ansys实验强度分析报告

合集下载

基于ANSYS的阀体与阀板结构的强度分析

基于ANSYS的阀体与阀板结构的强度分析

基于ANSYS的阀体与阀板结构的强度分析阀体为对称结构,所以在分析的时候只取一半模型,几何模型如下图所示对模型进行网格划分,因为模型中包含倒角细节,所以采用四面体网格类型进行划分,又为了保证计算精度,所以采用高阶四面体单元,单元类型为solid187,有限元网格模型如下图所示,网格总数为35689,节点总数为59239.设置材料属性,结构弹性模量为2.1e11MPa,泊松比为0.3,在ANSYS中的材料定义如下图所示阀体内表面施加面压力2.4MPa,在对称面上施加无摩擦约束模拟对称条件,约束阀体的三个法兰面,最终效果如下图完成上述设置以后对结构进行求解,点击solve。

等待求解介绍,计算结果如下图所示等效应力云图位移云图结论:阀体的最大变形为0.0058829mm,最大等效应力为29.161MPa。

阀体材料为碳素钢,屈服极限为235MPa,最大等效应力小于材料屈服,说明阀体满足强度要求。

在实际工况中不会发生破坏,从云图中可知,最大等效应力在阀体三通处,即云图中的红色区域,虽然最大等效应力未超过材料屈服,但是该点为热点应力,在实际使用中还要注意该区域的疲劳强度等问题,建议对此处的相贯部分进行倒圆角处理,减小结构的应力集中,提高结构的使用寿命。

将阀板结构导入ANSYS软件,几何模型如下图所示对结构进行网格划分,同上述情况,采用solid187单元类型,网格模型如下图所示网格总数为26606,节点总数为41150载荷约束如下所示,阀板两侧连接这个阀体,所以阀板两侧承受压力为2.4MPa,同阀体。

计算结果如下图所示结论:阀板最大等效应力为14.944MPa,最大的变形为0.0006826mm,最大等效应力小于屈服极限,所以阀片满足强度要求。

阀片最大等效应力发生在图中所示的等效应力云图红色区域,建议对该区域进行倒角过度处理,避开尖角形状从而引起盈利了集中现在,该区域在实际使用中很容易产品疲劳破坏,萌生裂纹,最终会影响结构的使用寿命。

建模及强度分析报告

建模及强度分析报告

1.建模及强度分析目的1)正确将三维CAD图导入分析软件;2)修改不必要的细节,使网格剖分更均匀;3)根据计算机的计算能力,选取适当的单元剖分网格;4)正确施加载荷和边界条件;5)完成强度分析;2.模型参数1)平衡块参数2)曲轴材料3)曲轴载荷--连杆对曲轴的作用力4)载荷及其作用方向,如图5)曲轴上载荷的分布沿曲柄销轴线为抛物线分布 沿轴颈径向为余弦分布3.具体操作过程:1)首先将三维CAD 图导入ANSYS 分析软件,进行相关参数的设置;2)其次进行网格的划分,由于电脑配置问题,本次划分的网格较为稀疏,划分后网格数量为27009个;3)在模型上加相应质量块,目的是用来平衡模型,降低模型旋转惯性,根据需求,本次施加了12个质量为10.44kg 的质量块;)11(16922x L LR Q q c y -=)2/3cos(θθxx q q =6060≤≤-θ4)对模型进行静态分析,根据计算结果找出最大应力位置,与考核标准进行对比分析;5)进行模态分析。

4.静力分析结果1)静力分析整体如图:2)最大应力处于主轴颈处,如图:3)其他主轴颈处应力如图:5.模态分析结果1)曲轴的前6阶模态的固有频率2)前6阶模态振型如图(a)一阶模态振型(b)二阶模态振型(c)三阶模态振型(d)四阶模态振型(e)五阶模态振型(f)六阶模态振型6.总结本次实验综合运用了CAD与ANSYS软件对曲轴进行了静力分析与模态分析。

通过静力分析与计算,得出曲轴的许用应力最大值;通过模态分析计算求得了曲轴的自由振动模态的固有频率和振型,前6阶模态的固有频率从 146.13到587.66,随着频率的增大,通过曲轴的模态振型图可知,在曲轴的振动过程中,曲轴的变形越来越大。

预计在变形达到一定程度时,曲轴将出现破坏现象。

同时,通过模态分析,得到曲轴变形最大的位置和最可能出现破坏的地方,为以后的优化设计奠定了基础。

建模及强度分析报告2016.10。

ANSYS实验报告

ANSYS实验报告

一、实验目的:综合训练和培养学生利用有限元技术进行机械系统分析和设计的能力,独立解决本专业方向实际问题的能力;进一步提高学生创新设计、动手操作能力,为将来所从事的机械设计打下坚实的基础。

二、实验环境1.硬件:联想计算机1台2.软件:CAE软件ANSYS三、实验内容任务:主要训练学生对机械结构问题分析规划的能力,能正确利用有限元分析软件ANSYS建立结构的有限元模型,合理定义单元、分析系统约束环境,正确加载求解,能够提取系统分析结果。

通过实验分析使学生了解和掌握有限元技术辅助机械系统设计和分析的特点,推动学生进行创新设计。

本组数据:要求:本实验要求学生以高度的责任感,严肃认真、一丝不苟的态度进行设计,充分发挥主观能动性,树立正确的设计思想和良好的工作作风,严禁抄袭和投机取巧。

同时,按以下要求进行设计:1、按照国家标淮和设计规范进行设计:塔式起重机设计规范GB/T 13752-92;起重机设计规范GB/T3811-2008;钢结构设计规范GB 50017-2003;塔式起重机安全规程GB 5144-2006。

2、进行塔式起重机起重臂的设计,额定起重力矩为630 kN⋅m、800 kN⋅m、1000 kN⋅m、1250kN m分别进行最大幅度为40m、45m、50m、55m、60m的起重臂的设计、计算。

(800kN.m 30m)3、综合运用学过的力学知识和有限元理论,设计起重臂的结构及主肢和腹杆的参数,构造起重臂的有限元模型,选择合适的单元,施加合适的载荷和边界条件,对结构进行静力分析,提取结果,进行强度和刚度校核,撰写实验报告并总结。

四、实验步骤:(一)问题分析设计起重臂的结构及主肢和腹杆的参数,构造起重臂的有限元模型,选择合适的单元,施加合适的载荷和边界条件,对结构进行静力分析,提取结果,进行强度和刚度校核模型简化起重臂根部通过销轴与塔机回转节相连,在臂架起升平面可视为铰接(二)实验过程:1、准备工作双击ansys图标,打开软件进入工作环境,选择存储路径Utility Menu-File-Change Directery-桌面;Utility Menu-File-change Jobname点击使复选框处于yes状态-OK设置优选项Menu –preferences选择Structrure复选框OK。

ANSYS分析报告

ANSYS分析报告

ANSYS分析报告引言:1.问题描述:在这个分析中,我们将研究一个承重结构的稳定性。

该结构由一根钢杆和两个支撑点组成,其中一端支撑固定,另一端加有外部力。

我们的目标是确定结构在受力情况下的位移和应力分布,并评估结构的稳定性。

2.建模与加载条件:我们使用ANSYS软件对该结构进行三维建模,并为其设置了适当的边界条件和加载条件。

钢杆的材料参数和几何尺寸通过实验测定获得。

加载条件设为一端受到垂直向下的力,同时另一端固定。

我们采用静态结构分析模块进行分析。

3.结果与分析:经过ANSYS分析,我们获得了结构的位移和应力分布情况。

在受力情况下,钢杆的位移主要集中在受力一侧,而另一侧的位移较小。

应力分布也呈现相似的趋势,受力一侧的应力较大,而另一侧的应力较小。

这是由于外部力对结构的影响导致结构发生变形。

4.结构稳定性评估:在评估结构的稳定性时,我们对结构进行了稳定性分析。

通过计算结构的临界载荷,我们可以确定结构在受力情况下的稳定性。

根据计算结果,结构的临界载荷大于所施加的外部力,说明结构是稳定的,不会发生失稳现象。

5.敏感性分析:为了进一步评估结构的性能,我们进行了敏感性分析。

通过改变结构的材料参数和几何尺寸,我们得到了不同条件下结构的位移和应力分布。

根据敏感性分析结果,我们发现结构的位移和应力对材料的弹性模量和截面尺寸非常敏感。

较高的弹性模量和更大的截面尺寸会使结构更加稳定。

结论:通过ANSYS软件进行的分析,我们得到了结构在受力情况下的位移和应力分布,并评估了结构的稳定性。

我们发现外部力对结构的位移和应力分布有明显的影响,但结构仍然保持稳定。

此外,结构的性能对材料参数和几何尺寸非常敏感。

综合分析结果,我们可以优化结构设计,以提高结构的稳定性和性能。

以上是对ANSYS分析报告的一个简单写作示例,可以根据实际情况进行适当调整和修改。

ansys实验分析报告

ansys实验分析报告

ANSYS 实验分析报告1. 引言在工程设计和科学研究中,计算机仿真技术的应用越来越广泛。

ANSYS是一种常用的工程仿真软件,它可以帮助工程师和科学家分析和解决各种复杂的问题。

本文将介绍我对ANSYS进行实验分析的过程和结果。

2. 实验目标本次实验的主要目标是使用ANSYS软件对一个特定的工程问题进行仿真分析。

通过这个实验,我希望能够了解ANSYS的基本操作和功能,并在解决工程问题方面获得一定的经验。

3. 实验步骤步骤一:导入模型首先,我需要将要分析的模型导入到ANSYS软件中。

通过ANSYS提供的导入功能,我可以将CAD模型或者其他文件格式的模型导入到软件中进行后续操作。

步骤二:设置边界条件在进行仿真分析之前,我需要设置边界条件。

这些边界条件可以包括约束条件、初始条件和加载条件等。

通过设置边界条件,我可以模拟出真实工程问题中的各种情况。

步骤三:选择分析类型ANSYS提供了多种不同的分析类型,包括结构分析、流体力学分析、热传导分析等。

根据实际情况,我需要选择适合的分析类型来解决我的工程问题。

步骤四:运行仿真设置好边界条件和选择好分析类型后,我可以开始运行仿真了。

ANSYS会根据我所设置的条件,在计算机中进行仿真计算,并生成相应的结果。

步骤五:分析结果仿真计算完成后,我可以对生成的结果进行分析。

通过对结果的分析,我可以得出一些关键的工程参数,如应力分布、温度分布等。

这些参数可以帮助我评估设计的合理性和性能。

4. 实验结果在本次实验中,我成功地使用ANSYS对一个特定的工程问题进行了仿真分析。

通过分析结果,我得出了一些有价值的结论和数据。

这些数据对于进一步改进设计和解决工程问题非常有帮助。

5. 总结与展望通过本次实验,我对ANSYS软件的使用有了更深入的了解,并且积累了一定的实践经验。

在未来的工程设计和科学研究中,我将更加灵活地应用ANSYS软件,以解决更加复杂和挑战性的问题。

同时,我也会继续学习和探索其他相关的仿真软件和工具,以提高自己的技术水平。

ansys实验报告

ansys实验报告

ansys实验报告ANSYS实验报告一、引言ANSYS是一款广泛应用于工程领域的有限元分析软件,它能够模拟和分析各种结构和物理现象。

本实验旨在通过使用ANSYS软件,对一个具体的工程问题进行模拟和分析,以探究其性能和行为。

二、实验目的本次实验的主要目的是通过ANSYS软件对一个简单的悬臂梁进行分析,研究其在不同加载条件下的应力和变形情况,并进一步了解悬臂梁的力学行为。

三、实验步骤1. 准备工作:安装并启动ANSYS软件,并导入悬臂梁的几何模型。

2. 材料定义:选择适当的材料,并设置其力学性质,如弹性模量和泊松比。

3. 约束条件:定义悬臂梁的边界条件,包括支撑点和加载点。

4. 加载条件:施加适当的力或压力到加载点,模拟实际工程中的加载情况。

5. 分析模型:选择适当的分析方法,如静力学分析或模态分析,对悬臂梁进行计算。

6. 结果分析:根据计算结果,分析悬臂梁在不同加载条件下的应力和变形情况,并进行比较和讨论。

四、实验结果经过计算和分析,我们得到了悬臂梁在不同加载条件下的应力和变形情况。

在静力学分析中,我们观察到加载点附近的应力集中现象,并且应力随着加载的增加而增大。

在模态分析中,我们研究了悬臂梁的固有频率和振型,并发现了一些共振现象。

五、讨论与分析根据实验结果,我们可以得出一些结论和讨论。

首先,悬臂梁在加载点附近容易发生应力集中,这可能导致结构的破坏和失效。

因此,在实际工程中,我们需要采取适当的措施来减轻应力集中的影响,如增加结构的刚度或改变加载方式。

其次,悬臂梁的固有频率和振型对结构的稳定性和动态响应有重要影响。

通过模态分析,我们可以确定悬臂梁的主要振动模态,并根据需要进行结构优化。

六、结论通过本次实验,我们成功地使用ANSYS软件对一个悬臂梁进行了模拟和分析。

通过对悬臂梁的应力和变形情况的研究,我们深入了解了悬臂梁的力学行为,并得出了一些有价值的结论和讨论。

在实际工程中,这些研究结果可以为设计和优化结构提供参考和指导。

ansys实验强度分析报告

ansys实验强度分析报告

ansys有限元强度分析一、实验目的1 熟悉有限元分析的基本原理和基本方法;2 掌握有限元软件ANSYS的基本操作;3 对有限元分析结果进行正确评价。

二、实验原理利用ANSYS进行有限元静力学分析三、实验仪器设备1 安装windows XP的微机;2 ANSYS11.0软件。

四、实验内容与步骤1 熟悉ANSYS的界面和分析步骤;2 掌握ANSYS前处理方法,包括三维建模、单元设置、网格划分和约束设置;3掌握ANSYS求解和后处理的一般方法;4 实际应用ANSYS软件对六方孔螺钉头用扳手进行有限元分析。

五、实验报告1)以扳手零件为例,叙述有限元的分析步骤;答:(1)选取单元类型为92号;(2)定义材料属性,弹性模量和泊松比;建立模型。

先生成一个边长为0.0058的六边形平面,再创建三条线,其中z向长度为0.19,x向长度0.075,中间一段0.01的圆弧,然后把面沿着三条线方向拉伸,生成三维实体1如题中所给形状,只是手柄短了0.01;把坐标系沿z轴方向平移0.01,再重复作六边形面,拉伸成沿z轴相反方向的长为0.01的实体2;利用布尔运算处理把实体1和2粘接成整体。

(4)划分网格。

利用智能网格划分工具划分网格,网格等级为4级。

(5)施加约束。

在扳手底部面上施加完全约束;(6)施加作用力。

在实体2的上部面上施加344828pa(20/(0.01*0.0058))的压强,在实体2的下部面的临面上施加1724138pa(100/0.01/0.0058)的压强;(7)求解,进入后处理器查看求解结果,显示应力图。

2)对扳手零件有限元分析结果进行评价;答:结果如图所示:正确的显示出了受力的最大位置及变形量,同时给出了各处受力的值,分析结果基本正确,具有一定的参考意义。

六、回答下列思考题1.什么是CAE技术?答:CAE是包括产品设计、工程分析、数据管理、试验、仿真和制造的一个综合过程,关键是在三维实体建模的基础上,从产品的设计阶段开始,按实际条件进行仿真和结构分析,按性能要求进行设计和综合评价,以便从多个方案中选择最佳方案,或者直接进行设计优化。

基于ANSYS的机械结构强度分析与优化研究

基于ANSYS的机械结构强度分析与优化研究

基于ANSYS的机械结构强度分析与优化研究随着现代工程需求的不断增长,对机械结构强度和可靠性的要求也越来越高。

为了满足这一需求,研究人员广泛使用ANSYS软件来进行机械结构的强度分析与优化研究。

本文将介绍基于ANSYS的机械结构强度分析与优化的研究方法和技巧。

一、研究背景和意义机械结构的强度分析是评估其工作状态下可承受的载荷和变形的能力,是确保机械结构安全可靠运行的基础。

而优化设计则是在满足安全性的前提下,设计出更加轻量化和高效的结构,以降低成本和提高性能。

因此,基于ANSYS的机械结构强度分析与优化研究对于工程领域具有重要的意义。

二、ANSYS软件介绍ANSYS是一款广泛应用于工程计算领域的有限元法软件。

它可以模拟和分析各种不同材料和结构类型的力学行为,并提供详细的应力、应变和变形等信息。

利用ANSYS软件,可以进行静力学分析、动力学分析、疲劳分析等多种工程分析。

三、机械结构强度分析流程1. 几何建模:使用ANSYS提供的建模工具,创建机械结构的几何模型。

可以通过绘图、导入CAD文件等方式完成。

2. 材料属性定义:根据实际情况,设置机械结构材料的机械性能参数,包括弹性模量、泊松比、屈服强度等。

3. 网格划分:将几何模型划分成有限元网格,需要注意网格密度和质量的合理选择,以提高计算结果的精度和准确性。

4. 载荷和边界条件定义:根据实际工况对机械结构施加载荷和边界条件。

可以设置静载荷、动载荷、温度载荷等。

5. 强度分析:运行ANSYS计算求解器,进行机械结构的强度分析。

可以获得应力、应变、变形等结果,以评估结构的强度和可靠性。

6. 结果后处理:通过ANSYS的后处理工具,对计算结果进行可视化和分析。

可以生成应力云图、应变曲线等,为结构优化提供依据。

四、机械结构优化方法1. 参数优化:通过改变机械结构的设计参数,如材料厚度、连接方式等,以满足给定的约束条件和性能要求。

2. 拓扑优化:在事先给定的设计空间中,通过修改结构的拓扑形状来实现结构的优化设计。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ansys有限元强度分析
一、实验目的
1 熟悉有限元分析的基本原理和基本方法;
2 掌握有限元软件ANSYS的基本操作;
3 对有限元分析结果进行正确评价。

二、实验原理
利用ANSYS进行有限元静力学分析
三、实验仪器设备
1 安装windows XP的微机;
2 ANSYS11.0软件。

四、实验内容与步骤
1 熟悉ANSYS的界面和分析步骤;
2 掌握ANSYS前处理方法,包括三维建模、单元设置、网格划分和约束设置;3掌握ANSYS求解和后处理的一般方法;
4 实际应用ANSYS软件对六方孔螺钉头用扳手进行有限元分析。

五、实验报告
1)以扳手零件为例,叙述有限元的分析步骤;
答:(1)选取单元类型为92号;
(2)定义材料属性,弹性模量和泊松比;
建立模型。

先生成一个边长为0.0058的六边形平面,再创建三条线,其中z向长度为0.19,x向长度0.075,中间一段0.01的圆弧,然后把面沿着三条线方向拉伸,生成三维实体1如题中所给形状,只是手柄短了0.01;把坐标系沿z轴方向平移0.01,再重复作六边形面,拉伸成沿z轴相反方向的长为0.01的实体2;利用布尔运算处理把实体1和2粘接成整体。

(4)划分网格。

利用智能网格划分工具划分网格,网格等级为4级。

(5)施加约束。

在扳手底部面上施加完全约束;
(6)施加作用力。

在实体2的上部面上施加344828pa(20/(0.01*0.0058))的压强,在实体2的下部面的临面上施加1724138pa(100/0.01/0.0058)的压强;
(7)求解,进入后处理器查看求解结果,显示应力图。

2)对扳手零件有限元分析结果进行评价;
答:结果如图所示:
正确的显示出了受力的最大位置及变形量,同时给出了各处受力的值,分析结果基本正确,具有一定的参考意义。

六、回答下列思考题
1.什么是CAE技术?
答: CAE是包括产品设计、工程分析、数据管理、试验、仿真和制造的一个综合过程,关键是在三维实体建模的基础上,从产品的设计阶段开始,按实际条件进行仿真和结构分析,按性能要求进行设计和综合评价,以便从多个方案中选择最佳方案,或者直接进行设计优化。

2.有限元单元的选取原则有哪些?
答:首先,根据分析类型选择单元;比如结构分析、热分析、瞬态分析等;其次,根据问题的特性选择单元的阶次;比如梁的弯曲问题,位移为2阶,单元最好选择2阶;再次,选择单元的形状,如三角形还是四边形;理论上四边形单元有更高的精度,但是实践表明,只有在单元是矩形时才有较高的精度,在大变形中,单元变歪斜,误差可能到100%;因而在你关心的区域,一定要用规则的单元,注意单元的质量。

3.网格划分的原则有哪些?实验不同单元大小对计算精度的影响。

答:有限元网格划分的基本原则
①网格数量
网格数量的多少将影响计算结果的精度和计算规模的大小。

一般来讲,网格数量增加,计算精度会有所提高,但同时计算规模也会增加,所以在确定网格数量时应权衡两个因数综合考虑。

②网格疏密
网格疏密是指在结构不同部位采用大小不同的网格,这是为了适应计算数据的分布特点。

在计算数据变化梯度较大的部位(如应力集中处),为了较好地反映数据变化规律,需要采用比较密集的网格。

而在计算数据变化梯度较小的部位,为减小模型规模,则应划分相对稀疏的网格。

采用疏密不同的网格划分,既可以保持相当的计算精度,又可使网格数量减小。

因此,网格数量应增加到结构的关键部位,在次要部位增加网格是不必要的,也是不经济的。

③单元阶次
许多单元都具有线性、二次和三次等形式,其中二次和三次形式的单元称为高阶单元。

选用高阶单元可提高计算精度,因为高阶单元的曲线或曲面边界能够更好地逼近结构的
曲线和曲面边界,且高次插值函数可更高精度地逼近复杂场函数,所以当结构形状不规则、应力分布或变形很复杂时以选用高阶单元。

但高阶单元的节点数较多,在网格数量相同的情况下由高阶单元组成的模型规模要大得多,因此在使用时应权衡考虑计算精度和时间。

④网格质量
网格质量是指网格几何形状的合理性。

质量好坏将影响计算精度。

质量太差的网格甚至会中止计算。

⑤网格分界面和分界点
结构中的一些特殊界面和特殊点应分为网格边界或节点以便定义材料特性、物理特性、载荷和位移约束条件。

即应使网格形式满足边界条件特点,而不应让边界条件来适应网格。

常见的特殊界面和特殊点有材料分界面、几何尺寸突变面、分布载荷分界线(点)、集中载荷作用点和位移约束作用点等。

⑥位移协调性
位移协调是指单元上的力和力矩能够通过节点传递相邻单元。

为保证位移协调,一个单元的节点必须同时也是相邻单元的节点,而不应是内点或边界点。

相邻单元的共有节点具有相同的自由度性质。

否则,单元之间须用多点约束等式或约束单元进行约束处理。

⑦网格布局
当结构形状对称时,其网格也应划分对称网格,以使模型表现出相应的对称特性,不对称布局会引起一定误差。

4.扳手应力云图所示应力集中处是否像估计的那样?如不一样,可能的原因是什么?答:是。

可能的原因有:单元类型的选取不适合;各参数的设置有误差;网格的划分不合理;求解方法本身的误差或是不适合;单位的设置等。

相关文档
最新文档