简单平面桁架的内力计算

合集下载

平面桁架杆件内力的虚位移原理求解

平面桁架杆件内力的虚位移原理求解

平面桁架杆件内力的虚位移原理求解平面桁架杆件内力的虚位移原理求解平面桁架杆件内力的虚位移法就是通过对一个平面桁架杆件分别在不同的横截面处作轴力作用,从而求出在相互之间的杆件的虚位移及节点内部力,以此作为最终求解这个结构内力的手段。

该原理具有可操作性好、局部支座独立性强、保守性好等特点,是解决桁架杆件内力不确定性和复杂性的有效方法。

具体步骤如下:一、选取横截面在选取横截面时,首先确定受力过程,即在该结构中确定各结构件的受力情况或作用力方向。

根据力学原理,如果在任意结构单元面上作当量的力和力矩都是等价的,那么就可以合理的在该杆件的横截面上选取合理的横截面去分析这一结构横截面单元的内力。

二、确定虚力系数接下来,我们需要根据上一步确定的受力情况,确定每一横截面上的虚力系数。

虚力系数是根据横截面单元元素的面积、材料的刚度等诸多因素而确定的。

虚力系数的计算公式是:Q=m*b/d,其中m为横截面单元的面积,b和d为杆件的刚度,以及杆件的厚度。

三、计算横截面的虚力根据已经确定的虚力系数,就可以求出每一横截面单元上的虚力,即就可以由横截面上的受力确定每一单元上的虚力值。

四、求解节点上的抗力根据虚位移原理及上面确定的横截面单元虚力,就可以求出这个桁架杆件上每个节点处的抗力。

该原理指出:节点处的抗力可以由所有横截面单元虚力的总和相加得到,即按下式求解:F1=Q1-Q2+Q3-Q4,其中Q1指的是横截面1上的虚力,Q2指的是横截面2上的虚力,以此类推。

五、求解内力最后,根据以上分析,就可以求出该平面桁架杆件上每个节点处的抗力,从而求出这个结构的主/副矩,悬臂梁杆件的弯矩、压弯构件的压力矩、支座上反力等内力。

通过分析可以看出,平面桁架杆件内力的虚位移法是解决桁架结构内力问题的有效方法,具有可操作性好、局部支座独立性强、保守性好等特点,在实际工程中得到广泛应用。

第6次 简单平面桁架的内力计算

第6次 简单平面桁架的内力计算

a
a
a
a
B
C
D
FC
1.取整体为研究对象, 受力分析如图。
FAy
A
FAx
F
E FE
FB
a
a
a
a
C
D
B
FC
§2.9简单平面桁架的内力计算 例题 3-10
2.列平衡方程。
Fx 0, Fy 0, M AF 0,
FAx FE 0 FB FAy FC 0 FC a FE a FB 3a 0
§2.9简单平面桁架的内力计算
几个概念
平面桁架—— 所有杆件都在同一平面内的桁架。 节 点—— 桁架中杆件的铰链接头。 杆件内力—— 各杆件所承受的力。
§2.9简单平面桁架的内力计算
几个概念
无余杆桁架—— 如果从桁架中任意抽去一根杆件,则桁架 就会活动变形,即失去形状的固定性。
§2.9简单平面桁架的内力计算
FCA FCD FCE cos 45 0
FAy
A
FAx
F
E FE
FB
a
a
a
a
C
D
B
FC
Fy 0,
FC FCF FCE cos 45 0 解得
FCE 2 2 kN , FCD 2 kN
§2.9简单平面桁架的内力计算 例题 3-10
FDE
8.取节点D,受力分析如图。
A
FAx
Fx 0,
B
FBD FBE cos 45 0
Fy 0,
F
E FE
FB
a
a
a
a
C

理论力学4.4第4-4章平面简单桁架的内力计算

理论力学4.4第4-4章平面简单桁架的内力计算
20kN 1 A C 2 3 4 5 6 7 8 9 10 11 12 13 14 18 21 B 15 17 19 16 20
x y
0, F2 20 0 0, F1 0
解得: F1 0 F2 20kN
20kN
C
FAx F3 F4 FAy
10kN 10kN 10kN 10kN
F1
A
FBy
F2
FAx
解:(1) 取整体为研究对象
FAy
F1
(3) 取节点A为研究对象
F 0 , F F F cos 45 0 x Ax 4 3 F 0 , F F F sin 45 0 y Ay 1 3
F 0, F F 0, F M 0,
再以截面m-n左面部分为研究对象 MC 0
F3 A C FA F2 F4 F1
Fa F1b FA 2a 0 F1 4a F b
F
F
b
FB
例 题 4
C
求:桁架1、2杆的力。 解:(1) 取整体为研究对象
D a
M
解得:
a
B
0, P.2a FAy 3a 0
FAy 2P 3
α A E F FAC α α C α α
O α B C F G D FBC FGy FGx M
2M CG 2l cos 30 FBC 3l 参考受力图(b), 选x轴与FOB垂直。 ' O O F 0 , F . COS 30 F . COS 60 0 x BC AB
Fi Fix i Fiy j FR
i 1 i 1 i 1
n
n
n

平面简单桁架内力计算

平面简单桁架内力计算

截面法
假想用一截面截取出桁架的某一部分作为研究对象求解方法
1. 被截开杆件的内力成为该研究对象外力,可应用平面一


般力系的平衡条件求出这些被截开杆件的内力。
要 2. 由于平面一般力系只有三个独立平衡方程,所以一般说 点
来,被截杆件应不超出三个。
适用于求桁架中某些指定杆件的内力
平面简单桁架内力计算
平面简单桁架内力计算
1.桁架:一种由杆件彼此在两端用铰链连接而成的结构。
按 平面桁架:所有杆件的轴
空间桁架:杆件轴线不
空 间
线都在同一平面内的桁架;
在同一平面内的桁架。




所有杆件、结点、荷载和反力都共面。
平面简单桁架内力计算
按内力计算分类 静定桁架:杆件的内力可用静力平衡方程全部求得的桁架。 超静定桁架:杆件的内力不能用静力平衡方程全部求得的桁架。
即表示该杆受压。
节点法适用于求解全部杆件内力的情况
平面简单桁架内力计算
1.节点法:逐一取桁架节点 为研究对象,利用平面汇交 力系的平衡条件求解桁架杆 件内力的方法。
F1
3
5
R1X 1
4
6
ห้องสมุดไป่ตู้
R1y
F2
7
2 8
R2y
N13 R1X
N14
R1y
F1
3
N35
N31
N36
N34
N43
N41
N46
4
平面简单桁架内力计算桁架的内力计算
2.截面法
3 F1 N355
F2 7
R1X 1
4 R1y
N36 N46 6
应用平面一般力系平衡条件

静力学-平面简单桁架的内力计算

静力学-平面简单桁架的内力计算

3. 取左(右)部分分析, 列平面任意力系的平衡方程。
2. 截面法 求某几根杆件内力常用的方法 —平面任意力系问题
例: 求:1、2、3杆件内力
3. 取左(右)部分分析,假设 “拉”
C ①D
FAy

A

F FB 列平面任C意力①系的平F衡1方程。
B
FAy
② F2
FAx E
G
F1
F2
解:1. 求支座约束力
A
(2)
F
f f
A
如果作用于物块的全部主动力合力 F
的作用线落在摩擦角之外( ≥ f ),则
无论此合力多小,物块必滑动。
FRA
2. 自锁现象
(phenomena of self-locking)
FRA
FRA
0 f 物体静止平衡时,全约束力必在摩擦角内
Fmax FS
FN f
A
(1)
F
f f
(2)
A
FAx
③ E
F3
P1
MA0
FB
ME 0
F1
MB 0
FAy
Fy 0
F2
Fx 0
FAx
Fx 0
F3
2. 把桁架截开 不要截在节点处
赛 车 起 跑
为什么赛车运动员起跑前要将车轮与 地面摩擦生烟?
第四章 摩擦 Friction
摩擦(friction): 一种极其复杂的物理-力学现象。
涉及:
“滚动摩阻定律”
—滚动摩阻系数 ,长度量纲
r
P A
FS FN
Q
r
临界平衡 P
A
Mf
FS
FN

简单桁架内力的计算方法

简单桁架内力的计算方法
25您的位置:在线学习一>在线教程一>教学内容
3.4
教学要求掌握静定平面桁架结构的受力特点和结构特点,熟练掌握桁架结构的内 力计算方法——结点法、截面法、联合法
3.4.1桁架的特点和组成
3.4.1.1静定平面桁架
桁架结构是指若干直杆在两端铰接组成的静定结构。这种结构形式在桥梁和房屋建筑中应
用较为广泛,如南京长江大桥、钢木屋架等。
从只有两个未知力的结点开始,按的。结点法是用平面汇交力系来求解内力照
二元体规则组成简单桁架的次序 相反的顺序,逐个截取结点,可求出 全部杆件轴力。
结点单杆:如果同一结点的所有内力均为未知的各杆中,除某一杆外,其余各杆都共线,则该杆
称为结点的单杆。(图3-15a、b)
结点单杆具有如下性质:
(1)结点单杆的内力,可以由该结点的平衡条件直接求出。
计算桁架的内力宜从几何分析入手,以便选择适当的计算方法,灵活的选取隔离体和平 衡方程。如有零杆,先将零杆判断岀来, 再计算其余杆件的内力。 以减少运算工作量,简化计算。
结点法3.421
结点法:截取桁架的一个结点为隔离体计算桁架内力的方法。
结点上的荷载、支座反力和杆件轴力作用线都汇交于一点,组成了平面汇交力系, 因此,
)3-14C复杂桁架:不属于前两类的桁架。(图)3
(•
342桁架内力计算的方法 桁架结构的内力计算方法主要为:结点法、截面法、联合法
结点法一一适用于计算简单桁架。
截面法一一适用于计算联合桁架、简单桁架中少数杆件的计算。
联合法——在解决一些复杂的桁架时,单独应用结点法或截面法往往不能够求解结构的内 力,这时需要将这两种方法进行联合应用,从而进行解题。
忙:7
):3-16b(1)计算支座反力(图(2)计算各杆内力

截面法求桁架杆件内力

截面法求桁架杆件内力

截面法‹1截面法可以快速求出某一内力,通常取结构 的一部分为隔离体,其上力系为平面一般力系。

每个隔离体上有3个独立平衡方程。

一般表示 为: ∑ FX = 0 投影法 ∑ FY = 0 力矩法 ∑M = 0 计算要点: 尽量使一个方程解一个未知数,避免求解 联立方程。

一. 力矩法例:求图示桁架1、2、3杆的轴力。

2VAVB解:由整体平衡条件求得支座反力 VA=VB HA=0作Ⅰ--Ⅰ截面,截开1、2、3杆的轴力 取截面以左为隔离体。

Ⅰ3Ⅰ(1)求1杆轴力N1K14选取未知力N2和N3 延长线的交点K1作 为取矩点。

N1 对K1点取矩,由 ∑MK1 = 0 从而求出所求未知 力N1。

VA(2)求2杆轴力N2N2 K2 VAY252X2由∑MK2 = 0 ,比例关系从而求出所求未知力Y2。

2杆轴力N2(3)求3杆轴力N3Y3 N3 X3K3 VA6由 ∑MK3 = 0比例关系从而求出所求未知力X3。

3杆轴力N3力矩法要点:„7„„欲求某指定杆内力,则作一截面,截开待求 杆; 隔离体上除所求未知力外,其余未知力的延 长线均交于某一点K。

对K点取矩,从而求出所求未知力 。

(1)选择其余未知力延长线的交点K作为取矩 点,从而用∑MK=0,求出指定杆内力。

(2)将斜杆的内力放在某一个合适的点上分 解,使其一个分力通过取矩点K。

例1. 求图示桁架杆件a、b、c的轴力890kN30kN作Ⅰ—Ⅰ截面Ⅰ9Ⅰ求NaNa 求Na时,对另 外两个未知力的 交点C取矩,10C由 ΣMc=0,得 Na×4+30×8=030kN解得: Na =- 60kN求NbD Xb E Yb Nb30kN11求Nb时,对点D取矩。

将Nb 其在E点处分解 为水平和竖向分量。

由ΣMD=0,得 Yb×12+40×4 - 30×12=0 解得 Yb=16.67 kN由比例关系得到:N b = 2Yb = 2 × 16.67 = 23.57kN求NcYc XcD Nc12求Nc时,对点E取矩。

四、平面桁架的内力计算

四、平面桁架的内力计算
第三章 平面任意力系和平面平行力系
三、平面简单桁架的内力计算
2.平面简单桁架
以一个铰链三角形框架为基础,每增一个节点需增 加二根杆件,如此构成的无多余杆的平面桁架。
总杆数 m
总节点数 n
m 3 2(n 3)
m 2n 3
第三章 平面任意力系和平面平行力系
三、平面简单桁架的内力计算
m 2n 3 平面复杂(超静定)桁架:如果从桁架中抽去某几根杆 件,桁架不会活动变形。
a
C
D
F3
FC
Fx 0, F3 FAx F1 F2 cos 45 0 Fy 0, FAy FC F2 cos 45 0 M C F 0, F1 a FAy a 0
求解得 F1 2 kN F2 2 2 kN F3 2 kN
第三章 平面任意力系和平面平行力系
三、平面简单桁架的内力计算
n
FR Fi i 1
—— 力系的主矢
第三章 平面任意力系和平面平行力系
n
M O
M O (Fi )
i 1
—— 力系对简化中心的主矩
本章小结 3、平面任意力系向一点简化的结果分析 (1)主矢不等于零,即 FR’ ≠ 0
主矩 合成结果
说明
MO = 0
合力 FR’
此力为原力系的合力,合力的 作用线通过简化中心。
这就是桁架结构广泛应用的主要原因 同时应注意:实际桁架和理想桁架是有差别 的,对重要的建筑物上采用的桁架结构,还需 考虑节点刚性、非节点荷载和节点偏心等造成 的影响。
第三章 平面任意力系和平面平行力系
三、平面简单桁架的内力计算 (三) 计算平面简单桁架杆件内力的方法
1、节点法—— 应用汇交力系平衡方程,逐一地选取平面简
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a
C
FAx
解得
FC
FCE 2 2 kN ,
FCD 2 kN
FDE
D
8.取节点D,受力分析如图。 列平衡方程
FDB
FDC
F
x
0,
FDB FDC 0
F E a D
FAy
A a
FE
a
F
FB
B
y
0,
FDE 0
解得
a
C
FAx
FC
FDB 3 kN ,
FDE 0
9.取节点B,受力分析如图。
简单平面桁架的内力计算
桁架---一种由若干杆件彼此在两
端用铰链连接而成,受力后几何形 状不变的结构。
如图分别桁架和桥梁桁架。是普通屋顶
桁架结构
平面桁架—— 所有杆件都在同一平面内的桁架。 节 点—— 桁架中杆件的铰链接头。
杆件内力—— 各杆件所承受的力。
简单平面桁架—— 以一个铰链三角形框架为基础,每增加一 个节点需增加二根杆件,可以构成无余杆
的平面桁架。
桁架计算的常见假设 (1) 桁架中的杆件都是直杆,并用光滑铰链连接。 (2) 桁架的节点受力上,并在桁架的平面内。 (3) 桁架的自重忽略不计,或被平均分配到杆件两端 的节点上,这样的桁架称为理想桁架。
桁架结构的优点
可以充分发挥材料的作用,减轻结构的重量,节约材料。
简单平面桁架的静定性 当简单平面桁架的支座反力不多于3个时,求其杆件内力 的问题是静定的,否则不静定。
FBE FB
列平衡方程
FBD
B
F
x
0,
FBD FBE cos 45 0
F
FAy
A a C F E a D
y
0,
FE
a
FB FBE cos 45 0
FB
B
a
解得 FBD 2 2 kN
FAx
FC
FBE 2 2 kN
§3–5 简单平面桁架的内力计算
解: 截面法
FE
a B
4.联立求解。
FB
FAy
A a
F
E a D
FAx= -2 kN
FAy= 2 kN FB = 2 kN
aHale Waihona Puke CFAxFC
5.取节点A,受力分析如图。
FAF
A FAx FAy
FE
a B
列平衡方程
FAC
F
x
0,
FAx FAC FAF cos 45 0
F
F E a D
y
0,
3. 计算桁架杆件内力的方法
节点法—— 应用共点力系平衡条件,逐一研究桁架上每个
节点的平衡。
截面法—— 用应用平面任意力系的平衡条件,研究桁架由 截面切出的某些部分的平衡。
例3-10 如图平面桁架,求各杆内力。已知铅垂力FC=4 kN, 水平力FE=2 kN。
F E a A a C a a B
FE
思考题
C
D
用截面法求杆1,2,3的内力。 用截面m,并取上半部分。 m
a
1
E 2 F
3
m
a B
F
a
x
0, 求出杆2的内力F2。
C
A
a
a
F
M
0, 求出杆3的内力F3。
M
D
0, 求出杆1的内力F1。
D
FC
解: 节点法
1.取整体为研究 对象,受力分析如图。
FAy
A a C F
E
a
FE
a
FB
B
a
FAx
D
FC
3.列平衡方程。
F 0, Fy 0, M F 0,
x
A
FAx FE 0
FB FAy FC 0
FC a FE a FB 3a 0
解得
a
C
FAx
FC
FFE 2 kN, FFC 2 kN
FCF
C
7.取节点C,受力分析如图。
FCE
FCD FC
列平衡方程
FCA
F
x
0,
FCA FCD FCE cos 45 0
FE
a B
F
FB
y
0,
FAy
A a
F
E a D
FC FCF FCE cos 45 0
F E a
例题 3-10
FE
a B
A
a C
a
D
FC
F
E a D
1. 取整体为研究对象,
FAy
A a
FE
a
FB
B
a C
受力分析如图。
FAx
FC
2.列平衡方程。
F
F
x
0,
0,
FAx FE 0
FB FAy FC 0
y
M F 0,
A
FC a FE a FB 3a 0
F 0, F Fy 0, F M F 0,
x
C
CD
FAx FFE FCE cos 45 0
FC FCE cos 45 0
Ay
FFE a FAy a 0
联立求解得
FCE 2 2 kN, FCD 2 kN, FFE 2 kN
FAy
A a
FB
FAy FAF cos 45 0
解得
a
C
FAx
FC
FAF 2 2 kN,
FAC 4 kN
F FFA FFC
FFE
6.取节点F,受力分析如图。
列平衡方程
F
x
0,
FFE FFA cos 45 0
F E a D
FAy
A a
FE
a
F
FB
B
y
0,
FFC FFA cos 45 0
3.联立求解。
FAy
A
F
E a D
FE
a
FB
B
FAx= -2 kN FAy= 2 kN FB = 2 kN
a
C
a
FAx
FC
F
m
E a D
FE
a
FAy
A
FB
B
4.作一截面m-m将三杆截断,取
FAx
a C
a
左部分为分离体,受力分析如图。
5.列平衡方程。
FC
F
m
FFE
E
FAy
A
FAx
a
FCE
C
FCD
D
FC
相关文档
最新文档