

如果不一样,可能是以下原因:
1.材料定义不正确。

2.网格划分不正确。

3.定义载荷的形式不正确。

10。

相关文档
最新文档