理想开关和半导体开关

合集下载

新能源电源变换技术 第1章 电力电子电源中的功率器件

新能源电源变换技术 第1章 电力电子电源中的功率器件
新能源电源变换技术
内容
电力电子电源中的功率器件 DC-DC 变换器原理及应用 软开关技术 三相 AC-DC 整流电路及控制算法 逆变电源原理及应用
第一章 电力电子电源中的功率器件 功率电子器件概述 常见的功率开关器件 功率器件的驱动电路
1.1 功率电子器件概述
功率电子器件的发展方向:
电容效应:势垒电容、扩散电容
反向恢复特性:二极管在关断时刻,由于少数载流子存储效应,正向导通电流
IF不能立即消失,在短时间内存在反向(即由阴极到阳极)电流,这个时间称 作反向恢复时间。根据反向恢复时间的大小,可分为:普通二极管(trr较大, 适用于低频场合,如1kHz整流电路);快速恢复二极管(trr < 5us,适用于高频 整流/斩波和逆变电路);肖特基二极管(适用于50V以下低压高频型器件).
(3)高频功率器件: 如 MOSFET、快恢复二极管、肖特基二极管、SIT等
按导电载波的粒子
(1)多子器件: 如 MOSFET、肖特基二极管、SIT、JFET 等
(2)少子器件: 如 IGBT、 GTR、 GTO、快恢复二极管等
按是否可控
半控型:晶闸管
功率器件
门极可关断晶闸管(GTO)
全控型
双极性功率晶体管
1.3.2 隔离驱动电路
MOSFET及IGBT的驱动电路绝大部分采用光耦隔离。
开通过程的时间为零
关断过程的时间为零
1.1.2 开关器件的分类
按制作材料:Si功率器件、Ga功率器件、GaAs功率器件、SiC功率器件、GaN 功率器件及Diamond功率器件
按工作频率:
(1)低频功率器件: 如可控硅,普通二极管等;
(2)中频功率器件: 如 GTR、 IGBT、IGT/COMFET;

理想开关特性的单一方程描述及其电路的时域分析

理想开关特性的单一方程描述及其电路的时域分析
c ly a d p a tc lyd m o sr t d t tp we lc r n ccr u t a en m e ial o p td w ih al n r cial e n ta e ha o ree to i ic isc n b u rc lyc m u e t t r p s d s ic o es U sng b c wa d Eu e l o ih ,a ao u n e r t d cr uisw ih hep o o e w th m d l. i a k r lra g rt m n l g e i t g a e ic t t i p le a lo b i u a e . m u s s c n a s esm l td
a d S n a e d s rb d r s e t ey w i n y o ee u t n Thes i h i o sd r d a o l n O o r e c i e e p c i l t o l n q a i . v h o w t Sc n i e e sa n n i c n e rr ss o t e o r ss a c e t t r s o n n i ie r ss a c a e it r wih z r e it n e wh n i u n n a d i fn t e it n e whe t t n f. F n i ur s o f he
ZhaoLuhu i, W an Shu ng g ho
( c o l fE e tia E gn e i g S h o l cr l n ie r ,Xi n J o o g Un v r i ,Xi n 7 0 4 ,Chn ) o c n i t n ie st a a y 0 9 a 1 i a

功率半导体器件.

功率半导体器件.

(2.2)
(2.2) Dn, Dp: 电子和空穴的扩散系数 : 高注入条件下漂移区载流子寿命
方程 (2.2)X ( p p) ,(2.3)X (n n ) 得到 (2.4)
稳态条件下 (2.4) 应该为
(2.5)
上式中利用了双极扩散系数:
(2.6)
在 N/N+ 阴极处 (x = +d), 电流主要由电子承载,采用100%电子效率假设,可得 到:
反向阻断电压
反向阻断电压要小于击穿电压,而击穿电压主要有低掺杂去所决定。半导体材料决定 了最大击穿电场EC,对于单边突变结:
VBD
s Ec
2
பைடு நூலகம்2qN D
提高要击穿电压(反向阻断电压)的措施: 1.漂移区足够厚(d),以使在反偏时能够建立起足够宽的耗尽层,这与降低正向压降有 冲突,需要折衷考虑 2.使用低掺杂浓度和高电阻率晶圆,在生产中严格控制化学试剂的质量 3.使用具有高击穿电场的材料,如SiC,GaN
1.7 用于制备功率器件的半导体材料优值
1.8 课程内容及考核
• P-i-n整流器件,双极功率器件,功率MOSFET, 晶闸管类器件,双极-MOS功率器件 • 学时32:周二(1~16周) • 考核方式:平时60%+随堂测试40%
第二章 p-i-n二极管
• • • •
应用:整流器 额定电流: 1A 到几百安培 反向阻断电压: 几十伏特到几千伏特 设计目标: 高反向阻断电压、低正向压降、开关态 间快的转换速度
IC1 M (1I E1 IC 01 )
IC 2 M (2 I E 2 IC 02 )
4.3 晶闸管开关的能带变化
正向阻断态: J1,J3正偏,J2反偏, 空穴从P1注入N1被J2的反偏电场抽 运到P2,使其能带降低,导致J3更 加正偏;与之对应,电子聚集在N1 区使之能带升高,导致J1更加正偏。 在器件端电压不是足够大时,注入 的过剩载流子完全被复合掉 正向导通态:端电压不是足够高时, 载流子除了复合外,剩下的流入外 部电路

第2章 理想开关和半导体开关讲解

第2章 理想开关和半导体开关讲解
随着门极电流幅值的增大,正向转折电压降低 导通后的晶闸管特性和二极管的正向特性相仿 晶闸管本身的压降很小,在1V左右
动态特性
iA 100%
90%
10%
0 td tr
t
uAK
IRM
O
t
trr
URRM tgr
2.5 电力晶体管
GTR的结构和工作原理 与普通的双极结型晶体管基本原理是一样的 主要特性是耐压高、电流大、开关特性好 通常采用至少由两个晶体管按达林顿接法组 成的单元结构 采用集成电路工艺将许多这种单元并联而成
KK
A A
G
G
P1 N1 P2 N2
J1 J2 J3
K
K G
A
a)
b)
c)
晶闸管的外形、结构和电气图形符号
a) 外形 b) 结构 c) 电气图形符号
其他几种可能导通的情况: 阳极电压升高至相当高的数值造成雪崩效应 阳极电压上升率du/dt过高 结温较高 光直接照射硅片,即光触发 光触发可以保证控制电路与主电路之间的 良好绝缘而应用于高压电力设备中之外,其 它都因不易控制而难以应用于实践,称为光 控晶闸管(LTT)
晶闸管往往专指晶闸管的一种基本类型——普通晶闸管 广义上讲,晶闸管还包括其许多类型的派生器件
外形有螺栓型和平板型两种封装 引出阳极A、阴极K和门极控制端)G三个联接端 对于螺栓型封装,通常螺栓是其阳极,能与散热器紧密联接
且安装方便 平板型封装的晶闸管可由两个散热器将其夹在中间
A
G
只有门极触发(包括光触发)是最精确、迅速 而可靠的控制手段
静态特性 承受反向电压时,不论门极是否有触发电流, 晶闸管都不会导通
承受正向电压时,仅在门极有触发电流的情 况下晶闸管才能开通

电力二极管解读

电力二极管解读

电容影响PN结的工作频率,尤其是高速的开关 状态。
1-20
1.2.2
1) 静态特性
电力二极管的基本特性
I
主要指其伏安特性
门槛电压 UTO ,正向电流 IF开始明显增加所对应的 电压。 与IF对应的电力二极管两 端的电压即为其正向电 压降UF 。 承受反向电压时,只有 微小而数值恒定的反向 漏电流。
1-1
1.1
电力电子器件概述
1.1.1 电力电子器件的概念和特征
1.1.2 应用电力电子器件的系统组成
1.1.3 电力电子器件的分类
1.1.4 本章内容和学习要点
1-2
机械开关、理想开关及半导体开关
• 电力电子器件是变流装置中的开关设备,在对它讨 论之前,我们先来了解在电力电子设备中为什么使 用半导体器件而不是机械开关。
(1) 开关在关断状态时,电路中流过的电流、即漏电流 (Ioff)为零。
(2)开关在导通状态时,开关的电压(Von)为零。 (3) 开关从导通状态变为关断状态的时间(toff),或者从关 断状态变为导通状态的时间(ton)为零。
(4) 开关即使是高速、长时间反复导通与关断也不损坏。
1-4
3、半导体开关要求的条件
126fav对应的有效值为157例如如果手册上给出某电力二极管的额定电流fav100a由此得到允许通过正弦半波电流的幅值允许通过任意波形的有效值为157a也就是说额定电流为100a的二极管可以通过幅314a的半波正弦电流可以在全周期内通过任意波形的有效值为157a的电流其功耗发热不超过允许127国产普通功率二极管的型号规定如下
1-32
1.2.4
电力二极管的主要类型
3. 肖特基二极管
以金属和半导体接触形成的势垒为基础的二极管称为肖 特基势垒二极管(Schottky Barrier Diode ——SBD)。 肖特基二极管的弱点

数字电路 第二章门电路

数字电路 第二章门电路

DA
DB B
DC
Y
C
R
–5v
第2章 2.2
由以上分析可知: 只有当A、B、C全为 低电平时,输出端才 为低电平。正好符合
或门的逻辑关系。
A
B C
>1
Y
Y= A+B+C
三、 非门电路
第2章 2.2
RA A
RB
+5V
Rc uY=0.3V 设 uA= 3.6V,T饱和导通
• Y
uY= 0.3V
T
Y= 0
3. CMOS与非门
TP1 与TP2并联,TN1 与TN2串联;
当AB都是高电平时TN1 与TN2
TP2
同时导通TP1 与TP2同时截止;
输出Y为低电平。
当AB中有一个是低电平时, B
TN1 与TN2中有一个截止,
TP1 与TP2中有一个导通, 输出Y为高电平。
A
第2章 2. 3
+VDD
TP1 Y
正逻辑:L=0,H=1 ; 负逻辑:H=0,L=1 。
2. 1 半导体二极管、三极管和 MOS管的开关特性
一、理想开关的开关特性: 1 .静态特性 2. 动态特性
二、半导体二极管的开关特性 1.静态特性:
半导体二极管的结构示意图、符号和伏安 特性
一、二极管等效模型
(b)为理想二极管+恒压源模型 (c)为理想二极管模型
当D、S间加上正 向电压后可产生 漏极电流ID 。
第2章 2. 1
UDS

S UGS G
D ID
N++
NN++
N型导电沟道
耗尽层

全球最专业的电力电子系统模拟工具PLECS

全球最专业的电力电子系统模拟工具PLECS

全球最专业的电力电子系统模拟工具PLECS瑞士PLEXIM GmbH公司开发的系统级电力电子仿真软件PLECS,目前在欧美使用的非常流行。

PLECS是一个用于电路和控制结合的多功能仿真软件,尤其适用于电力电子和传动系统。

不管在是工业领域中的开发者或是学术研究者,PLECS能够加速您对电气系统的设计和分析,大大缩短产品研发周期,提高科研效率。

PLECS以其准确快速的性能、友好的操作界面和诸多有意义的波形分析工具等众多优势,成为当今电力电子工程师追捧的一款仿真软件,被誉为“全球最专业的系统级电力电子电路仿真软件”。

PLEXIM GmbH公司打破了传统意义上的软件开发战略,八年来,该公司采集全球超过40多个国家的PLECS用户的反馈,对PLECS进行定期升级,更多符合电力电子研发工作人员使用的新功能,使得PLECS越来越多的受到使用者的青睐。

一、PLECS产品组成如今的PLECS,已经拥有PLECS Blockset(嵌套版本)(PLECS作为在MATLAB&reg;/Simulink&reg;运行环境下的一款高速电力电子电路仿真工具) 和PLECS Standalone版本(独立版本)两个版本。

版本也由2002年的1.0.1升级至如今的3.1.8。

1、PLECS Blockset (MATLAB/Simulink嵌套版)PLECS嵌套版是基于PLECS以MATLAB/Simulink为运行环境,作为Simulink的工具箱,和Simulnk下的其他模块并列存在,实现无缝兼容。

熟悉Simulink的用户,会很轻松的掌握PLECS软件的编辑原理。

PLECS是特别为电力电子系统的仿真而开发的,当仿真既含有电路部分又含有复杂的控制方案的系统时,它同样是一个非常有效实用的工具。

PLECS与MATLAB/Simulink的结合使用,既有效利用了MATLAB在系统级仿真时控制策略实现较为方便准确的优点,同时弥补了其在电力电子器件级仿真时模型不够精确,元件库不够丰富的缺点,大大的提高了Simulink的模拟仿真性能。

半导体二极管的开关特性_数字逻辑电路基础_[共2页]

半导体二极管的开关特性_数字逻辑电路基础_[共2页]

40 数字逻辑电路基础1.静态特性静态特性是指处于闭合状态或关断状态时,开关所具有的特性。

(1)理想开关处于断开状态时,开关的等效电阻R OFF =∞。

因此,无论U AK 在多大范围内变化,理想开关S 上通过的电流I OFF =0。

(2)理想开关处于闭合状态时,开关的等效电阻R ON =0。

因此,无论流过开关的电流在多大范围内变化,理想开关S 两端的电压U AK =0。

2.动态特性动态特性是指理想开关由断开状态转换到闭合状态,或由闭合状态转换为断开状态时,理想开关所呈现的特性。

(1)理想开关S 的开通时间t ON =0。

说明由断开状态转换到闭合状态时,理想开关不需要时间,可以瞬间完成。

(2)理想开关S 的关断时间t OFF =0。

说明由闭合状态转换到到断开状态时,理想开关也不需要时间,可以瞬间完成。

显然,上述理想开关S 在客观世界中是不存在的。

日常生活中的机械开关,如按压式的家庭用开关,推拉式的刀闸开关,控制电路通、断的继电器触点、接触器触点等,在一定电压和电流的范围内,静态特性与理想开关十分接近,但动态特性较差,完全满足不了数字电路一秒钟开关几百万次乃至数千万次的需要。

而由二极管、三极管构成的电子开关,其静态特性比机械开关的特性稍差,但它们的动态特性却是机械开关无法比拟的,基本上可以满足数字电路对开关的要求。

因此,作为电子开关的二极管、三极管和MOS 管广泛应用于数字电路中。

2.1.2 半导体二极管的开关特性半导体二极管的核心部分是一个PN 结,因此具有“单向导电”性。

当二极管处于正向偏置时,开关二极管导通。

导通二极管的电阻很小,为几十至几百欧,相当于一个闭合的电子开关;二极管处于反向偏置时呈截止状态。

截止时,二极管的电阻很大,一般硅二极管在10M Ω以上,锗二极管也有几十千欧至几百千欧,相当于一个断开的电子开关。

半导体二极管的开关特性在数字电路中起控制电流接通或关断的作用。

1.静态特性二极管的静态特性是指二极管在导通和截止两种稳定状态下的特性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.6 电力MOSFET
也分为结型和绝缘栅型(类似小功率Field Effect Transistor——FET)
但通常主要指绝缘栅型中的MOS型(Metal Oxide Semiconductor FET)
简称 电力MOSFET(Power MOSFET) 结型电力场效应晶体管一般称作静电感应晶
G
G
P1 N1 P2 N2
J1 J2 J3
K
K G
A
a)
b)
c)
晶闸管的外形、结构和电气图形符号
a) 外形 b) 结构 c) 电气图形符号
其他几种可能导通的情况: 阳极电压升高至相当高的数值造成雪崩效应 阳极电压上升率du/dt过高 结温较高 光直接照射硅片,即光触发 光触发可以保证控制电路与主电路之间的 良好绝缘而应用于高压电力设备中之外,其 它都因不易控制而难以应用于实践,称为光 控晶闸管(LTT)
只有门极触发(包括光触发)是最精确、迅速 而可靠的控制手段
静态特性 承受反向电压时,不论门极是否有触发电流, 晶闸管都不会导通
承受正向电压时,仅在门极有触发电流的情 况下晶闸管才能开通
晶闸管一旦导通,门极就失去控制作用 要使晶闸管关断,只能使晶闸管的电流降到
接近于零的某一数值以下
晶闸管的阳 极伏安特性
晶闸管往往专指晶闸管的一种基本类型——普通晶闸管 广义上讲,晶闸管还包括其许多类型的派生器件
外形有螺栓型和平板型两种封装 引出阳极A、阴极K和门极控制端)G三个联接端 对于螺栓型封装,通常螺栓是其阳极,能与散热器紧密联接
且安装方便 平板型封装的晶闸管可由两个散热器将其夹在中间
A
G
KK
A A
第2章 理想开关和半导体开关
赵春柳
理想开关
1.开关处于关断状态时流过的漏电流为零 2.开关处于导通时开关的电压降为零 3.开关的关断状态和导通状态的切换时间为零
理想开关和半导体开关
开关导通时间 开关关断时间 开关动作时间
理想开关 电压降为零 完全关断

半导体开关 存在正向压降
存在漏电流 需要一定时间
按照器件内部电子和空穴两种载流子参与导 电的情况分为三类: 1)单极型器件——由一种载流子参与导 电的器件 2)双极型器件——由电子和空穴两种载 流子参与导电的器件 3)复合型器件——由单极型器件和双极 型器件集成混合而成的器件
2.3 电力二极管
A K
A
K
PN
K
I
J
b电力二极管的外形、结构和电气图形符号
体管(Static Induction Transistor——SIT)
特点——用栅极电压来控制漏极电流 驱动电路简单,需要的驱动功率小 开关速度快,工作频率高 热稳定性优于GTR 电流容量小,耐压低,一般只适用于功率 不超过10kW的电力电子装置
饱和区
共发射极接法时的典型输出特性:截止区、放大区和饱 和区
在电力电子电路中GTR工作在开关状态,即工作在截止 区或饱和区
在开关过程中,即在截止区和饱和区之间过渡时,要经 过放大区 Ic
放大区
ib3 ib2
ib1 ib1<ib2<ib3
截止区 O
Uce
共发射极接法图时1-G1T6R的输出特性
2.1 用开关来进行电能变换
1.理想开关进行电能变换,其开关器件没有能量 损耗,半导体开关器件存在能量损耗; 2.用开关来进行电能变换的控制方式有移相控制 和PWM控制; 3.电能变换后一半采用LC低通滤波器来滤除高频 成分;在采用PWM控制方式中,LC滤波器在设 计时使其谐振频率为开关器件的开关频率的十分 之一左右。
I IF
O UTO UF
U
电力二极管的伏安特性
2.4 晶闸管
晶闸管:晶体闸流管,可控硅整流器(SCR) 1956年美国贝尔实验室发明了晶闸管 1957年美国通用电气公司开发出第一只晶闸管产品 1958年商业化 开辟了电力电子技术迅速发展和广泛应用的崭新时代 20世纪80年代以来,开始被性能更好的全控型器件取 代 能承受的电压和电流容量最高,工作可靠,在大容量 的场合具有重要地位
随着门极电流幅值的增大,正向转折电压降低 导通后的晶闸管特性和二极管的正向特性相仿 晶闸管本身的压降很小,在1V左右
动态特性
iA 100%
90%
10%
0 td tr
t
uAK
IRM
O
t
trr
URRM tgr
2.5 电力晶体管
GTR的结构和工作原理 与普通的双极结型晶体管基本原理是一样的 主要特性是耐压高、电流大、开关特性好 通常采用至少由两个晶体管按达林顿接法组 成的单元结构 采用集成电路工艺将许多这种单元并联而成
3)不可控器件——不能用控制信号来控制其 通断,因此也就不需要驱动电路 电力二极管 只有两个端子,器件的通和断是由其在主 电路中承受的电压和电流决定的
按照驱动电路加在器件控制端和公共端之间信号 的 性质,分为两类: 1)电流驱动型——通过从控制端注入或者抽 出电流来实现导通或者关断的控制 2)电压驱动型——仅通过在控制端和公共端 之间施加一定的电压信号就可实现导通或者关 断的控制 电压驱动型器件实际上是通过加在控制端上的 电压在器件的两个主电路端子之间产生可控的 电场来改变流过器件的电流大小和通断状态, 所以又称为场控器件(Field Controlled Device), 或场效应器件
第I象限的是 正向特性
第III象限的 是反向特性
URSM URRM -UA
雪崩 击穿
IA 正向 导通
IH
IG2
IG1 IG=0
O
UDRM Ubo +UA
UDSM
-IA
晶闸管阳极伏安特性 IG2>IG1>IG
IG=0时,器件两端施加正向电压,正向阻断状 态,只有很小的正向漏电流流过,正向电压超 过临界极限即正向转折电压Ubo,则漏电流急 剧增大,器件开通。这种开通叫“硬开通”, 一般不允许硬开通。
2.2 电力半导体器件的分类
按照器件能够被控制电路信号所控制的程度, 分为以下三类: 1)半控型器件——通过控制信号可以控制 其导通而不能控制其关断 晶闸管(Thyristor)及其大部分派生器件 器件的关断由其在主电路中承受的电压和 电流决定
2)全控型器件——通过控制信号既可控制其导 通又可控制其关断,又称自关断器件 绝缘栅双极晶体管(IGBT) 电力场效应晶体管(Power MOSFET,简称 为电力MOSFET) 门极可关断晶闸管(GTO)
相关文档
最新文档