能带理论(准自由电子近似)-1

合集下载

能带理论

能带理论

能带理论能带理论是研究固体中电子运动规律的一种近似理论。

固体由原子组成,原子又包括原子实和最外层电子,它们均处于不断的运动状态。

为使问题简化,首先假定固体中的原子实固定不动,并按一定规律作周期性排列,然后进一步认为每个电子都是在固定的原子实周期势场及其他电子的平均势场中运动,这就把整个问题简化成单电子问题。

能带理论就属这种单电子近似理论,它首先由F.布洛赫和L.-N.布里渊在解决金属的导电性问题时提出。

具体的计算方法有自由电子近似法、紧束缚近似法、正交化平面波法和原胞法等。

前两种方法以量子力学的微扰理论作为基础,只分别适用于原子实对电子的束缚很弱和很强的两种极端情形;后两种方法则适用于较一般的情形,应用较广。

能级(Enegy Level):在孤立原子中,原子核外的电子按照一定的壳层排列,每一壳层容纳一定数量的电子。

每个壳层上的电子具有分立的能量值,也就是电子按能级分布。

为简明起见,在表示能量高低的图上,用一条条高低不同的水平线表示电子的能级,此图称为电子能级图。

能带(Enegy Band):晶体中大量的原子集合在一起,而且原子之间距离很近,以硅为例,每立方厘米的体积内有5×1022个原子,原子之间的最短距离为0.235nm。

致使离原子核较远的壳层发生交叠,壳层交叠使电子不再局限于某个原子上,有可能转移到相邻原子的相似壳层上去,也可能从相邻原子运动到更远的原子壳层上去,这种现象称为电子的共有化。

从而使本来处于同一能量状态的电子产生微小的能量差异,与此相对应的能级扩展为能带。

禁带(Forbidden Band):允许被电子占据的能带称为允许带,允许带之间的范围是不允许电子占据的,此范围称为禁带。

原子壳层中的内层允许带总是被电子先占满,然后再占据能量更高的外面一层的允许带。

被电子占满的允许带称为满带,每一个能级上都没有电子的能带称为空带。

价带(Valence Band):原子中最外层的电子称为价电子,与价电子能级相对应的能带称为价带。

能带理论

能带理论

能带理论维基百科,自由的百科全书(重定向自能带)晶体硅的能带结构示意图能带结构示意图三种导电性不同的材料比较,金属的价带与传导带之间没有距离,因此电子(红色实心圆圈)可以自由移动。

绝缘体的能隙宽度最大,电子难以从价带跃迁至传导带。

半导体的能隙在两者之间,电子较容易跃迁至传导带中。

能带理论(英语:Electronic band structure)是用量子力学的方法研究固体内部电子运动的理论。

是于20世纪初期,在量子力学确立以后发展起来的一种近似理论。

它曾经定性地阐明了晶体中电子运动的普遍特点,并进而说明了导体与绝缘体、半导体的区别所在,解释了晶体中电子的平均自由程问题。

自20世纪六十年代,电子计算机得到广泛应用以后,使用电子计算机依据第一原理做复杂能带结构计算成为可能(不过仍然非常耗时,一次典型的能带结构自洽计算在普通工作站上往往需要花几个小时甚至一周多的时间才能完成)。

能带理论由定性发展为一门定量的精确科学。

∙∙∙固体材料的能带结构由多条能带组成,能带分为传导带(简称导带)、价电带(简称价带)和禁带等,导带和价带间的空隙称为能隙(即右边第二副图中所示的)。

能带结构可以解释固体中导体、半导体、绝缘体三大类区别的由来。

材料的导电性是由“传导带”中含有的电子数量决定。

当电子从“价带”获得能量而跳跃至“传导带”时,电子就可以在带间任意移动而导电。

一般常见的金属材料,因为其传导带与价带之间的“能隙”非常小,在室温下电子很容易获得能量而跳跃至传导带而导电,而绝缘材料则因为能隙很大(通常大于9电子伏特),电子很难跳跃至传导带,所以无法导电。

一般半导体材料的能隙约为1至3电子伏特,介于导体和绝缘体之间。

因此只要给予适当条件的能量激发,或是改变其能隙之间距,此材料就能导电。

对于理想晶体,其原子服从晶格排列,具有周期性,因而可以认为离子实的势场也具有周期性。

晶体中的电子在一个周期性等效势场中运动,其波动方程为:其中为周期性等效势场,为波函数,为普朗克常数,为质量,为微分算符,为能量[编辑]近自由电子模型能带理论认为,固体内部的电子,不是被束缚在单个原子周围,而是在整个固体内部运动,仅仅受到离子实势场的微扰。

自由电子与电子能带理论的解释

自由电子与电子能带理论的解释

自由电子与电子能带理论的解释自由电子理论是固体物理学中的一个重要概念,它被广泛运用于描述和解释物质的电子结构和导电性质。

在这个理论中,电子被认为是不受束缚的,它们可以在一个无限深势阱中自由移动。

在固体中,电子受到其他原子核电荷的吸引,同时与其他电子之间的相互作用也不可忽视。

自由电子理论假设固体中的价电子(最外层电子)可以忽略其他电子和原子核之间的相互作用,从而成为类似自由粒子的行为。

这个假设为我们提供了描述固体中电子的简单模型,它可以用来解释电子的运动和导电性质。

自由电子理论对于描述导电性质而言是非常有效的。

在固体中,电子可以上升到更高的能级,或者从高能级下降到低能级。

当电子遇到外电场时,它们可以自由地加速或减速,并且在导体中形成电流。

这就是为什么金属具有良好导电性质的原因。

自由电子理论可以用来解释导体中的电子运动和导电现象,尽管它忽略了许多真实物质之间的相互作用。

然而,自由电子理论也有一些限制。

首先,它无法解释像绝缘体和半导体这样的材料的导电性质。

这些材料中的电子在价带和导带之间存在能隙,只有当光子提供足够的能量时,电子才能从价带跃迁到导带,形成电流。

自由电子理论无法描述这种现象。

为了解决这个问题,人们发展出了电子能带理论。

根据电子能带理论,固体中的电子在能量空间中被分布为一系列能带,每个能带可以容纳一定数量的电子。

其中,价带是最低能级的能带,它容纳了价电子;而导带是更高能级的能带,它容纳了自由电子。

能带之间的间隙被称为能隙。

电子能带理论在解释固体的导电性质时更加准确。

对于绝缘体而言,价带和导带之间的能隙非常大,因此电子无法跃迁到导带中。

这导致了绝缘体的低导电性质。

而半导体中的能隙比较小,一些电子可以通过吸收热量或光子来跃迁到导带,形成电流,使半导体表现出可变的导电性。

电子能带理论还可以解释为什么金属具有良好的导电性。

在金属中,导带与价带之间没有明显的能隙,因此即使不需要外电场的加速,电子也可以自由地在导带中移动和形成电流。

固体物理_第4章_能带理论

固体物理_第4章_能带理论

ik ( r R n ) u ( r Rn ) e u (r )
u ( r ) ,代入上式有:
(2 )
则:u (r Rn ) u (r )
即布洛赫波是振幅受到具有同晶格周期相同的周期性函数调制的平面 波。
ˆ ( R ) H HT ( R ) 0 ˆ ˆˆ T n n
根据量子力学知识可知:哈密顿量和平移算符有共同的本征态,可选 择哈密顿量的本征态 (r ) 为共同本征态。
采用波恩-卡曼周期性边界条件有: N ˆ ˆ ˆ ˆ (r ) (r N1a1 ) T ( N1a1 ) (r ) T (a1 )T (a1 )T (a1 ) (r ) 1 1 (r )
,而内层电子的变化较小,可以把内层电子和原子实近似看成离子实 这样价电子的等效势场包括离子实的势场,其他价电子的平均势场以 及电子波函数反对称性而带来的交换作用。 能带理论是单电子近似理论,即把每个电子的运动看成是独立的 在一个等效势场中的运动。单电子近似理论最早用于研究多电子原子
,又称为哈特里(Hartree)-福克(o )自洽场方法。 把多体问题简化为单电子问题需要进行多次简化。1、绝热近似: 原子核或者离子实的质量比电子大的多,离子的运动速度慢,在讨论 电子问题时可以认为离子是固定在瞬时位置上。这样多种粒子的多体 问题就简化为多电子问题;
能带理论取得相当的成功,但也有他的局限性。如过渡金属化 合物的价电子迁移率较小,相应的自由程和晶格常数相当,这时不 能把价电子看成共有化电子,周期场的描述失去意义,能带理论不 再适用。此外,从电子和晶格相互作用的强弱程度来看,在离子晶 体中的电子的运动会引起周围晶格畸变,电子是带着这种畸变一起 前进的,这些情况都不能简单看成周期场中单电子运动。

(完整word版)能带理论

(完整word版)能带理论

能带理论能带理论是目前研究固体中电子运动的一个主要理论基础,它预言固体中电子能量会落在某些限定范围或“带”中,因此,这方面的理论称为能带理论。

对于晶体中的电子,由于电子和周围势场的相互作用,晶体电子并不是自由的,因而其能量与波失间的关系E(k)较为复杂,而这个关系的描述这是能带理论的主要内容。

本章采用一些近似讨论能带的形成,并通过典型的模型介绍能带理论的一些基本结论和概念。

一、三个近似绝热近似:电子质量远小于离子质量,电子运动速度远高于离子运动速度,故相对于电子的运动,可以认为离子不动,考察电子运动时,可以不考虑离子运动的影响,取系统中的离子实部分的哈密顿量为零。

平均场近似:让其余电子对一个电子的相互作用等价为一个不随时间变化的平均场。

周期场近似: 无论电子之间相互作用的形式如何,都可以假定电子所感受到的势场具有平移对称性。

原本哈密顿量是一个非常复杂的多体问题,若不简化求解是相当困难的,但 经过三个近似处理后使复杂的多体问题成为周期场下的单电子问题,从而本章的中心任务就是求解晶体周期势场中单电子的薛定谔方程,即其中二、两个模型(1)近自由电子模型1、模型概述在周期场中,若电子的势能随位置的变化(起伏)比较小,而电子的平均动能要比其势能的绝对值大得多时,电子的运动就几乎是自由的。

因此,我们可以把自由电子看成是它的零级近似,而将周期场的影响看成小的微扰来求解。

(也称为弱周期场近似) (222U m ∇+)()(r U R r U n =+2、怎样得到近自由电子模型近自由电子近似是晶体电子仅受晶体势场很弱的作用,E(K)是连续的能级。

由于周期性势场的微扰 E(K)在布里渊区边界产生分裂、突变形成禁带,连续的能级形成能带,这时晶体电子行为与自由电子相差不大,因而可以用自由电子波函数来描写今天电子行为。

3、近自由电子近似的主要结果1) 存在能带和禁带:在零级近似下,电子被看成自由粒子,能量本征值 E K0 作为 k 的函数具有抛物线形式。

固体物理学:能带理论1

固体物理学:能带理论1
2
但是:索末菲量子的自由电子气理论仍有对不少物理性质无 法解释。 如:有些金属霍尔系数为正;
固体分为导体、半导体和绝缘体的物理本质等。
回顾自由电子模型的假设,再对照上述与自由电子模型不 相符合的试验现象,自由电子模型的主要问题出在对于固定离 子与电子的相互作用的处理上。特鲁德的模型假设电子除碰撞 瞬间外,与离子晶格无关,也即假定晶体中的势能为零,因而 在其中运动的电子不受束缚而是自由的(自由电子假设);碰撞 后的状态与碰撞前无关(碰撞自由时间假设)。这是一个大的简 化,进一步固体理论的发展就从这里入手。
对于一维点阵(点阵常数为a),
电子的波函数 eikx若k远离BZ边界时
(即
k πn a
时),电子波不受Bragg
反射,从各原子散射的波没有确定的
位相关系,对入射波的传播无什么影
响,与x-ray在晶体中的传播是相同的。
14
但当 波
k
eikx满πa n足时B,ra如gg条k 件 a,,波此程时差平为面
19
= 2u
1 0
(
cos2 x
a
-
sin 2 x
a
)
cos
2
a
xdx
=u
20
实际的势场并非是上面的简单形式, 而是一个复杂函数,但可用倒易点阵矢 量展成付氏级数,展成余弦势的叠加, 在一级近似下,在Bz边界都有能量间隙。
u(x)
n
un
cos
2
a
nx
=
Eg un
实际上,晶体中的离子是有规律地排列的,电子也并不完全 自由,它们的运动要受到组成晶体的离子和电子共同产生的 晶格周期性势场的影响。因此,1928年,跟索末菲提出他的 自由电子气模型的同一年,布洛赫(F Bloch)首先运用量子力 学原理来分析晶体中外层电子的运动,阐明了周期场中运动 的电子所具有的基本特征,为固体能带理论奠定了基础。 3

能带理论

能带理论

/ /
a a
2
k
k
—— Bloch函数
这里,uk(r) = uk(r+Rl) 是以格矢Rl为周期的周期函数。
证明:
定义一个平移算符T,使得对于任意函数f(r)有
T f r f r a
a ( =1, 2, 3) :晶格的三个基矢
TT f r T f r a f r a a
vab 8 3
V Nva
在简约区中,波矢k的取值总数为
k b N 晶体的原胞数
2. Bloch函数的性质
Bloch函数:
r eikru r
k
k
行进波因子 ei kr 表明电子可以在整个晶体中运动
的,称为共有化电子,它的运动具有类似行进平面
波的形式。
周期函数 u r 的作用则是对这个波的振幅进行 k 调制,使它从一个原胞到下一个原胞作周期性振
荡,但这并不影响态函数具有行进波的特性。
晶体中电子: r eikru r
k
k
自由电子: r Aeikr k
孤立原子: r Cu r
A const. C const.
在晶体中运动电子的波函数介于自由电子与孤立
原子之间,是两者的组合。

如果晶体中电子的运动完全自由,
u k
r
A const.
若电子完全被束缚在某个原子周围,eikr C const.
由于晶体中的电子既不是完全自由的,也不是完全被
束缚在某个原子周围,因此,其波函数就具有 eikru r k

U0

n0
Un

固体物理(2011) - 第4章 能带论 1 布洛赫定理与布洛赫波

固体物理(2011) - 第4章 能带论 1 布洛赫定理与布洛赫波

2 波动方程 [ V ( r )] E 2m 晶格周期性势场 V (r ) V (r Rn )
2
两个具体近似方案
• QED!
1. 近自由电子近似:晶体势场的周期起伏比较弱,周期势能可 以看成是对自由电子平面波情况的微扰。
周期方形波怎么构成? —— F. T.
布洛赫定理的证明 —— 引入平移算符,证明平移算符与哈密顿算符对易 两者具有相同的本征函数
—— 利用周期性边界条件确定平移算符的本征值,最后给出 电子波函数的形式
—— 势场的周期性反映了晶格的平移对称性
晶格平移任意格矢 势场不变
—— 在晶体中引入描述这些平移对称操作的算符
T1 , T 2 , T 3
ik a 1
, 2 e
ik a 2
, 3 e
ik a 3
作用于电子波函数
e
ik ( m1a1 m2a2 m3a3 )
(r )
ik R m (r Rm ) e (r )
—— 布洛赫定理
ik r 电子的波函数 ( r ) e u k ( r )
固体物理
第一章 第二章 第三章 第四章 第五章 第六章 第七章 第八章
So lid S ta te Phy si cs
1 布洛赫定理与布洛赫波 2 近自由电子近似方法 3 紧束缚近似方法 4 其他方法 5 能带电子的态密度 6 布洛赫电子的准经典运动 7 布洛赫电子在恒定电场中的 准经典运动 8 布洛赫电子在恒定磁场中的 准经典运动 9 能带论的局限性
把一个多粒子(电子、离子实)体系问题简化为一 个多电子体系问题。
单光子问题
第二步简化——单电子近似:认为每一个电子都是处于相
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
核电荷+Z 芯电子-d
1. 一维晶体准自由电子近似

将H分成两部分
ˆ H ˆ H ˆ' H 0
2 2 d ˆ H ( x ) V ( x) ( x) E ( x) 2 2m dx
零级哈密顿量 ——零势场
2 2 d ˆ H 0 2m dx 2
0
E Tn | Vn | E
简并态出现 能量分裂! 禁带宽度 (能隙)

1 2 1 2

0 k 0 k

0 k' 0 k'
E E
E


Tn Vn Tn Vn
Eg 2 Vn
2 V2
2 V1
/a /a
/a
/a
0 0 k
0 k'
2 d 2 0 0 V x E A B ( ) ( k k ) 0 2m dx 2
0 0 0 0 E E V x A E E V x B k k k 0 k
0 k'
H
' kk '
1 ˆ dx Vn e H 0 L 0 n0
L 0* k
dx
2 ˆ H Vn exp(i nx) a n0
Vn 0
k k 2 n / a K n k k K n
倒格矢
能量修正
(二级)
2 k 2 2 2 Ek 2m n 0 k
i 2a x i 2a x i 2a y i 2a y U ( x, y ) V e e e e i ( 2a x 2a y ) i ( 2a x 2a y ) i ( 2a x 2a y ) i ( 2a x 2a y ) V e e e e
上式分别乘以 和 并积分,得到
0* k 0* k
0 k
动能
2 ( E E ) A Vn B 0 2 V* A ( E 0 E ) B 0 E 0 E 0 n T k k n k n 2m a
Tn E V
* n
Vn Tn E
V本身很小。如果k不在边界,分母不为零,影响很 小!因此,除边界外,类自由电子的结果。
如果k在Brillouin边界,被周期势场散射的振幅无限大, 非简并微扰不适用。
简并情况
k 2n 当 0 散射波振幅趋于无限大! k a 2m 2m
2 2 2 2
a
n k a
2 ˆ H V ( x) V0 Vn exp(i nx) a n0
2k 2 零级解能量 E 2m 1 0 exp(ikx) 零级波函数 k L
L=Na
2l k Na
V0为常数,若把能量原点选在V(x)的平均值处, 即(1/L)0L V(x)dx=0,则V0=0。
非简并情况
Ek Ek0 Ek(1) Ek( 2 )
E
(1) k
H ( x)V ( x) dx 0
' kk 0 0* k 0 k
L
E
(2) k

k ' k
H
' 2 kk '
L=Na
2 ' i k k n x L a
Ek0 Ek0'
而布里渊区边界/a正好是第一布里渊的边界,能级在此发 生分裂,分裂值为
2V1 2V
考虑一个二维正方格子,其晶格势场为
2 U ( x, y ) 4V cos a
2 x cos y a
用自由电子近似的微扰论,近似地求出布里渊区顶角 (/a,/a)处的能隙
在U(x)展开为复数傅立叶级数时只有4个系数,即
V1, 1, V1, 1, V 1, 1 和V1, 1 而布里渊区顶角(/a,/a)恰好为二维正方格子的第一 布里渊区边界,能级在此发生分裂,分裂值为
2 V1, 1 2V
作业
在一维点阵中,如果晶格常数是a,单个电子感受到的 周期势为
3.4.1 准自由电子近似——金属中巡游价电子

自由电子气模型: 把价电子处理成自由电 子气,如何处理离子实?
芯区外电子受 Z d 到势 ~ r

正电背景:均匀分布保持电中性 为什么正离子的周期性势场能被忽略? 考察金属,区域:芯区,其余区域
• 在芯区外,受核与屏蔽电子的联合作 用势——赝势——非常弱 • 电子在其余区域可看成自由电子 • 微扰法(自由电子近似的微扰方法)
n 2a k 2a 2n
exp(ikx) exp(ikx)
k
相邻两原子的反射波同相, Bragg 反射加强条件!全反射! 不存在k=n/a的状态!
k n / a 两态能量相同 如果 k n / a
简并
用简并微扰 零级波函数为两波函数的线性组合
A B
第3章 金属电子理论
3.4 能带理论
能带的定量计算:
原子结合为晶体时,电子处在介于原子的束缚态和自由电子气(共 有化状态)之间的能量状态。


准自由电子近似(弱晶格场近似)——电子动 能远大于晶格场势,如金属中离开原子巡游的 价电子; 紧束缚近似(原子轨道线性组合)——原子间 距较大,电子在一个原子附近,如过渡金属离 子中的价电子。
微扰
ˆ ' V ( x) H
V ( x ) V ( x na )
零级解

能量
k E 2m
0 k
0 k
2
2

波函数
1 exp(ikx) L
2l k Na
L=Na
由于周期性条件的限制,波矢k只能取下列值:
l为整数,N为原胞的数目,a晶格常数。
微扰部分

V ( x) V ( x na )
平面波 ) u ( x)
0 k
* n
2 n V exp(i x) a u ( x) 1 2 2 2 2 n 2 n0 k (k ) 2m 2m a
u ( x) u ( x na )

1 2 2 2 m b x na V ( x) 2 0


x na b 其他
其中非零的势只在点阵中每个原子周围的2b=a/2范围内 出现。用准自由电子近似计算第一、第二能隙。
k
例题:设晶格常数为a的一维晶格的周期性势场为 用自由电子近似的微扰论,近似地求出布里渊区边界/a处的能隙 解:
2 U ( x) 2V cos x a
i 2 x a
U ( x ) V (e
e
i
2 x a
)
把U(x)展开为复数傅立叶级数, 傅立叶系数只有两个,即
V1 V1 V
| Vn |2
2 2
2 n k 2m 2m a
' H 0 0 kk ' k' 波函数修正 k ( x) k 0 0 k '( k ) E k E k '
(一级)
2 n * Vn exp(i x) a k0 1 2 2 2 n 0 k (k 2 n ) 2 2m 2m a
周期性势场,可作傅氏展开
2 V ( x) V0 Vn exp(i nx) a n0
傅立叶系数
2 i nx 1 Vn V ( x)e a dx L0 L
* V- n Vn
ˆ H ˆ H ˆ H 0
零势场
2 2 d ˆ H 0 2m dx 2
0 k
微扰的傅立叶展开
相关文档
最新文档