激励为任意波形的响应与卷积积分

合集下载

阶跃响应冲击响应与卷积积分法

阶跃响应冲击响应与卷积积分法

补充第一章 阶跃响应冲击响应与卷积积分法电路中除电阻元件外,还包括有电容和电感等动态元件,如此的电路称为动态电路。

在动态电路分析中,鼓励和响应都表示为时刻t 的函数,采纳微分方程求解电路和分析电路的方式,称为时域分析法。

本章要紧讨论一阶电路的阶跃响应、冲激响应、任意输入的零状态响应,和二阶电路在恒定输入下的零状态响应。

§1-1 阶跃响应和冲激响应电路的输入除恒定不变的常量(即恒定输入或直流输入)和按正弦规律变更的交流量(即正弦输入)之外,常见的还有另外两种奇异函数,即阶跃函数和冲激函数。

本节就来讨论这两种函数的概念、性质及作用于线性动态电路时所引发的响应。

单位阶跃函数(unit step function )用()t ε来表示,它概念为 0(0)()1(0)t t t ε<⎧=⎨>⎩ 波形如图1-1(a )所示,在0t =处,()t ε由0跃变至1。

若是单位阶跃函数的跃变点不是在0t =处,而是在0t t =处,波形如图1-1(b )所示,那么称它为延迟的单位阶跃函数,用0()t t ε-表示,即0000()()1()t t t t t t ε<⎧-=⎨>⎩图1-1单位阶跃函数与任一常量K 的乘积()K t ε仍是一个阶跃函数,现在阶跃的幅度为K 。

单位阶跃函数与任一函数()f t 的乘积将只保留该函数在阶跃点以后的值,而使阶跃点以前的值变成零,即有0000(0)()()()(0)0()()()()()t f t t f t t t t f t t t f t t t εε<⎧=⎨>⎩<⎧-=⎨>⎩因此,单位阶跃函数能够用来“起始”一个任意函数()f t ,这给函数的表示带来了方便。

例如关于线性函数()(f t Kt K =为常数),由图1-2(a)、(b)、(c)能够清楚地看出()f t 、()()f t t ε及0()()f t t t ε-的不同。

任意波形激励下的动态响应与卷积积分

任意波形激励下的动态响应与卷积积分

任意波形激励下的动态响应与卷积积分湖北民族学院信息工程学院湖北恩施445000摘要:在一二阶电路分析中,卷积积分具有十分重要的意义,特别是在一些内部网络未知的电路结构中,由于给出描述电路系统的微分方程十分的困难,目前只能通过实验获得相应的数据和单位冲激响应的曲线,据此响应,利用卷积积分的方法即可求解出电路中对任意波形激励信号的响应。

在我们的学习过程中,最常见的就是由电阻、电容、电感组成的RC、RL一阶电路网络和RLC二阶电路网络,而这些网络结构在零状态下产生的响应的求解已非常清晰,但是对于复杂的冲激波形的响应,用现有的方法求解显得十分棘手,而本文将通过探究卷积积分的性质及计算方法,分别浅析一阶、二阶电路在此类输入状态下的响应。

关键词:卷积积分一阶电路二阶电路一、引言:由于至今我们分析的电路主要是线性电路,且线性电路满足齐次性、可加性和延时性,任意波形的时间函数)(t f可以被看成是一系列强度不同的、时间上依次延迟dt的冲击函数叠加。

在前面的学习中我们基本了解了用微分方程描述动态电路的基本方法,并对不同动态元件的初始条件进行了讨论,在分析一阶二阶电路的过程中,分别讨论了RC电路和LC电路的各种状态的响应,但是以前所分析的各种情形都是相对独立的,而卷积积分作为时域电路分析的一种基本工具在分析电路响应状态的过程中有着极其广泛的应用,卷积积分对于信号处理、控制理论和动态电路分析均具有重要意义,因此,本文将综合一、二阶电路的各种响应状态将卷积积分的方法做一个初步的探究。

二、卷积积分:2.1 先看卷积积分(Convolution)的定义:设有两个时间函数f1(t)和f2(t)(在t<0时均为零),则f1(t)和f2(t)的卷积通常用f1(t)*f2(t)表示,并定义ξξξd f t f t f t f t)()()(*)(20121-=⎰,称为)(1t f 与)(2t f 的卷积。

当)(t δ作用于电路时,其对应的冲激激励的响应设为)(t h ;当)(t A i δ作用于电路时,那么其对应的冲激响应应为)(t h A i ;如果)(t δ延迟i t 秒作用,那么其对应的延迟冲激响应为)(i t t h -;则)(i i t t A -δ作用于为)(i i t t h A -。

冲激响应和卷积分析

冲激响应和卷积分析

实验2离散系统的差分方程、冲激响应和卷积分析一、实验目的1 加深对离散系统的差分方程、冲激响应和卷积分析方法的理解。

二、实验原理离散系统其输入、输出关系可用以下差分方程描述:∑=∑=-=-M k k N k k k n x p k n y d 00][][ 输入信号分解为冲激信号:∑-=∞-∞=m m n m x n x ][][][δ记系统单位冲激响应 : ][][n h n →δ则系统响应为如下的卷积计算式: ∑∞-∞=-=*=m m n h m x n h n x n y ][][][][][ 当N k d k ,...2,1,0==时,h[n]是有限长度的(n :[0,M]),称系统为FIR 系统;反之,称系统为IIR 系统。

在MATLAB 中,可以用函数y=Filter(p,d,x) 求解差分方程,也可以用函数y=Conv(x,h)计算卷积。

二、实验内容编制程序求解下列两个系统的单位冲激响应和阶跃响应,并绘出其图形。

(1): y [n ]+0.75y [n -1]+0.125y [n -2]=x [n ]-x [n -1](2): y [n ]=0.25{x [n -1]+x [n -2]+x [n -3]+x [n -4]+x [n -5]}程序(1):A=[1,0.75,0.125];B=[1,-1];x1=[1,zeros(1,10)];x2=ones(1,20);y1=filter(B,A,x1);subplot(2,2,1);stem(y1);title('y1单位冲击响应')y2=filter(B,A,x2);subplot(2,2,2);stem(y2);title('y2阶跃响应');y3=conv(x1,y1);subplot(2,2,3);stem(y3);title('y3卷积');y4=conv(x2,y1);subplot(2,2,4);stem(y4);title('y4卷积')程序(1)图程序(2):A=[1];B=[0,0.25,0.25,0.25,0.25];x1=[1,zeros(1,10)];x2=ones(1,20);y1=filter(B,A,x1);subplot(2,2,1);stem(y1);title('y1单位冲击响应')y2=filter(B,A,x2);subplot(2,2,2);stem(y2);title('y2阶跃响应');y3=conv(x1,y1);subplot(2,2,3);stem(y3);title('y3卷积');y4=conv(x2,y1);subplot(2,2,4);stem(y4);title('y4卷积')程序(2)图三、理论计算:经计算:系统(1): y[n]+0.75y[n-1]+0.125y[n-2]=x[n]-x[n-1]理论冲激响应为:因为y[n]为因果函数,由递归计算所得:X[n]= δ(n)当n<0时,h(n)=0h(0)=1, h(1)=-7/4, h(2)=19/16, h(3)=-43/64 ..... ......h(z)=7.5*(-0.5).^n*u(n)- (-0.25).^n*u(n)理论阶跃响应为:因为y[n]为因果函数,由递归计算所得:X[n]=u(n)当n<0时,g(n)=0g(0)=1, g(1)=-3/4, g(2)=7/16, g(3)=-9/64.............g(z)=1.5*(-0.5).^n-(-0.25).^n系统(2):y[n]=0.25{x[n-1]+x[n-2]+x[n-3]+x[n-4]+x[n-5]}同理,由递归方法可得:理论冲激响应为:h(z)=0.25*[δ(n-1)+ δ(n-2)+ δ(n-3)+ δ(n-4]理论阶跃响应为:g(z)=0.25*[u(n-1)+ u(n-2)+ u(n-3)+ u(n-4)]将n值分别代入理论式h(z)和g(z),将结果与程序结果图比较可知理论与程序结果一致。

信号与系统(郑君里)第二版讲义第二章

信号与系统(郑君里)第二版讲义第二章

信号与系统(郑君⾥)第⼆版讲义第⼆章第⼆章连续时间系统的时域分析第⼀讲微分⽅程的建⽴与求解⼀、微分⽅程的建⽴与求解对电路系统建⽴微分⽅程,其各⽀路的电流、电压将为两种约束所⽀配: 1.来⾃连接⽅式的约束:KVL 和KIL ,与元件的性质⽆关。

2.来⾃元件伏安关系的约束:与元件的连接⽅式⽆关。

例2-1 如图2-1所⽰电路,激励信号为,求输出信号。

电路起始电压为零。

图2-1解以输出电压为响应变量,列回路电压⽅程:所以齐次解为:。

因激励信号为,若,则,将其代⼊微分⽅程:所以,从⽽求得完全解:由于电路起始电压为零并且输⼊不是冲激信号,所以电容两端电压不会发⽣跳变,,从⽽若,则特解为,将其代⼊微分⽅程,并利⽤起始条件求出系数,从⽽得到:⼆、起始条件的跳变——从到1.系统的状态(起始与初始状态)(1)系统的状态:系统在某⼀时刻的状态是⼀组必须知道的最少量的数据,利⽤这组数据和系统的模型以及该时刻接⼊的激励信号,就能够完全确定系统任何时刻的响应。

由于激励信号的接⼊,系统响应及其各阶导数可能在t=0时刻发⽣跳变,所以以表⽰激励接⼊之前的瞬时,⽽以表⽰激励接⼊以后的瞬时。

(2)起始状态:,它决定了零输⼊响应,在激励接⼊之前的瞬时t=系统的状态,它总结了计算未来响应所需要的过去的全部信息。

(3)初始状态:跳变量,它决定了零状态响应,在激励接⼊之后的瞬时系统的状态。

(4)初始条件:它决定了完全响应。

这三个量的关系是:。

2.初始条件的确定(换路定律)电容电压和电感电流在换路(电路接通、断开、接线突变、电路参数突变、电源突变)瞬间前后不能发⽣突变,即是连续的。

时不变:时变:例电路如图2-2所⽰,t=0以前开关位于"1"已进⼊稳态,t=0时刻,开关⾃"1"转⾄"2"。

(1)试从物理概念判断、和、。

(2)写出t>0时间内描述系统的微分⽅程式,求的完全响应。

图2-2解(1)换路前电路处于稳态电感相当于短路,电感电流,电容相当于开路= 0,= = 0。

卷积积分与离散卷积--方波序列和方波序列的卷积及卷积过程演示

卷积积分与离散卷积--方波序列和方波序列的卷积及卷积过程演示

1引言信号的卷积是针对时域信号处理的一种分析方法,信号的卷积一般用于求取信号通过某系统后的响应。

在信号与系统中,我们通常求取某系统的单位冲激响应,所求得的h(k)可作为系统的时域表征。

任意系统的系统响应可用卷积的方法求得。

离散时间信号是时间上不连续的“序列”,因此,激励信号分解为脉冲序列的工作就很容易完成,对应每个样值激励,系统得到对此样值的响应。

每一响应也是一个离散时间序列,把这些序列叠加既得零状态响应。

因为离散量的叠加无需进行积分,因此,叠加过程表现为求“卷积和”。

LabVIEW是一种程序开发环境,由美国国家仪器(NI)公司研制开发的,类似于C和BASIC开发环境,但是LabVIEW与其他计算机语言的显著区别是:其他计算机语言都是采用基于文本的语言产生代码,而LabVIEW使用的是图形化编辑语言G编写程序,产生的程序是框图的形式。

本课程设计就是利用LabVIEW软件来实现方波序列卷积的过程,然后对方波序列移位过程进行演示,通过卷积过程演示和卷积和的波形图可以看出,方波序列的幅值大小不会影响卷积和的宽度而方波序列的宽度大小就会影响卷积序列相交部分的范围宽度即卷积宽度。

通过labview你能直观清晰地观察卷积的过程。

2虚拟仪器开发软件LabVIEW8.2入门2.1 LabVIEW介绍LabVIEW(Laboratory Virtual Instrument Engineering Workbench)是一种用图标代替文本行创建应用程序的图形化编程语言。

传统文本编程语言根据语句和指令的先后顺序决定程序执行顺序,LabVIEW 则采用数据流编程方式,程序框图中节点之间的数据流向决定VI及函数的执行顺序。

VI指虚拟仪器,是 LabVIEW]的程序模块。

LabVIEW 提供很多外观与传统仪器(如示波器、万用表)类似的控件,可用来方便地创建用户界面。

用户界面在 LabVIEW中被称为前面板。

使用图标和连线,可以通过编程对前面板上的对象进行控制。

卷积积分(Convolution)的定义(精)

卷积积分(Convolution)的定义(精)

e(t) r(t) r ( t ) e ( t ) * h( t )

线性网络 零状态
t
h(t)
r (t ) e( )h(t )d
0
物理解释: 将激励 e(t)看成一系列宽度为 ,高度为 e(k )矩形脉冲叠加的。
e( t )
e(0)
o
2
k (k+1)
性质4筛分性性质3时刻观察到的响应应为0时间内所有激励产生的响应的和冲激响应积分参变量观察响应时刻解
6.10 卷积积分
一、卷积积分(Convolution)的定义 定义: 设 f1(t), f2(t) t < 0 均为零
f1 (t ) * f 2 (t ) f1 ( ) f 2 (t )d
f1 (t ) f 2 ( )d f 2 ( t ) * f1 ( t )
性质2
f1 (t ) *[ f 2 (t ) f 3 (t )] f1 (t ) * f 2 (t ) f1 (t ) * f 3 (t )
性质3
[ f1 (t ) * f 2 (t )]* f 3 (t ) f1 (t ) *[ f 2 (t ) * f 3 (t )]
0
t
二、卷积积分的性质 性质1
f1 ( t ) * f 2 ( t ) f 2 ( t ) * f 1 ( t )
t
证明 f1 (t ) * f 2 (t ) 0 f1 ( ) f 2 (t )d
f1 ( t ) f 2 ( )(d )
t
t 0
0
令 = t :0 t : t 0
f (t ) 2e d 2e ( t 1) 2e t

电路 第十四章 网络函数

电路 第十四章 网络函数

第十四章 网络函数14.1 基本概念14.1.1 网络函数的定义及性质1.定义:在线性非时变的电路中,电路在单一的独立激励下,其零状态响应()t r 的象函数()s R 与激励()t e 的象函数()s E 之比定义为该电路的网络函数()s H ,即()()()s E s R s H def=。

2.网络函数的形式(1)驱动点函数:与网络在一对端子处的电压和电流有关,又分为驱动点阻抗函数()s Z 和驱动点导纳函数()s Y ,定义为:()()()()s Y s I s U s Z 1==“驱动点”指的是若激励在某一端口,则响应也从此端口观察。

(2)转移函数:又称传递函数。

转移函数的输入和输出在电路的不同端口,它的可能的形式有以下几种:电压转移函数 ()()()s U s U s H U 12=电流转移函数 ()()()s I s I s H I 12=转移阻抗函数 ()()()s I s U s H Z 12=转移导纳函数 ()()()s U s I s H Y 12=3. 网络函数的性质(1)网络函数是一实系数的有理分式,可写成两个s 多项式的比值:()()()01110111b s b s b s a s a s a s a s D s N s H n n n m m m m ++++++++==---- 函数()s N ,()s D 是系数分别为k a 和k b 的s 多项时,系数k a 和k b 是实数。

(2)当输入信号()t e 为单位冲激()t δ时,()()[]1==t L s E δ,则输出()()()s H s H s R =⨯=1该式说明,电路的单位冲激响应网络函数的原函数,即()()[]s H L t h 1-=14.1.2 网络函数的零极点与冲激响应()t h 的关系1. 网络函数的零极点:若对上式中的()s N ,()s D 作因式分解,网络函数可写成()()()()()()()()()n m mp s p s p s z s z s z s a s D s N s H ------==2121 式中:1p ,2p ,…,n p 称为网络函数的极点,1z ,2z ,…,m z 称为网络函数的零点。

卷积积分与离散卷积--方波序列和方波序列的卷积及卷积过程演示

卷积积分与离散卷积--方波序列和方波序列的卷积及卷积过程演示

1引言信号的卷积是针对时域信号处理的一种分析方法,信号的卷积一般用于求取信号通过某系统后的响应。

在信号与系统中,我们通常求取某系统的单位冲激响应,所求得的h(k)可作为系统的时域表征。

任意系统的系统响应可用卷积的方法求得。

离散时间信号是时间上不连续的“序列”,因此,激励信号分解为脉冲序列的工作就很容易完成,对应每个样值激励,系统得到对此样值的响应。

每一响应也是一个离散时间序列,把这些序列叠加既得零状态响应。

因为离散量的叠加无需进行积分,因此,叠加过程表现为求“卷积和”。

LabVIEW是一种程序开发环境,由美国国家仪器(NI)公司研制开发的,类似于C和BASIC开发环境,但是LabVIEW与其他计算机语言的显著区别是:其他计算机语言都是采用基于文本的语言产生代码,而LabVIEW使用的是图形化编辑语言G编写程序,产生的程序是框图的形式。

本课程设计就是利用LabVIEW软件来实现方波序列卷积的过程,然后对方波序列移位过程进行演示,通过卷积过程演示和卷积和的波形图可以看出,方波序列的幅值大小不会影响卷积和的宽度而方波序列的宽度大小就会影响卷积序列相交部分的范围宽度即卷积宽度。

通过labview你能直观清晰地观察卷积的过程。

2虚拟仪器开发软件LabVIEW8.2入门2.1 LabVIEW介绍LabVIEW(Laboratory Virtual Instrument Engineering Workbench)是一种用图标代替文本行创建应用程序的图形化编程语言。

传统文本编程语言根据语句和指令的先后顺序决定程序执行顺序,LabVIEW 则采用数据流编程方式,程序框图中节点之间的数据流向决定VI及函数的执行顺序。

VI指虚拟仪器,是 LabVIEW]的程序模块。

LabVIEW 提供很多外观与传统仪器(如示波器、万用表)类似的控件,可用来方便地创建用户界面。

用户界面在 LabVIEW中被称为前面板。

使用图标和连线,可以通过编程对前面板上的对象进行控制。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§5.9 激励为任意波形的响应与卷积积分 5.9.1 卷积积分
首先,设两个相同函数)(1t f 和)(2t f ,且0<t 时两函数的值均为零,则)(1t f 与)(2t f 的卷积通常用)()(21t f t f *来表示,并由下列积分形式来定义:
ξξξd f t f t f t f t
)()()()(20
121⎰
-=
* (5-65)
1.交换律
如果令ξτ-=t ,则ξτd d -=,则有
ττξd t f t f t f t t
t
f ⎰⎰--=-0
21201)()()()(
τττd f t f t
)()(102⎰-=
=)(*)(12t t f f
即 )()()()(1221t f t f t f t f *=* (5-66) 2.分配律
)()()()()]()([)(3121321t f t f t f t f t f t f t f *+*=+* (5-67)
3.结合律
)]()([)()()]()([321321t f t f t f t f t f t f **=** (5-68)
4.卷积的微分 dt
t df t f dt
t df t f dt
t f t f d )()()()()]
()([122121*
=*
=* (5-69)
卷积的积分
ξξξξξξξξd f f d f t f d f f t
t
t ⎰



-∞
-∞
-*=*=*)()()()()()(122121 (5-70)
)()()(*)(2121t f t f d f dt
t df t *=⎰

-ξξ (5-71)
5.9.2 任意输入的零状态响应
如果电路的激励)(t e 的波形如图5-52所示,定义的时间区间是(0t ,t ),ξ表示从0
t 到t 之间的任意时刻。

对于任意输入电路的激励作用,可以看成是一系列冲激强度不同的时
间上依次延迟dt 的冲激激励波的叠加。

首先用一系列具有相同宽度的矩形脉冲来近似表示
)(ξe 。

把时间区间(0t ,t )分成相等的几段,每段宽度为△,即
∆==-==-=-+ k k t t t t t t 11201。

因此)(ξe 可以用图示中的阶梯曲线来近似表示,
即可看成一系列的矩形脉冲的合成。

这一系列的矩形脉冲可以通过单位脉冲函数和延迟的单
位脉冲函数,即)(ξ∆p 和)(k t p -∆ξ来表示。

因此,可以用上述的矩形脉冲表示)(ξe ,即
+
∆-+∆-+∆-=∆∆∆∆)()()()()()()
(221100t p t e t p t e t p t e e ξξξξ
∆-++∆--∆-∆)()(...)()(...11n n k k t p t e t p t e ξξ
∆-=
∆-=∑)()(1
k n k k
t p t
e ξ
(5-78)
图6-52 )(ξe 的阶梯形近似描述
放电在单位矩形脉冲)(ξ∆p 激励下的零状态响应为)ξ(∆h ,对每一延迟的矩形脉冲)(k t p -∆ξ,在时刻t 观察到的相应的响应将为)(k t t h -∆
,根据线性电路的齐次定理对∆-∆)()(k k t p t e ξ的响应将是∆-)()(k k t t h t e 。

所以按叠加定理,式(5-78)的激励所产生
的响应为
∆-=
∑-=∆∆
∆1
)()()(n k k k t t h t e
t r
为了保证)(ξe 的阶梯矩形近似更接近真实)(ξe ,令0t 到t 区间内的脉冲数不断的增加。


∞→t 时,0→∆,每个单位矩形脉冲变成冲激函数,∆h 变成了冲激响应h ,e ∆变成了
原来的激励)(t e ,响应)(t r ∆则变成电路对应原激励的零状态响应)(t r ,同时上式的求和也变成了积分, k t 变成了连续变量ξ,∆则变成了ξd 。

于是有 ξξd t h t e t r t
t k )()()(0
-=

其中0t 为任意激励施加的时刻,t 为待求响应所对应的时刻。

特别地,当00=t 时,有 ξξd t h t
e t r t
k
)()()(0-=
⎰ (5-79)
或 ξξξd h t e t r t ⎰-=
)()()( (5-80)
式(5-79)和式(5-80)所示的积分就是卷积的积分。

因此只要知道电路的冲激响应,对于任意的激励函数)(t e 的作用,都可根据卷积的积分求电路的零状态响应。

相关文档
最新文档