动态规划法求解生产与存储问题

合集下载

动态规划

动态规划
f1(A)=MIN r(A,B1)+ f2(B1) r(A,B2)+ f2(B2)
=MIN(3+12,4+10)=14
最短路线: A—— B2 ——C2——D2——E2——F 最优解: d1*(A)= B2,最短用时14
1
B2
C3
4 2
D3
5
E2
4
A
2
C2
3 3 3
D2
2
F
3
B1
5 4
C1
4
2
E1
最优解: d2*(B1)= C1
1
B2
C3
4 2
D3
5
E2
4
A
2
C2
3 3 3
D2
2
F
3
B1
5 4
C1
4
2
E1
4
3
D1
A
B
C
D
E
F
如果S2=B2,则下一步能取C2或C3,故
f2(B2)=MIN r(B2,C2)+ f3(C2)
r(B2,C3)+ f3(C3) =MIN(2+8,1+11)=10
最短路线: B2 ——C2——D2——E2——F
1
B2
C3
4 2
D3
5
E2
4
A
2
C2
3 3 3
D2
2
F
3
B1
5 4
C1
4
2
E1
4
3
D1
A
B
C
D
E
F
如果S4=D3,则下一步只能取E2,故

动态规划在资源配置中的应用研究

动态规划在资源配置中的应用研究

动态规划在资源配置中的应用研究在当今复杂多变的社会和经济环境中,资源的有效配置成为了各个领域追求高效发展的关键。

而动态规划作为一种强大的数学优化方法,在资源配置问题中发挥着至关重要的作用。

动态规划的核心思想在于将一个复杂的问题分解为一系列相互关联的子问题,并通过对这些子问题的求解来逐步得出原问题的最优解。

这种方法的优势在于它能够充分考虑到问题的动态性和阶段性,从而更加贴合实际情况。

资源配置问题通常涉及到多个因素的权衡和决策。

例如,在企业生产中,需要决定如何分配有限的人力、物力和财力资源,以实现最大的产出和利润;在项目管理中,要合理安排任务的顺序和资源的投入,确保项目按时完成且成本最低;在交通运输领域,需要优化车辆的调度和路线规划,以提高运输效率和降低运营成本。

以生产企业为例,假设一家工厂有多种产品可以生产,每种产品的生产需要消耗不同数量的原材料、工时和设备使用时间,同时每种产品在市场上的售价也不同。

为了实现利润最大化,企业需要决定每种产品的生产数量。

这就是一个典型的资源配置问题。

如果使用传统的方法来解决这个问题,可能会面临计算复杂、难以考虑所有可能情况等困难。

而动态规划则为我们提供了一种有效的解决方案。

首先,我们可以将生产计划划分为多个阶段,每个阶段对应一个决策点,即决定是否生产某种产品以及生产多少。

然后,我们定义状态变量,例如在某个阶段剩余的原材料、工时和设备可用时间等。

接着,通过建立递推关系式,计算在每个阶段不同决策下的收益,并选择最优的决策。

动态规划在资源配置中的应用具有以下几个显著的优点:一是能够处理大规模的问题。

随着问题规模的增大,传统方法的计算量往往呈指数级增长,而动态规划通过巧妙的分解和递推,可以有效地降低计算复杂度。

二是能够考虑到问题的动态变化。

在实际的资源配置中,各种因素可能会随着时间而发生变化,例如原材料价格的波动、市场需求的变化等。

动态规划可以根据这些变化及时调整策略,保证资源配置的最优性。

动态规划原理

动态规划原理

动态规划原理
动态规划是一种解决复杂问题的算法思想。

它通过将问题分解成较小的子问题,并通过寻找子问题的最优解来解决整体问题。

动态规划的核心思想是将整体问题拆分成多个重叠子问题,在解决子问题的过程中记录下每个子问题的解。

这样一来,当我们需要求解更大规模的子问题时,可以直接利用已经计算出的子问题解,避免重复计算,提高算法效率。

其中,动态规划的关键步骤包括定义状态、设计状态转移方程和确定边界条件。

首先,我们需要确定问题的状态。

状态可以理解为问题的属性,它描述了问题在不同阶段、不同状态下的特征。

在动态规划中,我们将问题的状态表示成一个或多个变量,用于描述问题的特征。

接着,我们需要设计状态转移方程。

状态转移方程描述了子问题之间的联系和转移规律。

它通过将问题的解与子问题的解联系起来,建立起子问题与整体问题的关系。

通过推导状态转移方程,我们可以由已知的子问题解计算出更大规模的问题解。

最后,我们需要确定边界条件。

边界条件表示问题的终止条件,它是最小规模子问题的解。

边界条件是问题求解的起点,也是递归求解过程的出口。

通过依次求解子问题,并利用已经计算过的子问题解,动态规
划可以高效地解决复杂问题,并得到全局最优解。

因此,它在解决优化问题、序列问题、最短路径问题等方面有着广泛的应用。

动态规划算法教学PPT

动态规划算法教学PPT

03
动态规划算法的实现步骤
明确问题,建立数学模型
1
确定问题的目标和约束条件,将其转化为数学模 型。
2
理解问题的阶段划分,将问题分解为若干个子问 题。
3
确定状态变量和决策变量,以便描述子问题的状 态和决策。
划分阶段,确定状态变量和决策变量
01
根据问题的阶段划分,将问题分解为若干个子问题。
02
确定状态变量和决策变量,以便描述子问题的状态 和决策。
02
将子问题的最优解组合起来,得到原问题的最优解。
对最优解进行验证和性能评估,确保其满足问题的要求。
03
04
动态规划算法的优化技巧
分支定界法
分支定界法是一种求解优化问题的算 法,它通过不断生成问题的分支并确 定每个分支的界限,来寻找最优解。 在动态规划中,分支定界法可以用来 优化状态转移方程,减少计算量。
详细描述
多目标规划问题在实际生活中应用广泛,如资源分配、项目计划、城市规划等领 域都有涉及。常用的求解多目标规划的方法包括权重和法、帕累托最优解等。
多阶段决策问题
总结词
多阶段决策问题是动态规划中的一类,解决的问题需要在多个阶段做出决策,每个阶段的决策都会影响到后续阶 段的决策。
详细描述
多阶段决策问题在实际生活中应用广泛,如生产计划、库存管理、路径规划等领域都有涉及。常用的求解多阶段 决策问题的方法包括递归法、动态规划等。
特点
动态规划算法具有最优子结构、重叠 子问题和最优解性质等特征。
动态规划算法的应用领域
计算机科学
在计算机科学中,动态规划算法广泛应用于字符 串处理、排序、数据压缩和机器学习等领域。
电子工程
在电子工程中,动态规划算法用于信号处理、通 信和控制系统等领域。

数学建模动态规划

数学建模动态规划

u5*(E2)F.
4
6
D2 2
F
3
1
D3
3
E2 u4 *(D 1)E1.
f4(D2)5 u4 *(D 2)E2.
f 3 ( C 2 ) m d 3 ( C 2 , D 1 i ) f 4 n ( D 1 ) d 3 ( { C , 2 , D 2 ) f 4 ( D 2 )}
m 4 i7 ,5 n 5 } { 1 . 0
一、基本概念
阶段:是指问题需要做出决策的步数。阶段总数常记为n,相 应的是n个阶段的决策问题。阶段的序号常记为k,称为阶段 变量,k=1,2, …,n. k即可以是顺序编号也可以是逆序编号, 常用顺序编号。 状态:各阶段开始时的客观条件,第k阶段的状态常用状态
变量 s k 表示,状态变量取值的集合成为状态集合,用 S k
4
A
5
2
B1 3
6
8 7
B2
7
C1
5
8
4
C2 5
3
C3 4
8
C4 4
D1
3
5 6
D2 2
1
D3
3
u5*(E1)F,
E1
4
3
E2
u5*(E2)F.
F
f 4 ( D 1 ) m d 4 ( D 1 , E 1 i ) f n 5 ( E 1 ) d 4 ( { D , 1 , E 2 ) f 5 ( E 2 )}
到过程终止时的最佳效益。记为
其中 opt 可根据具体情况取max 或min。 基本方程:此为逐段递推求和的依据,一般为:
式中opt 可根据题意取 max 或 min. 例如,案例1的基本方程为:

运筹学教程(第三版)清华大学出版社出版 郭耀煌 胡远权编著 习题答案习题答案(第七章)

运筹学教程(第三版)清华大学出版社出版 郭耀煌 胡远权编著 习题答案习题答案(第七章)
page 9 3 May 2011
决策(分配资金) 决策(分配资金) 0 0 0 0 0 0 1 64 64 64 64 2 68 68 68 3 78 78 4 76
最优 决策 0 1 2 3 3
最优决策 的效益值 0 64 68 78 78
School of Management
运筹学教程
第七章习题解答
表7-20 项目 A B C 投资额 0 0 0 0 1 41 42 64 2 48 50 68 3 60 60 78 4 66 66 76 单位:万元 单位:
page 8 3 May 2011
School of Management
运筹学教程
第七章习题解答
工厂3 工厂 状态( 状态(可能的 投资数) 投资数) 0 1 2 3 4
运筹学教程
第七章习题解答
最优解: 购买1, 购买1, 购买3。 最优解: Al购买 , A2购买 , A3购买 。可靠性 为0.042。 。
page 13 3 May 2011
School of Management
运筹学教程
第七章习题解答
7.6 某工厂有 000台机器,可以在高、低两种不 某工厂有l 台机器, 台机器 可以在高、 同负荷下进行生产,假没在高负荷下生产时, 同负荷下进行生产 , 假没在高负荷下生产时 , 产品的 年产量s1和投入的机器数量y1的关系为s1=8y1, 机器的 年产量 和投入的机器数量 的关系为 完好率为0.7;在低负荷下生产时,产品的年产量s 完好率为 ; 在低负荷下生产时 , 产品的年产量 2 和 投入的机器数量y 的关系为s 投入的机器数量 2 的关系为 2=5y2 , 机器的完好率为 0.9。 现在要求制定一个 年生产计划 , 问应如何安排 年生产计划, 。 现在要求制定一个5年生产计划 使在5年内的产品总产量最高 年内的产品总产量最高。 使在 年内的产品总产量最高。 表示低负荷, 解:y=0表示低负荷,y=1表示高负荷 表示低负荷 表示高负荷 Y(1)=0 Y(2)=0 Y(3)=1 Y(4)=1 Y(5)=1 各月的产量如下: 各月的产量如下: X(1)=5000,X(2)=4500,X(3)=64800, , , , X(4)=4536,X(5)=3175.2 ,

管理运筹学07动态规划

管理运筹学07动态规划
生产计划、库存管理、路径规划 等。
连续时间动态规划
定义
连续时间动态规划是指时间连续变化,状态 和决策也连续变化,状态转移和决策可以发 生在任意时刻。
解决思路
通过将时间连续化,将连续的时间动态问题转化为 离散的时间动态问题,然后应用动态规划的方法进 行求解。
应用场景
控制系统优化、金融衍生品定价、物流优化 等。
状态转移
指从一个状态转移到另一个状态的过程,是动态规划的基本要素 之一。
状态转移方程
描述了状态转移的数学表达式,是动态规划算法的核心。
最优化原理
最优化原理
在多阶段决策问题中,如果每个阶段 都按照最优策略进行选择,则整个问 题的最优解一定是最优的。
最优子结构
如果一个问题的最优解可以由其子问 题的最优解推导出来,则称该问题具 有最优子结构。
解决方案
采用启发式搜索策略, 如模拟退火、遗传算法 等,来引导算法跳出局 部最优解。
案例
在旅行商问题中,采用 模拟退火算法结合动态 规划,在局部搜索和全 局搜索之间取得平衡, 得到全局最优解。
06 动态规划案例研究
案例一:生产与存储问题的动态规划解决方案
总结词
该案例研究探讨了如何利用动态规划解决生 产与存储问题,通过合理安排生产和存储策 略,降低总成本。
管理运筹学07动态规划
contents
目录
• 动态规划概述 • 动态规划的基本概念 • 动态规划的应用 • 动态规划的扩展 • 动态规划的挑战与解决方案 • 动态规划案例研究
01 动态规划概述
定义与特点
定义
动态规划是一种通过将原问题分解为 相互重叠的子问题,并存储子问题的 解以避免重复计算的方法,从而有效 地解决最优化问题的方法。

运筹学中关于规划问题的常用解决方法

运筹学中关于规划问题的常用解决方法

运筹学中关于规划问题的常用解决方法运筹学是一门研究如何在有限资源下做出最优决策的学科。

在运筹学中,规划问题是一类常见的问题,它涉及到如何合理分配资源以达到特定的目标。

本文将介绍运筹学中关于规划问题的常用解决方法。

首先,线性规划是解决规划问题最常用的方法之一。

线性规划的目标是在一组线性约束条件下,找到使目标函数最大或最小的变量值。

线性规划的数学模型可以表示为:max/min Z = c₁x₁ + c₂x₂ + ... + cₙxₙsubject to:a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ ≤ bₙx₁, x₂, ..., xₙ ≥ 0其中,Z是要优化的目标函数,c₁, c₂, ..., cₙ是目标函数的系数,a₁₁,a₁₂, ..., aₙₙ是约束条件的系数,b₁, b₂, ..., bₙ是约束条件的常数,x₁, x₂, ..., xₙ是决策变量。

其次,整数规划是线性规划的一种扩展形式,它要求决策变量必须取整数值。

整数规划在实际问题中具有广泛的应用,例如生产调度、物流配送等。

整数规划的求解方法包括分支定界法、割平面法等。

分支定界法通过将整数规划问题划分成一系列子问题,并逐步求解,最终得到最优解。

割平面法则通过添加额外的线性约束条件来逐步逼近最优解。

除了线性规划和整数规划,规划问题还可以通过动态规划方法求解。

动态规划是一种将问题分解成子问题并逐步求解的方法。

它适用于具有重叠子问题和最优子结构性质的问题。

动态规划的核心思想是通过存储中间结果来避免重复计算,从而提高计算效率。

动态规划在求解最短路径、背包问题等方面具有广泛的应用。

此外,启发式算法是一类基于经验和直觉的求解方法,它通过不断搜索和优化来寻找问题的近似最优解。

启发式算法常用于求解复杂的规划问题,如旅行商问题、车辆路径问题等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动态规划一·动态规划法的发展及其研究内容动态规划是运筹学的一个分支,是求解决策过程最优化的数学方法。

20世纪50年代初美国数学家R.E.BELLMAN等人在研究多阶段决策过程的优化问题时,提出了著名的最优化原理,把多阶段问题转化为一系列的单阶段问题,逐个求解创立了解决这类过程优化问题的新方法——动态规划。

1957年出版的他的名著《Dynamic Proggramming》,这是该领域的第一本著作。

动态规划问世以来,在经济管理·生产调度·工程技术和最优控制等方面得到了广泛的应用。

例如最短路线·库存管理·资源分配·设备更新·组合·排序·装载等问题,采用动态规划法求解比用其他方法更为简便。

二·动态规划法基本概念一个多阶段决策过程最优化问题的动态规划模型通常包括以下几个要素:1.阶段阶段(stage)是对整个过程的自然划分。

通常根据时间顺序或是空间特征来划分阶段,对于与时间,空间无关的“静态”优化问题,可以根据其自然特征,人为的赋予“时段”概念,将静态问题动态化,以便按阶段的顺序解优化问题。

阶段变量一般用k=1.2….n.表示。

1.状态状态(state)是我们所研究的问题(也叫系统)在过个阶段的初始状态或客观条件。

它应能描述过程的特征并且具有无后效性,即当某阶段的状态给定时,这个阶段以后的过程的演变与该阶段以前各阶段的状态无关。

通常还要求状态是可以直接或者是间接可以观测的。

描述状态的变量称为状态变量(State Virable)用s 表示,状态变量的取值集合称为状态集合,用S表示。

变量允许取值的范围称为允许状态集合(set of admissble states).用x(k)表示第k阶段的状态变量,它可以是一个数或者是一个向量。

用X(k)表示第k阶段的允许状态集合。

n 个阶段的决策过程有n+1个状态变量,x(n+1)是x(n)的演变的结果。

根据演变过程的具体情况,状态变量可以是离散的或是连续的。

为了计算方便有时将连续变量离散化,为了分析的方便有时又将离散的变量视为连续的。

2.决策当一个阶段的状态确定后,可以做出各种选择从而演变到下一阶段的某个状态,这种选择手段称为决策(decision),在最优控制问题中也称为控制(control)描述决策的变量称为决策变量(decision virable)。

变量允许取值的范围称为允许决策集合(set of admissbledecisions)。

用表示第k阶段处于阶段x(k)的决策变量,它是x(k)的函数,用表示x(k)的允许决策集合决策变量简称决策。

4.策略决策组成的系列称为策略(policy)。

由初始状态x1开始的全过程的策略记作..由第k阶段的状态x(k)开始到终止状态的后部子过程的策略,;k=2,…,n-1.可供选择的策略有一定的范围,称为允许策略集合(set of admissble polices),用, 等表示。

5.状态转移方程在确定性过程中,一旦某阶段的状态和决策为已知,下阶段的状态偏完全可以确定。

用状态转移方程(state transfer equations)表示这种演变规律,写作:6.阶段指标函数对于k阶段的状态x(k),当执行了决策时,除带来系统状态的转移之外,还产生第k阶段的局部利益,它是总效益的一部分,称为阶段指标函数(stageeffective fuction),记作.7.过程指标函数用来衡量策略或者是子策略执行效果的数量指标称为过程指标函数(process effective fuction),它定义在所有k后部子过程上,常用用表示,即k=1,2,…,n.当k=1时,就是全过程指标函数。

如果状态x(k)和子策略给定,那么也就被确定了,所以是x(k)和的函数,记为:常见的过程指标函数是连和形式或连积形式:8.最优指标函数过程指标函数的最优值称为最优指标函数(optimum effective fuction),记为f(x(k).它表示,采取了最优子策略之后,后部子过程所获得的总效益,表示为:式中opt是optimization的缩写,意为最优化,可以根据具体问题去max或min三·动态规划法的最优性原理和基本函数方程在动态规划中起核心作用的是最优性原理:“作为整个过程的最优策略具有这样的性质,无论过去的状态和决策如何,相对于前面决策所形成的状态而言,余下的决策系列必须构成最优子策略。

”动态规划解法的关键在于给出一种递推关系,一般把这种关系称为基本函数方程,注意到无后效性,最优指标函数为当k=n时,由于x(n+1)是整个决策过程的终止状态,以后不再做出决策,因此,这样就得到了可以用来递推的基本函数方程:f(x(n+1))=0.类似的,可以得到乘法形式的基本函数方程:f(x(n+1))=1.四·建立动态规划模型的基本步骤1.阶段;2.状态变量及可能状态集合;3.决策变量及允许决策集合;4.状态转移方程;5.阶段指数函数;6.基本函数方程;建立动态规划模型基本上是上面6个步骤,按上述顺序逐步确定1~6的内容。

五·动态规划法的递推方向及求解形式1.递推解法基本方程:f(x(n+1))=0状态转移方程为计算步骤是,利用终端条件从k=n开始由后向前递推基本方程,求得各阶段的最优决策和最优函数,最后算出f(x(1)时就得到了最优决策系列再按照状态转移方程从k=1开始确定,k=1,2,…,n}为最优轨迹线,为最优策略。

2.顺推解法使用顺推解法时,一些概念的含义须做相应调整。

状态变量x(k)表示第k阶段末系统的形态·状况,最优值函数f(x(k))表示从第一阶段到第k阶段总效益的最优值,状态转移方程为基本函数方程为f(x(0))=0或13.求解形式求解动态规划问题,一般有两种形式:解析形式和表格形式,解析形式是利用函数的解析表达式,在每个阶段用经典求极值的方法得到最优解。

表格形式是指各阶段的计算过程均在表格中进行,这种形式便于分析和比较,操作过程直观且简练,适用于没有解析表达式的离散型问题。

4.动态规划的适用条件适用动态规划的问题通常应满足如下3点:○1最优化原理(最优子结构性质)。

如果问题的最优解所包含的子问题的解也是最优的,就称该问题具有最优子结构性质,即满足最优化原理。

由于对于有些问题的某些递归式来讲并不一定能保证最优化原则,因此在求解问题时有必要对它进行验证。

若不能保持最优原则,则不可以应用动态规划法求解。

在得到最优解的递归式之后,需要执行回溯以构造最优解。

○2无后效性。

应用动态规划法的一个重要条件就是将各阶段按照一定的次序排好,阶段i的状态只能由阶段i+1的状态来确定,与其他状态没有关系,尤其是于未发生的状态没有关系。

换言之,每个状态都是“过去历史的一个完整总结”。

这就是无后效性。

○3子问题的重叠性。

子问题的重叠性是指在利用递归算法自顶向下对问题进行求解时,每次产生的问题并不总是新问题,有些子问题可能会被重复计算多次。

动态规划法正是利用子问题的这种重叠性质,对每一个问题只计算一次,然后将其计算结果保持起来,当再次需要计算已经计算过的子问题时,只要简单的查看一下以往的计算结果,从而获得较高的解题效率。

子问题的的重叠性并不是动态规划适用的必要条件,但是如果该性质无法满足,动态规划算法同其他算法相比就无优势可言了。

5.解决问题的步骤利用动态规划法求解问题的算法通常包含如下几个步骤。

○1分析。

对原始的问题进行分析,找到问题的最优解的结构特征。

○2分解。

将所给问题按时间或空间特征分解成相互关联的阶段,并确定出计算局部最优解的递推关系,这是利用动态规划法解决问题的关键和难点所在。

需要注意的是,分解后的各个阶段一定是有序的或者是可以排序的,即无后向性。

否则问题就无法用动态规划求解。

阶段之间相互联系方式是通过状态和状态转移体现的。

每个阶段通常包含若干个状态,可以描述问题发展到这个阶段时所处在的一种客观情况。

每个阶段的状态都由以前阶段的状态以某种方式“变化”来的,这样的“变化”称为状态转移。

状态转移是导出状态的途径,也是联系各阶段的方式。

○3解决。

对于每个阶段通过自底向上的方法求得局部最优解。

由于这一步骤通常是通过递推实现的,因此,需要递推终止条件或边界条件。

○4合并。

将各个阶段求出的解合并为原问题的解,即构造一个最优解。

动态规划的主要难点在于理论的设计,特别是递推关系的建立,一旦设计完成,实现部分就会非常简单。

整个求解过程就可以使用一个最优决策表的二维数组来描述,其中行表示决策的阶段,列表示问题状态,表格需要填写的数据一般对应此问题的在某阶段某个状态下的最优值,如最短路径,最长公共子序列,最大价值等。

填表的过程就是根据递推关系从1行1列开始,以行或者列优先的顺序,依次填写表格。

最后根据整个表格的数据通过简单的取舍或者运算求得问题的最优解。

总之,动态规划算法的关键在于解决冗余,是一个以空间换时间的技术,所以它的空间复杂度要大于其他的算法。

六·动态规划问题在问题中的具体实现例如:动态规划规划在生产存储中的运用生产存储问题是生产活动中经常遇到的问题。

大批量生产可以降低成本,但当产量大于销量时就会造成产品积压而增加库存费用;单纯按市场要求安排生产也会因为开工不足或加班加点造成生产成本增加。

因此合理利用存贮资源调节产量,满足要求是十分有意义的。

生产与存贮问题是一个生产部门如何在已知生产成本,存贮费用和各阶段市场要求的条件下,决定各个生产阶段的产量,使得计划期内的费用之和最小。

现设有一个生产部门,生产计划周期为n个阶段,已知最初库存量为x1,阶段需求量为dk,单位产品的消耗费用是lk,单位产品的阶段库存费用为hk,仓库容量为mk,阶段生产能力为bk,生产固定成本为问如何安排现阶段的产量,使计划期内的费用综合为最小?该问题本身就是一个多阶段决策问题,设状态变量为xk 为k阶段初的库存量,由于计划期初的库存量x1已知,计划期末的库存量通常也是给定的,为简单起见,假定x(n+1)=0,于是状态变量xk的约束条件是:决策变量uk选为阶段k的产量,它满足的约束条件是:状态转移方程为,它满足无后效性的要求。

阶段效用由两阶段组成,一部分为生产费用,另一部分为存贮费用,即:动态规划基本方程为:七.设计题目:某机床厂根据合同,在一至四月份为客户生产某种机床。

工厂每月的生产能力为10台,机床可以库存,存储费用为每台每月0.2万元,每月需要的数量及每台机床的生产成本如下表。

试确定每月的生产量,要求既能满足每月的需求,又能使生产成本和存储费用之和达到最小。

表需求量及生产成本1.构造动态规划模型○1阶段变量k把每个月作为一个阶段,k=1,2,3,4○2状态变量选择每个阶段的库存量为状态变量,可满足无后效性,由已知条件可知:x1=x5=0,单位为台○3决策变量设每个阶段的生产量为决策变量,由已知条件得0≤≤10台,○4状态转移方程状态转移方程为:=+-(是第k阶段的市场需求量)○5阶段指标第k阶段的指标费用:(,)=0.2+y(i)(>0)i=1,2,3,4.或(,)=0.2+0 (=0)其中y1=7,y2=7.2,y3=8,y4=7.6,单位为万元2.建立基本方程设最优值函数是从第k阶段的状态出发到过程终结的最小费用,按动态规划方法的逆序解基本方程又:[(,)+] (k=4,3,2,1)F5(x5)=03.逆序逆推计算○1k=4时按照问题的各种约束条件,确定状态变量x4的取值范围。

相关文档
最新文档