空调制冷系统匹配计算书

合集下载

雷诺轿车空调系统制冷热负荷计算书

雷诺轿车空调系统制冷热负荷计算书

雷诺轿车空调系统制冷热负荷计算书制冷热负荷计算是空调系统设计的重要一环,它能够帮助工程师评估和确定空调系统所需的制冷和供热能力,以保证车内空气质量和舒适度。

而雷诺轿车作为一流的汽车品牌,其空调系统的制冷热负荷计算显得尤为重要。

本文将详细介绍雷诺轿车空调系统制冷热负荷计算的步骤和方法。

首先,制冷热负荷计算需要考虑的因素有很多,包括外部温度、车内空间大小、车内人数、车内设备的热量产生、车速等等。

这些因素都会影响到空调系统的工作负荷。

以下是制冷热负荷计算的基本步骤:1.确定车内空间的尺寸和体积。

车内的空间大小直接影响到空调制冷热负荷的计算,较大的车内空间需要更大的制冷能力。

2.确定车内人数和其活动强度。

乘客数量和活动强度也是制冷热负荷计算的重要因素,因为人体产生的热量会影响到车内空气温度。

3.考虑车内设备的热量产生。

例如,音响、电视以及其他电子设备都会产生热量,这些也是计算制冷负荷的重要因素。

4.考虑车辆运行时的环境温度和湿度。

不同的外部温度和湿度会对空调系统的工作产生不同的影响,需要综合考虑。

一般来说,制冷负荷是在夏季,车辆处于日照暴晒条件下的最大制冷负荷,而供热负荷是在冬季,车辆处于最严寒条件下的最大供热负荷。

通过对以上因素进行综合考虑和计算,可以得出雷诺轿车空调系统所需的制冷和供热能力。

雷诺轿车空调系统一般会采用循环制冷系统,这种系统通过循环的方式不断吸收车内热量并排出去。

而在制冷热负荷计算中,我们需要考虑循环制冷系统的制冷效率和循环工作的压力下降。

同时,供热负荷计算也需要考虑到循环供热系统的工作效率和工作压力下降。

除此之外,雷诺轿车空调系统还需要考虑到能源利用的效率以及节能技术的应用。

在实际的制冷热负荷计算中,我们需要综合考虑车辆的能源供应、空调系统的能效比以及节能技术的应用,以确保空调系统能够在工作时能够最大限度地节约能源。

综上所述,雷诺轿车空调系统的制冷热负荷计算是一个复杂的过程,需要综合考虑车辆内外的各种因素。

中央空调配比计算公式表

中央空调配比计算公式表

中央空调配比计算公式表主要涉及到室内机和室外机的匹数(制冷量)之间的匹配关系。

具体计算步骤如下:
1.确定各房间的制冷量需求,根据房间面积和制冷量需求标准计
算得出。

例如,客餐厅每平方米需要制冷量230-250W,主卧每
平方米需要制冷量210-220W,其他房间每平方米需要制冷量
200-210W。

2.根据所有房间制冷量需求的总和,选择合适的外机匹数。

超配
比是内机制冷量之和除以外机制冷量,若小于等于1.3则符合
家装超配标准。

例如,超配比=内机制冷量之和/外机制冷量,如
果这个比例在1.3以内就是合理的,说明室内机制冷量总和没
有超过室外机的制冷量。

3.根据制冷量需求和超配比选择合适的外机型号,以确保室内机
制冷量和室外机制冷量相匹配。

例如,如果所有房间制冷量需
求的总和为15300W,可以选择外机型号为12000W或14000W,
根据超配比计算结果选择更划算的方案。

汽车空调系统参数匹配计算指南

汽车空调系统参数匹配计算指南

压缩机排气量为压缩机选型的主要依据。压缩机的选型可根据计算所得,再结合车型数据来进
行。微型及小型汽车空调,由于空间尺寸小,发动机功率小,比较注意压缩机的效率、外形尺寸及
功耗,一般采用排量为(80~100)cm³/r 的压缩机。普通轿车及货车空调,一般采用排量为(120~
150)cm³/r 的压缩机。豪华型轿车及中小型面包车空调,一般采用排量为(160~300)cm³/r 的压
式中:
Qk = G × qk
……………………………(5)
qk ——为单位质量冷凝换热量, qk = h2 − h4 ,kJ/kg;
G ——制冷剂质量流量,kg/s。
即:
( ) Qk
= G × qk
=Leabharlann × Q0h0 −h4
h2
− h4
……………………………(6)
在汽车空调设计过程中,一般认为: Qk 约为制冷量 Q0 的 1.4 倍~1.5 倍,推荐取 1.5 倍。
I
前言
为了指导本公司空调系统的匹配设计,特制定此空调系统参数计算指南。 本计算指南适用于各类汽车空调系统匹配计算。 本计算指南由产品管理部提出并归口。 本计算指南起草单位:电器设计部。
II
空调系统参数匹配计算指南
1 范围 本计算指南给出了空调系统参数的计算方法和各零部件的选型依据。 本计算指南适用于汽车空调的系统设计计算。
0 397.09
6 压缩机参数计算
6.1 压缩机排气量 压缩机排气量(cm³/r):
式中:
Vh
=
60 ×106 × Q0 nλq0
×v1
……………………………(2)
Q0 ——空调系统制冷量,kW,依据 Q/J C016—2012《汽车空调系统热负荷计算指南》;

汽车空调制冷系统各部件的匹配设计

汽车空调制冷系统各部件的匹配设计

目录汽车空调制冷系统各部件的匹配设计 (1)1. 汽车空调制冷系统的热力计算 (1)1.1制冷系统设计工况的确定 (1)1.2 制冷系统的热力计算 (3)2. 汽车空调用压缩机的匹配 (5)3. 汽车空调系统换热器的设计计算 (5)4. 节流机构的匹配设计 (13)5. 储液干燥过滤器匹配设计 (15)5.1 储液干燥过滤器设计与选择方法 (15)5.2储液干燥过滤器的安装 (16)6. 汽车空调系统管路设计 (16)7. 风机的匹配设计 (16)汽车空调制冷系统匹配设计的主要内容为:1.根据汽车车型及结构特点确定制冷系统的的布置形式;2.根据所需的制冷量及确定的设计工况进行热力计算;3.根据热力计算的结果进行冷凝器,蒸发器的设计及压缩机的选型;4.制冷系统辅助部件设计或选型(储液干燥过滤器、热力膨胀阀等);5.连接各制冷部件的管道设计;6.空气送风风道设计1.汽车空调制冷系统的热力计算热力计算是制冷系统设计计算的基础,热力计算的主要目的是求出热力循环的各项性能指标,并为制冷系统各部件的设计提供依据。

1.1制冷系统设计工况的确定在进行汽车空调制冷系统热力计算之前,首先要根据汽车空调所要求的温度(t n)和外界温度(t w),并结合汽车空调系统的特点,确定制冷系统的工作参数,即确定如下参数:冷凝温度(t k);蒸发温度(t0);过冷度(△t sc);过热度(△t sc)。

为了便于讨论,可借助右边的lgp-h图进行分析。

(1)冷凝温度t k的确定冷凝温度t k取决于冷凝器的结构形式和冷却介质。

汽车空调系统由于运行条件的限制,均采用风冷式冷凝器。

这时车外环境温度t w(主要是指夏季环境温度),成为影响t k的重要因素。

在确定t k时不能只考虑某个地区的气象条件,而应综合加以考虑,以满足汽车使用地区广的特点。

考虑到汽车空调系统在不同地区的适应性,应选取最恶劣工况,即取t w=43℃为宜。

对于风冷式冷凝器。

16空调系统制冷热负荷计算书

16空调系统制冷热负荷计算书

百度文库 - 让每个人平等地提升自我江苏卡威汽车工业集团有限公司企业标准空调系统制冷热负荷计算书 2012-02-05 发布 江苏卡威汽车工业集团有限公司 发布2012-02-06 实施 KWMC-EA-JS-008前言进行汽车空调系统设计或选型之前应进行车身热负荷计算,以确定该空调装置应具备多少制冷或制热能力。

本标准由江苏卡威汽车工业集团有限公司提出。

本标准由江苏卡威汽车工业集团有限公司汽车研究院负责归口管理。

本标准第一版主要起草人:倪建华、鱼灵炜本标准第二版2012年5月修订。

本标准第二版主要修改人:倪建华、鱼灵炜◆ 设计参数:车外温度:t H=38℃,相对湿度:ф=62%车内温度:t B=25℃,相对湿度:ф=60%车内成员数:N =5人,车内新风量:V=N*V1=5*11=55m³/h3太阳辐射强度:t H=38℃时,水平面上太阳辐射强度I=1000W/㎡车速:v=40km/h◆附加说明计算制冷量时所取的车厢内容积为:V = ³。

所取的计算空间如图所示:3后窗顶板前窗发动机罩(在车厢内部分)地板◆ 制冷热负荷计算由于车外温度高于车内,加上太阳辐射的作用,有大量热量会通过车身壁面、车窗等传入车内。

同时,乘员的汗热和湿热也会使车内温度升高。

可见,影响车内热负荷的因素很多。

综合各种因素,车身热平衡的方程式表达如下:Q e = Q B + Q G + Q V + Q P + Q M + Q LQ =α1Q e式中:α1——储备系数,取α1=;Q ——制冷机产生的冷量;Q e ——车身总热负荷;Q B——车体传入热量;Q G——玻璃传入热量;Q V——新风热;Q P——人体热;Q M——用电设备散热量;Q L——车内零件散热量。

现在分别计算各部分的热负荷。

一、通过车身壁面传入的热量车身壁面包括顶板、侧壁面、地板、前围(发动机罩壁在车厢内部分)、后围等几部分组成。

即车身壁面热负荷表达式为:Q B = Q顶板+ Q侧壁面+ Q地板+ Q前围+ Q后围■ 车身壁面多属均匀壁面,因此,它的传热可以按照多层均匀壁面传热计算。

空调制冷课程设计计算书

空调制冷课程设计计算书

一、制冷方案的设计第四教学楼的机房制冷系统为四管制系统,即冷却水供(回)水管、冷冻水供(回)水管。

经冷水机组制冷后的7℃的冷冻水通过冷冻水供水管送往教学楼的各层,经过风机盘管后的12℃的冷冻水回水经由冷冻水回水管返回冷水机组,通过冷水机组中的蒸发器与制冷剂换热实现降温过程。

从冷水机组出来的37℃的冷却水经由冷却水供水管到达冷却塔,经冷却塔冷却后的32℃冷却水再返回冷水机组冷却制冷剂,如此循环往复。

考虑到系统的稳定安全运行,系统中还配备补水系统,软化水系统,水处理系统等辅助系统。

二、冷水机组的选择第四教学楼总耗冷量为1500kw,宜选取两台冷水机组,而且两台冷水机组的容量相同。

因此,每台机组的制冷量Q=1500/2=750kw选择螺杆式水冷冷水机组,其规格及主要参数如下三、水力计算1、冷却水循环系统水力计算冷却水循环系统中的冷凝器侧水阻力为60KPa,冷却塔盛水池到喷嘴的高差为2.5m,水处理器的阻力为20KPa。

冷却水系统的循环水量G=Φ/(cΔt)=1.2×0.86×785×2/5=324m3/h对于管段1,选用管径为公称直径DN250mm的钢管,管道流速为v=4G/(πd2)=4×324/(3.14×0.252)=1.85m/s查表得比摩阻R=131Pa/m,管长为2.5m,沿程压力损失为ΔP y=Rl=131×2.5=327.5Pa,弯头、止回阀、闸阀等管件的局部阻力系数总和Σζ=0,则总阻力ΔP j=0各管段各部件的局部阻力系数表和水力计算表分别如下:冷却水管水力计算表最不利环路为管段1-2-4-5-6-7-8构成的环路,则最不利环路的总阻力为327.5+62.7×103 +31980.2+13150.76+1986.86+66×103+4538.76=180.68×103 KPa=18.55m H2O冷却塔的喷嘴压力为4.2mH2O,冷却塔中水被提升的高度为2.5m,因此,冷却水泵的扬程为H=18.55+2.5+4.2=25.25m H2O,考虑到10%的余量,则H=25.25×1.1=27.7 m H2O冷却水泵流量G=G=0.5Φ/(cΔt)=0.5×1.2×0.86×785×2/5=162m3/h查相关手册选择的冷却水泵参数如下冷冻水循环系统中,系统末端阻力为0.18MPa,蒸发器侧水阻力为80KPa。

空调系统制冷热负荷计算书

空调系统制冷热负荷计算书

江苏卡威汽车工业集团有限公司企业标准KWMC-EA-JS-008空调系统制冷热负荷计算书2012-02-05 发布2012-02-06 实施江苏卡威汽车工业集团有限公司发布前言进行汽车空调系统设计或选型之前应进行车身热负荷计算,以确定该空调装置应具备多少制冷或制热能力。

本标准山江苏卡威汽车工业集团有限公司提出。

本标准山江苏卡威汽车工业集团有限公司汽车研究院负责归口管理。

本标准第一版主要起草人:倪建华、鱼灵炜本标准第二版2012年5月修订。

本标准第二版主要修改人:倪建华、鱼灵炜♦设计参数:车外温度:血二38°C,相对湿度:(1)二62%车内温度:t B=25°C,相对湿度:<1)=60%车内成员数:N二5人,车内新风量:V二N*V F5*11二55n?/h太阳辐射强度:t尸38°C时,水平面上太阳辐射强度I二lOOOW/nf 车速:v二40km/h♦附加说明计算制冷量时所取的车厢内容积为:U =3.68m‘ o♦制冷热负荷计算由于车外温度高于车内,加上太阳辐射的作用,有大量热量会通过车身壁面、车窗等传入车内。

同时,乘员的汗热和湿热也会使车内温度升高。

可见,影响车内热负荷的因素很多。

综合各种因素,车身热平衡的方程式表达如下:Qe= Qs+ Q G+Q V+Q P+Q M+Q IQ =aiQe式中:ax——储备系数,取a: = l. 15;制冷机产生的冷量;Qe ——车身总热负荷;Q B——车体传入热量;Q G——玻璃传入热量;Q ---- 新风热;Qp——人体热;Q M——用电设备散热量;Q’一一车内零件散热量。

现在分别计算各部分的热负荷。

一、通过车身壁面传入的热量车身壁面包括顶板、侧壁面、地板、前围(发动机罩壁在车厢内部分)、后围等儿部分组成。

即车身壁面热负荷表达式为:Qs = Q顶板+ Qw帰面+ Q地板+ Q前国+■车身壁面多属均匀壁面,因此,它的传热可以按照多层均匀壁面传热计算。

雷诺轿车空调系统制冷热负荷计算书

雷诺轿车空调系统制冷热负荷计算书

汽车空调系统是车辆中必不可少的附属设备之一,尤其在夏季炎热的天气里,汽车空调系统更是车主出行的重要保障。

而汽车空调系统中的制冷热负荷计算,对于保证空调系统的正常运行和车内舒适度至关重要。

本文将针对雷诺轿车空调系统的制冷热负荷计算进行深入探讨,以帮助广大车主更好地了解和维护自己的汽车空调系统。

一、制冷负荷计算1.1 车辆密封性检测:首先需要对雷诺轿车的密封性进行检测,包括车门、车窗等密封部位是否完好。

如果存在漏风现象,需要及时维修,否则会导致制冷效果减弱。

1.2 车辆室内空间测量:测量车辆的室内空间大小,包括车内长度、宽度、高度等,以便后续计算制冷负荷。

1.3 车内材料热负荷计算:根据车内的材料和颜色,计算车内材料的热负荷,比如皮质座椅、塑料地板等材料的热吸收与散发能力。

1.4 驾驶习惯和用车环境分析:考虑车主的驾驶习惯以及车辆所处的环境条件,比如经常行驶在高温地区的车辆需要考虑更大的制冷负荷。

1.5 制冷负荷计算公式:根据上述数据和情况,采用相应的制冷负荷计算公式进行计算。

二、热负荷计算2.1 车辆日照量测算:根据车辆所在地区的日照量和日照时间进行测算,考虑车辆会受到阳光的直射作用,产生一定的热负荷。

2.2 车载设备产生的热负荷:考虑车载设备的使用会产生额外的热负荷,比如音响、电子设备等。

2.3 引擎和传动系统产生的热负荷:考虑车辆引擎和传动系统的工作产生的热负荷,以及引擎舱内的散热情况。

2.4 人体热负荷计算:考虑车内乘客的人体热量产生,尤其是在多人乘坐或长途行驶的情况下。

2.5 热负荷计算公式:根据上述数据和情况,采用相应的热负荷计算公式进行计算。

三、综合制冷热负荷计算及调整3.1 制冷热负荷综合计算:根据上述制冷负荷和热负荷的计算结果,进行综合计算,得出雷诺轿车空调系统的总体制冷热负荷。

3.2 系统调整和优化:根据计算结果,对空调系统进行调整和优化,包括更换合适的制冷剂、调整风量和出风口方向等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录
1 空调制冷系统匹配计算的目的 (3)
2 制冷循环热力计算 (3)
2.1 设计工况的确定 (3)
2.2 各状态点参数的确定 (3)
2.3 制冷剂质量流量和体积流量 (4)
3 压缩机选型校核 (4)
3.1 所需压缩机排量 (4)
3.2 所选压缩机与汽车的动力匹配计算 (4)
3.2.1 汽车行驶速度及传动比 (4)
3.2.2 与汽车的动力匹配计算 (4)
3.3 设计工况下的压缩机性能 (6)
3.4 怠速工况下的制冷量校核 (6)
3.5 压缩机允许最高转速校核 (6)
4 冷凝器能力计算 (6)
5 蒸发器能力计算 (6)
6 送风量的确定 (6)
CP08空调制冷系统匹配计算书
1 空调制冷系统匹配计算的目的
制冷系统匹配计算的目的有三个:
a)所选压缩机的能力是否合理;
b)压缩机与汽车的动力匹配是否合理;
c)确定所需配置多大的冷凝器和蒸发器。

2 制冷循环热力计算
2.1 设计工况的确定
空调系统的工作压焓图如图1所示:
图1 空调系统工作压焓图
冷凝压力P k=1.5MPa(表压);对应的冷凝温度t k=55.2℃;
蒸发压力P0=0.3MPa(表压);对应的蒸发温度t0=0.67℃;
蒸发器过热度S h=10℃;冷凝器过冷度S c=5℃;2.2 各状态点参数的确定
点1(蒸发器出口):
压力P1=0.3MPa;温度t1=10℃;
焓值h1=407kJ/kg;比容v1=0.073m3/kg 点2(压缩机出口):
压力P2=1.5MPa;温度t1≈75℃;
点3(膨胀阀前):
压力P3=1.5MPa;温度t3=55.2-5=50.2℃;
焓值h3=200kJ/kg;
点4(蒸发器进口):
压力P1=0.3MPa;温度t4=0.67℃;
焓值h4=h3=200kJ/kg;
2.3 制冷剂质量流量和体积流量
质量流量 m=Q 0/q 式中:
Q 0--系统制冷量,根据车身热平衡计算确定,本车空调系统制冷量为3.8kW q--单位质量制冷量,q=h 1-h 4
所以 )(41h h Q m -=
)
200407(8.4-=s kg /0232.0≈ 体积流量: s ml v m V /169410073.00232.061=⨯⨯=⨯=
3 压缩机选型校核
3.1 所需压缩机排量
)(v p n V
V η⨯=
V---体积流量,如上计算,取V=1694ml/s ;
n----压缩机转速,选用涡旋式压缩机,取n=1800rpm ; v η---压缩机容积效率,取v η=0.8; 故 r ml /6.70=
产品车选用的是奥特佳66压缩机。

下面根据压缩机的性能曲线对制冷量和传动比是否合适、消耗功率是否与发动机功率相匹配进行校核。

3.2 所选压缩机与汽车的动力匹配计算 3.2.1 汽车行驶速度及传动比
行驶速度: V=40km/h 压缩机皮带轮直径: d 压=100mm 发动机皮带轮直径: d 发=125mm 发动机/压缩机传动比: 3.2.2 与汽车的动力匹配计算
当发动机在三档位置行使时,计算如下:
变速箱主减速比 467
.40=i 变速箱3档减速比 346.13=i
轮胎滚动半径 m r 293.0=
对应发动机转速 rpm r
i i V n o 2178377.03
=⨯⨯⨯=发 压缩机转速 rpm i n n 272325.12178=⨯=⨯=传发压
发动机在此时的功率约为23.3KW 。

25
.1100521===压发传d d
i )
8.0601800(1694
)(⨯=⨯=v p n V V η
当发动机在四档位置行使时,计算如下: 变速箱4档减速比 912.04=i
轮胎滚动半径 m r 293.0=
对应发动机转速 rpm r
i i V n o 1476377.03
=⨯⨯⨯=发 压缩机转速 rpm i n n 184525.11476=⨯=⨯=传发压 发动机在此时的功率约为14.4kW 。

在三、四档,40 km/h 时,压缩机的平均转速 n = (2723+1845)/2 =2284rpm 压缩机与发动机的动力匹配表见表3-1。

3.3 设计工况下的压缩机性能
根据奥特佳样本上压缩机性能曲线图,查得压缩机转速rpm n 2284=压时:
制冷量kW Q 2.50=; 消耗功率kW N 1.2=。

压缩机的制冷量刚好满足系统的要求, 压缩机功耗占发动机后备功率比
N 压/N 发 = 1.6/((23.3+14.4)/2) = 11.1 %
由上述计算发现,压缩机与发动机的功耗比满足要求。

3.4 怠速工况下的制冷量校核
怠速时发动机的转速: 800rpm 怠速时压缩机的转速: 1000rpm
在压缩机性能曲线图上查得怠速工况的制冷量约为:1.05kW 3.5 压缩机允许最高转速校核
压缩机的允许最高连续转速为: 10000rpm 发动机最高转速:6000rpm 对应的压缩机最高转速: 7500rpm
压缩机的最高转速低于允许最高(连续)转速。

4 冷凝器能力计算
冷凝器热负荷:2.78.45.15.10=⨯==Q Q k kW
计算所得冷凝器负荷比为1.5:1,由于计算时忽略工质沿程阻力损失、局部阻力损失、外表面污垢热阻等因素,再加上进风效果的影响,实际上冷凝器换热能力应大于9.5kW 。

5 蒸发器能力计算
蒸发器制冷量W Q k 8.40=。

6 送风量的确定
风机的送风量:)
(v 0
出入h h Q -=
式中:0Q ---蒸发器制冷量;
入h --蒸发器入口空气焓值; 出h —蒸发器出口空气焓值;
蒸发器入口的空气状态:
入口温度C
t︒
=27

入口空气相对湿度%
50
=

ψ
出口空气状态取为:
出口温度C
t︒
=8

出口空气相对湿度%
9
=

ψ
蒸发器进出口空气状态确定后,就可以通过查湿空气焓湿图确定各参数值:
kg
kJ
h/
2.5
5
=

kg
kJ
h/
0.3
2
=

入口空气的比容v为0.86/3
m kg
所以,风机的送风量:
Va=4.8×3600×0.86/(55.2-23.0)=462m3/h
实际送风量的确定还需要综合考虑蒸发器迎面风速、车气流组织、风机及风道噪声等因素,因此实际送风量不应低于以上计算结果。

在鼓风机的压头能克服车空调器(HVAC)与风道的阻力时鼓风机的风量应大于450m3/h。

相关文档
最新文档