习题选解

合集下载

大学物理a习题选解

大学物理a习题选解

第六章 真空中的静电场习题选解6-1 三个电量为q -的点电荷各放在边长为r 的等边三角形的三个顶点上,电荷(0)Q Q >放在三角形的重心上。

为使每个负电荷受力为零,Q 之值应为多大?解:以三角形上顶点所置的电荷(q -)为例,其余两个负电荷对其作用力的合力为1f ,方向如图所示,其大小为题6-1图中心处Q 对上顶点电荷的作用力为2f ,方向与1f 相反,如图所示,其大小为由12f f =,得3Q q =。

6-2 在某一时刻,从238U 的放射性衰变中跑出来的α粒子的中心离残核234Th 的中心为159.010r m -=⨯。

试问:(1)作用在α粒子上的力为多大?(2)α粒子的加速度为多大?解:(1)由反应238234492902U Th+He →,可知α粒子带两个单位正电荷,即 Th 离子带90个单位正电荷,即它们距离为159.010r m -=⨯由库仑定律可得它们之间的相互作用力为:(2)α粒子的质量为:由牛顿第二定律得:6-3 如图所示,有四个电量均为C q 610-=的点电荷,分别放置在如图所示的1,2,3,4点上,点1与点4距离等于点1与点2的距离,长m 1,第3个电荷位于2、4两电荷连线中点。

求作用在第3个点电荷上的力。

解:由图可知,第3个电荷与其它各电荷等距,均为2r m =。

各电荷之间均为斥力,且第2、4两电荷对第三电荷的作用力大小相等,方向相反,两力平衡。

由库仑定律,作用于电荷3的力为题6-3 图题6-3 图力的方向沿第1电荷指向第3电荷,与x 轴成45角。

6-4 在直角三角形ABC 的A 点放置点电荷C q 91108.1-⨯=,B 点放置点电荷C q 92108.4-⨯-=,已知0.04,0.03BC m AC m ==,试求直角顶点C 处的场强E 。

解:A 点电荷在C 点产生的场强为1E ,方向向下B 点电荷在C 点产生的场强为2E ,方向向右题6-4图根据场强叠加原理,C 点场强设E 与CB 夹角为θ,21tan E E =θ6-5 如图所示的电荷分布为电四极子,它由两个相同的电偶极子组成。

第六章简单超静定问题习题选解

第六章简单超静定问题习题选解

图习题⋅-16图⋅N l 图习题⋅-56习 题[6-1] 试作图示等直杆的轴力图。

解:把A 支座去掉,代之以约束反力A R (↑)。

A AC R N = F R N A CD 2-=F R N A BD 3-=变形协调条件为:0=∆l02=⋅+⋅+⋅EA aN EA a N EA a N BD CD AC 02=++BD CD AC N N N03)2(2=-+-+F R F R R A A A47FR A =故:47F R N A AC == 42472FF F F R N A CD -=-=-= 453473FF F F R N A BD-=-=-= 轴力图如图所示。

[6-5] 图示刚性梁受均布荷载作用,梁在A 端铰支,在B 点和C 点由两根钢杆BD 和CE 支承。

已知钢杆BD 和CE 的横截面面积22200mm A =和21400mm A =,钢杆的许用应力MPa 170][=σ,试校核该钢杆的强度。

解:以AB 杆为研究对象,则:0=∑AM1023)330(3121=⨯⨯-⨯+⨯N N 135321=+N N (1)变形协调条件:3121=∆∆l l 123l l ∆=∆112238.1EA lN EA l N ⨯=⋅ 40032008.112N N =⋅ 212.1N N = (2)(2)代入(1)得:13532.122=+N N)(143.322.41352kN N ≈=(拉力) )(571.38143.322.12.121kN N N ≈⨯== (压力)按轴力正负号的规定,记作:kN N 571.381-=;kN N 143.322=强度校核:MPa MPa mm N A N 170][4275.9640038571||||2111=<===σσ,符合强度条件。

图习题⋅-156 MPa MPa mm NA N 170][715.160200321432122=<===σσ,符合强度条件。

第二章习题选解-PPT

第二章习题选解-PPT
出厂;以概率 0.30 需进一步调试,经调试后以概率 0.80 可以 出厂,以概率 0.20 定为不合格不能出厂,现该厂新生产了
n(n 2) 台仪器(假设各台仪器的生产过程相互独立),求:
(1) 全部能出厂的概率 ; (2) 其中恰好有两件不能出厂的概率
(3) 其中至少有两件不能出厂的概率 .
解 由题意知,每台仪器能出厂的概率为
9
P56 14、 设书籍上每页的印刷错误的个数X服从泊松
分布。经统计发现在某本书上,有一个印刷错误与有两
个印刷错误的页数相同,求任意检验4页,每页上都没
有印刷错误的概率。
解 由 P{ X 1} P{ X 2} ,即 1 e 2 e ,
1!
2!
解得 2 ,
从而得 P{ X 0} 0 e e2 ,
0.25 e0.25 x , f (x)
x0
0,
x0
P( X 1)
1
0.25
e
0.25
x
dx
e 0.25 x
1 1 e0.25
0.2212 ,
0
0
P( X 1) e0.25 0.7788 ,
X
100
-200
所以Y的分布律为
P
0.7788 0.2212
20
P58 32、 设 X ~ N (1,4) ,(1)求 P(0 X 5) ;(2)
解 P( X 1) 0.7 , P( X 2) 0.3 0.8 0.24 , P( X 3) 0.3 0.2 0.9 0.054 , P( X 4) 0.3 0.2 0.1 1 0.006 .
所以X的分布律为
X
1
2
3
4
P 0.7 0.24 0.054 0.006

实变函数论习题集选解

实变函数论习题集选解

《实变函数论》习题选解一、集合与基数1.证明集合关系式:(1))()()()(B D C A D C B A --⊂--- ; (2))()()()(D B C A D C B A -=--; (3)C B A C B A )()(-⊆--;(4)问)()(C B A C B A --=- 成立的充要条件是什么?证 (1)∵cB A B A =-,cc c B A B A =)((对偶律),)()()(C A B A C B A =(交对并的分配律), ∴)()()()()()(D C B A D C B A D C B A c c cc c==---第二个用对偶律)()()()()()(B D C A D B C A D B A C B A c c c c c --=⊆=交对并分配律.(2))()()()()()(c c c cD B C A D C B A D C B A ==--交换律结合律)()()()(D B C A D B C A c-==第二个用对偶律.(3))()()()()(C A B A C B A C B A C B A c ccc ===--分配律C B A C B A c )()(-=⊆.(4)A C C B A C B A ⊆⇔--=-)()( . 证 必要性(左推右,用反证法):若A C ⊄,则C x ∈∃ 但A x ∉,从而D ∀,)(D A x -∉,于是)(C B A x --∉; 但C B A x )(-∈,从而左边不等式不成立,矛盾! 充分性(右推左,显然):事实上,∵A C ⊆,∴C C A = ,如图所示:故)()(C B A C B A --=- .2.设}1 ,0{=A ,试证一切排列A a a a a n n ∈ ),,,,,(21所成之集的势(基数)为c .证 记}}1 ,0{),,,,,({21=∈==A a a a a a E n n 为所有排列所成之集,对任一排列}1 ,0{ ),,,,,(21=∈=A a a a a a n n ,令 n a a a a f 21.0)(=,特别,]1 ,0[0000.0)0(∈== f ,]1 ,0[1111.0)1(∈== f ,即对每一排列对应于区间]1 ,0[上的一个2进小数]1 ,0[.021∈ n a a a ,则f 是一一对应(双射),从而集合E 与集合]1 ,0[对等(即E ~]1 ,0[),而对等的集合有相同的基数,故c E ==]1 ,0[.3.证明:整系数多项式的全体是可列的(可数的).证 对任一N ∈n ,n 次多项式n n n x a x a x a a P ++++= 2210对应于一个序列:n a a a a ,,,,210 ,而每个)0(n i a i ≤≤取自可数集N N Z }0{-=,因此,全体n 次整系数多项式n P 是有限个(1+n 个)可数集之并集,仍是可数的.故全体整系数多项式所构成的集合 N∈=n n P P 就是可数个可数集之并集,由定理1.3.8可知:它仍是可数的.4.设]1,0[C 表示区间]1,0[上一切连续函数所成之集,试证它的势为c .证 首先,对任意实数R ∈k ,看作常值连续函数,]1 ,0[C k ∈,∴ ]1 ,0[C ≤R ,即 ]1 ,0[C c ≤;另一方面,实数列全体之集}),,,,,{(21R ∈=i n a a a a E 的基数c E =,为证c C ≤]1 ,0[,只需证]1,0[C 与E 的一个子集对等即可.事实上,把]1 ,0[中的有理数]1 ,0[ Q 排列成 ,,,,21n r r r .对任何]1 ,0[C f ∈,则f 由它在 ,,,,21n r r r 处的值 ),(,),(),(21n r f r f r f 所完全确定.这是因为]1 ,0[ 在Q 中是稠密的,即对任何]1 ,0[∈x ,存在上述有理数列的一个子列)(∞→→k x r k n ,由f 的连续性知:)(lim )(k n k r f x f ∞→=.现在,作映射E C →]1 ,0[:ϕ,)),(,),(),(()(21 n r f r f r f x f ,则ϕ是单射,而集E C f r f r f r f A n ⊂∈=}]1 ,0[)),(,),(),({(21 是全体实数列E 的一个子集,故]1 ,0[C ~E A ⊂,即 c C ≤]1 ,0[.综上可知:c C =]1 ,0[.附注 ①若∅=21A A ,∅=21B B ,又1f :1A ~1B ,2f :2A ~2B .则存在f :21A A ~21B B ;假如21A A ⊂,21B B ⊂,21,f f 的意义同前,问是否存在 12A A -到12B B -的一一对应?解 若∅=21A A ,∅=21B B ,令⎩⎨⎧∈∈=,),(,),()(2211A x x f A x x f x f 则)(x f 就是21A A 到21B B 的一一对应.若21A A ⊂,21B B ⊂,则12A A -与12B B -之间不一定存在一一对应.例如:} , ,,2 ,1{ , }, ,4 ,3{ , },, ,3 ,2{2211 n B A n B n A ====,),3 ,2( 1:1 =+n n n f ,),2,1( :2 =n n n f ,则1f 是1A 到1B 的一一对应,2f 是2A 到2B 的一一对应.但}2 ,1{ },1{1212=-=-B B A A ,显然12A A -与12B B -之间不存在任何一一对应.②几个常见的一一对应:(ⅰ)) ,(b a ~R ,()) ,( , tan )(2b a x x f a b ax ∈-⋅=--ππ; )1 ,0(~R ,)1 ,0( , 1)(2∈-=x xxx f ; (ⅱ))1 ,0(~]1 ,0[,将)1 ,0(中的有理数排列为 , , , ,21n r r r ,而]1 ,0[中的有理数排列为 , , , , ,1 ,021n r r r .作其间的对应f 如下:⎪⎪⎩⎪⎪⎨⎧>====+,中无理数时是当当当当)1 ,0(, ),2( ,,,1 , ,0 )(221x x n r x r r x r x x f n n 则)(x f 是)1 ,0(与]1 ,0[间的一一对应. 注意 这种)(x f 一定不是连续的(为什么?).(ⅲ)N N ⨯~N ,()N N ⨯∈-=-),( , )12(2),(1j i j j i f i .这是因为任一自然数均可唯一表示为q n p⋅=2(p 非负整数,q 正奇数),而对非负整数p ,正奇数q ,又有唯一的N ∈j i ,使得12 ,1-=-=j q i p . (ⅳ)}]1 ,0[)()({上的一切实函数为x f x f F =,则c F 2=. 证 1.c F 2≥;设E 为]1 ,0[的任一子集,)(x E χ为E 的特征函数,即⎩⎨⎧-∈∈=.]1,0[ ,0, ,1)(E x E x x E χ当21 E E 、均为]1 ,0[的子集,21 E E ≠时,)(1x E χ≠)(2x E χ.记}]1 ,0[{⊂=E E M ,}]1 ,0[)({⊂=X E x E χ,则M ~X ,c M 2==X .而F ⊂X ,从而有F ≤X ,即F c ≤2.2.cF 2≤.对每一F x f ∈)(,有平面上一点集 }]1 ,0[ ),(),{(∈==x x f y y x G f (即f 的图形)与之对应.记 })({F x f G G f F ∈=,则F ~F G ,F G F = . F G 为平面上一切点集全体B 的子集,而cB 2=,从而有cF G F 2≤=.综合 1, 2立知 cF 2=.附注 此题提供了证明两个无限集对等的一般方法,这便是Cantor-Bernstein 定理. 其特殊情况是:若C B A ⊂⊂,而A ~C ,则B ~C (此结果更便于应用).5.试证任何点集的内点全体组成的集是开集.证 设集F 的内点集为0F (称为F 的内部),下证0F 为开集.F x ∈∀,由内点的定义,存在x 的邻域F I x x x ⊆=),(βα.现作集 Fx x I G ∈=,则显然G 为开集,且G F⊆0.另一方面,对任意G y ∈,存在0x I ,使得F I y x ⊆∈0,所以,y 为F 的内点,即0F y ∈,也就是说0F G ⊆.综上有G F =0为开集. 6.开映射是否连续?连续映射是否开?解 开映射未必连续.例:在每个区间) ,2 ,1 ,0( ]1 ,[ ±±=+n n n 上作Cantor 三分集n P ,且令n n P n n G -+=]1 ,[,而 +∞-∞==n n P P , +∞-∞==n n G G ,则G 为开集.又设G 的构成区间为} ,3 ,2 ,1 ), ,{( =k b a k k .(教材P21例1中的Cantor 集P 即本题中的0P )现在R 上定义函数 ⎪⎩⎪⎨⎧∈=∈---=, ,0 , ,3 ,2 ,1 ), ,( )],21(tan[)(P x k b a x a b x b x f k k kk k π 则f 在R 上映开集为开集,但f 并不连续.事实上,若开区间) ,(βα含于某个构成区间) ,(k k b a 内,则f 就映) ,(βα为开区间) )]21(tan[ )],21(tan[ (kk k k k k a b b a b b ------βπαπ;若开区间) ,(βα中含有P 中的点,则f 就映) ,(βα为R .然而P 中的每个点都是)(x f 的不连续点.又连续映射未必为开映射.例:2)(x x f =在R 上连续,但开集)1 ,1(-的像为)1 ,0[非开非闭.7.设E 是Cantor 集P 的补集中构成区间的中点所成的集,求E '.解 P E ='.分以下三步:①设Cantor 集为P ,其补集(或叫余集)为G ,则 ),(),(),(989792913231=G . 考察]1 ,0[中的点的三进制表示法,设 ⎩⎨⎧=,2,0i a ⎪⎩⎪⎨⎧=,2,1,0i b ( ,3 ,2 ,1=i ).由Cantor 集的构造知:当P y ∈时,y 的小数点后任一位数字都不是1,因而可设n a a a y 21.0=;当G x ∈时,可设 2121.0++=n n n b b a a a x ;特别,对于G 的构成区间的右端点右y 有0200.021n a a a y =右;对于G 的构成区间的左端点左y 有 20222.021n a a a y =左.由此可见,G E ⊆,且当E z ∈时,有 111.0)(2121n a a a y y z =+=右左.②下证Cantor 集P 中的点都是E 的极限点:对P y ∈∀,由于 n a a a y 21.0=,取E z k ∈,则 111.021n k a a a z =. 由于y 与k z 的小数点后前k 位小数相同,从而k k k k k y z 3131********1<⋅=++≤-+++ , 故,0 ,0>∃>∀N ε当N k >时,有ε<k 31,即ε<-y z k , ∴)( ∞→→k y z k ,即 E y '∈.③下证G x ∈∀,有E x '∉.事实上,有两种情况:10.若E x ∈,则只能是G 的构成区间的中点,即 111.021n a a a x =.由Cantor集的构造知:对)( x z E z ≠∈∀,都有 n x z 31≥-,所以,E x '∉; 20.若E x ∉且G x ∈,则)1(,111.0121+>=+n m b a a a a x m m n ,于是,E z ∈∀,有m x z 31>-,所以,E x '∉. 故G 中的点不属于E '.综上所述,我们有:P 中的点都是E 的极限点,不在P 中的点都不是E 的极限点,从而P E ='.8.设点集列}{k E 是有限区间],[b a 中的非空渐缩闭集列(降列),试证∅≠∞= 1k k E .证 用反证法:若∅=∞= 1k k E ,则()] ,[\] ,[\] ,[11b a E b a E b a k k k k ==∞=∞= ,从而} ,\] ,[{N ∈=k E b a E k c k 为有界渐张开集列(升列),且覆盖],[b a ,由数学分析中的“有限覆盖定理”(Borel )可知:存在子覆盖} , ,2 ,1:{n k E c k=,使得] ,[1b a E nk ck ⊇= ,即()] ,[\] ,[1b a E b a n k k == . ∴ ] ,[\] ,[1b a E b a n k k == ,从而∅== nk k E 1,故∅=n E ,矛盾!附注 更一般地,若非空闭集套}{n E : ⊃⊃⊃⊃n E E E 21满足0sup )(,−−→−-=∞→∈n E y x n y x E nρ,则存在唯一的 ∞=∈10n n E x .(这等价于“分析学”或“拓扑学”中著名的“压缩映像原理”) 证 由n E 非空,取) ,3 ,2 ,1( =∈n E x n n ,则}{n x 为Cauchy 基本收敛列.事实上,由于1+⊃n n E E ,所以,) ,2 ,1 ,0( =⊂∈++m E E x n m n m n ,从而0)(sup ,−−→−=-≤-∞→∈+n n E y x n m n E y x x x nρ,由极限存在的Cauchy 准则知:存在唯一的0x 使得0x x n n −−→−∞→.又由n E 为闭集立知n E x ∈0,从而 ∞=∈10n n E x .存在性得证.下证唯一性:若另有 ∞=∈10n n E y ,则) ,2 ,1( 00 =∈n E y x n 、,而0)(00→≤-n E y x ρ,所以,00x y =.这就证明了唯一性.9.若] ,[)(b a C x f ∈,则 ()αα≥∈∀f E , R 为闭集.证 只要证:若0x 为()α≥f E 的极限点(即聚点),必有E x ∈0.由0x 为()α≥f E 的极限点,故有点列) ,2 ,1( =∈n E x n ,满足0lim x x n n=;又由于诸 ] ,[ b a E x n ⊂∈以及)(x f 的连续性,从而有] ,[ ,)(0b a x x f n ∈≥α 以及 α≥=)(lim )(0n nx f x f .这就证明了E x ∈0.9*.若在],[b a 上,)()(lim x f x f n n=,记}],[ ,)({)(b a x x f x E n n ∈>=αα,}],[ ,)({)(b a x x f x E ∈>=αα,证明:() ∞=∞→+=11lim )(k kn n E E αα. 证 一方面,当)(αE x ∈时,α>)(x f ⇒, k ∃使得kx f 1)(+>α,即kn nx f 1)(lim +>α, N ∃⇒当N n >时,kn x f 1)(+>α()() ∞=∞→∞→+∈⇒+∈⇒111lim lim k kn n kn n E x E x αα. 另一方面,() ∞=∞→+∈11lim k kn n E x αk ∃⇒,使()k n n E x 1lim +∈∞→α, N ∃⇒当N n >时, ()k n E x 1+∈α. 即 kn x f 1)(+>α(N n >)k n nx f x f 1)(lim )(+≥=⇒α, α>⇒)(x f ,从而)(αE x ∈. 综上可得 () ∞=∞→+=11lim )(k kn n E E αα. 10.每一个闭集是可数个开集的交集.证 设F 为闭集,作集) ,2 ,1( }),( {1 =<=n F x x G nn ρ,其中),(F x ρ表示点x 到集F 的距离,则n G 为开集.下证: nn G F =.事实上,由于对任意N ∈n 有n G F ⊂,故有 nn G F ⊂;另一方面,对任意 nn G x ∈0,有 ) ,2 ,1( ),(010 =<≤n F x nρ,令∞→n 有0),(0=F x ρ.所以,F x ∈0(因F 为闭集),从而F G nn ⊂ .综上可知: nn G F =.附注 此题结果也说明:可数个开集的交不一定是开集,因而才引出了δG -型集的概念.11.证明:开区间不能表示成两两互不相交的可数个闭集的并集.证 可有两种证法(很麻烦):一种是反证法,即若 nn F b a I ==) ,(0,其中}{n F 为两两互不相交的闭集列,我们设法找到一点) ,(0b a x ∈,但 nn F x ∉0,从而得出矛盾;另一种证法是:记) ,(b a =∆,证明下述更强的结果:若}{n F 为含于∆内的任一组两两互不相交的闭集列,则 nn F -∆的势(基数)等于连续势c ,从而立知不可能有nn F b a ==∆) ,(.取1F ,令1010sup , inf F b F a ==,由1F 为闭集,故100 , F b a ∈,且100000] ,[ , F b a I b b a a ⊃=<≤<.又记) ,( , ) ,(0201b b a a =∆=∆(非空),则有两种情况: ①若)2 , 1( 2=∆∞=i F n n i中至少有一个空集,比如 21∅=∆∞= n n F ,而∅=∆⊂∆0111I F ,所以, 11∅=∆∞= n n F , 11∆⊃-∆∞= n n F .因此,c F nn=∆≥-∆1 .问题得证.②)2 , 1( 1=∆∞=i F n n i均不为空集,对)2 , 1( =∆i i ,在 , ,32F F 中存在最小的下标)(1i n 使∅≠∆i n i F )(1,显然,2},min{)2(1)1(11≥=n n n 以及)(1, , ,00i n F b b a a ∉,从而i n i n i i F F ∆=∆ )(1)(1为含于开区间i ∆内的闭集,对此闭集仿上作出两个闭区间)2 ,1( )(1=i I i ,它们满足:(ⅰ))2(1)1(10 , ,I I I 互不相交; (ⅱ)21121)(101===⊃⊃i i n i i i i F F I I .对在∆中挖去)2(1)1(10 , ,I I I 后余下的四个开区间重复上述步骤,以此类推,用归纳法假设第N 步作出闭区间)2 , ,2 ,1( )(N k N k I =,它们满足:(ⅰ)) , ,2 ,1 ; 2 , ,2 ,1( ,)(0N n j I I n j n ==互不相交;(ⅱ)111121)(0)]([+====⊃⊃N i i n i i N n j j n F F I I N n(因为1+≥N n N ).在开区间∆中挖去闭区间) , ,2 ,1 ; 2 , ,2 ,1( ,)(0N n j I I n j n ==后余下的12+N 个开区间中,如果至少有一个开区间比如0i ∆与2+≥N n n F 的交为空集,则由(ⅱ)知与 ∞=1n n F 的交也为空集,从而c F i nn=∆≥-∆0 .问题得证.若不然,则这12+N 个开区间均与2+≥N n n F 相交,重复上述步骤得到一列闭区间} ,{)(0j n I I ,再利用完备集的结构定理可知它关于] ,[b a 的余集为非空完备集,又在(ⅱ)中令∞→N ,得∞=∞==⊃1121)(0)]([i i n j j n F I I n所以,集 ∞=-1) ,(i i F b a 的势(基数)等于连续势c .附注 ①我们知道:可数个闭集的并集不一定是闭集,而此题结果又说明了“开区间(是开集)却不能表示成可数个互不相交的闭集的并集”,所以又引出了σF -集. ②任何闭区间不可能表示成可数个疏集的并集(提示:用反证法,若 ii F b a =],[,其中),2,1( =i F i 为疏集,可构造一闭区间套,则导出矛盾!)12.证明:用十进位小数表示]1 ,0[中的数时,其用不着数字7的一切数成一完备集.证 对]1 ,0[中的任一数x 均可表示为) ,2 ,1 },9 , ,2 ,1 ,0{( 101=∈=∑∞=k a a x k k k k(x的这种表示法不一定唯一),而如此表示的级数其值都在]1 ,0[内. 记G 表示]1 ,0[中数的十进位可能表示101∑∞=k k ka 中必有某一个7=k a 的那些数的全体,从而只要证明G 关于]1 ,0[的余集G P -=∆]1 ,0[为完备集.作开区间()1081070,=δ,),2 ,1( 10810 , 1071011111=⎪⎪⎭⎫⎝⎛++=+=+=∑∑n a a n n k k k n n k k k aa nδ其中n a a ,,1 为不等于7而小于10的非负整数.显见这些开区间为]1 ,0[中可数无穷个无公共端点的互不相交的开区间,其内点用十 进位数表示时至少有一个7=n a ,而端点用十进位数表示时可使所有7≠k a .作这些开 区间的并集记为U ,则U 为开集,且根据完备集的结构定理知U 关于]1 ,0[的余集为一 完备集,于是,只要证明U G =即可.由U 的定义显见G U ⊂;另一方面,若G x ∈,则在x 的所有可能的十进位表示101∑∞=k k ka 中均必有一个7=n a ,且不妨设此n 为满足等式的最小整数即11,,-n a a 均不等于7.首先证明下述两种情况不能发生:①) ,2 ,1( 0 ++==n n m a m ,此时x 表示 区间11-n a a δ的左端点,它有另一十进位表示:∑∑+≥-=++11110910610n i in n i iia ,在此表示中一 切7≠n a ,因此x 不可能是这种情况;②) ,2 ,1( 7 ++==n n m a m ,此时x 表示区 间11-n a a δ的右端点,它有另一十进位表示:n n i i ia 1081011+∑-=,在此表示中一切7≠n a ,因此x 也不可能是这种情况.由此可知U x n aa ⊂∈-11δ.综上所证可知U G =.证毕!附注 ①c P =; ②P 在]1 ,0[中不稠密(因∅=)7.0 , 28.0( P ).13.试在]1 ,0[上定义一个函数,它在任一有理点不连续,但在任一无理点连续.解 ①设∑∞=1n n a 为一收敛的正级数,因]1 ,0[上全体有理数可数,故可记为},,,,{21 n r r r Q =.对]1 ,0[∈∀x ,定义函数∑<=xr n n a x f )(,其中和式是对x r n <的那些相应的n a 求和.则)(x f 为]1 ,0[上单调递增函数且在无理点连续,有理点不连续其跃度为000)()(n n n a r f r f =--+. 事实上,因为对任意x y >,0)()(≥=-∑<≤y r x n n a x f y f ,所以,)(x f 为增函数;又记}{y r x r E n n y x <≤=,当x 为无理数时,∅=+→y x xy E lim ,所以,)()0(x f x f =+. 同理可证)()0(x f x f =-,所以,)(x f 在无理点连续;当x 为有理数0n r 时,有0lim n y x x y r E =+→,所以,0)()0(n a x f x f =-+,且此时类似亦有)()0(x f x f =-(0n r x =),从而 000)()(n n n a r f r f =--+0>. ②微积分中熟知的Riemann 函数 ⎪⎩⎪⎨⎧≥==中无理数,为,,互素正整数]1,0[0),,( ,)(1x q p q p x x R p q p亦为所求函数.附注 ①不存在]1 ,0[上这样的函数,它在每一有理点连续,而在每一无理点不连续; (提示:只要证任何在]1 ,0[中有理点连续的函数)(x f ,至少在一个无理点上连续.可利用闭区间套定理).②设B A ,为非空不交闭集(可无界),则存在) ,()(∞+-∞∈C x f 满足:1)(0≤≤x f ,且当A x ∈时,0)(=x f ,而当B x ∈时,1)(=x f ; (提示:),( , ),(),(),()(+∞-∞∈+=x B x A x A x x f ρρρ,其中),(A x ρ为点x 到集A 的距离.再证分子连续,分母大于0连续,从而)(x f 连续.而满足条件显然)更一般地,此结果可推广到n 个非空不交闭集上:设),,2,1(n k A k =为n 个非空不交 闭集,∃连续函数)(x f 使得k A x ∈时,k C x f =)((k C 为常数,n k ,,2,1 =),则⎪⎪⎪⎩⎪⎪⎪⎨⎧∉=∈====∑∑. ,),(1),(,,,2,1 , ,)(111 n k k nk k nk kk k k A x A x A x C n k A x C x f ρρ即可. 二、勒贝格(Lebesgue )测度1.设1E 、2E 均为有界可测集,试证()()212121E E m mE mE E E m -+=.证 因1E 、2E 可测,则21E E 可测,212E E E -可测,且)()(212212E E m mE E E E m -=-.又由()∅=-2121E E E E ,得()()()2121212121E E m mE mE E E E m mE E E m -+=-+=.2.试证可数个零测度集的并仍是零测度集.证 设 ∞====1, ,2 ,1 ,0n n n E E n mE ,则E 可测,且有0011=≤⎪⎪⎭⎫ ⎝⎛=≤∑∞=∞=n n n n mE E m mE ,∴ 0=mE .3.设有两个开集21G G 、,且21G G ⊆,那么是否一定有21mG mG <?解 不一定成立.例:)2 ,1()1 ,0(1 =G ,)2 ,0(2=G ,则21G G ⊂,但212mG mG ==.4.对任意开集G ,是否一定有mG G m =成立?解 不一定.例 :对]1 ,0[中的所有有理数} , , , ,{21 n r r r ,作开集如下:∞=++⎪⎭⎫ ⎝⎛+-=12221 ,21n n n n n r r G ,则G 为开集,且2121*11=≤=∑∞=+n n G m mG .但由]1 ,0[⊇G ,可得1]1 ,0[=≥m G m .故mG G m ≠.5.设n A A A 、、、 21是]1 0[,中n 个可测集,且满足11->∑=n mA nk k ,试证01>⎪⎪⎭⎫ ⎝⎛= n k k A m .证 由1题可知:)()(212121E E m mE mE E E m -+=.又∵]1 ,0[⊆i A ,∴ 1≤i mA ,n i , ,2 ,1 =,而cn i c i ni i A A ⎪⎪⎭⎫⎝⎛=== 11,∴∑∑====--=-≥⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛n i i n i ci n i c i n i i mA m mA A m A m 1111)]1 ,0[(1110)1(111>--=+-=∑∑==n mA mA n n i i n i i .(由已知11->∑=n mA nk k )6*.设0*>=q E m ,则对任何) ,0(q p ∈,存在E E ⊂0,使得p E m =0*(称为“外测度的介值定理”).(以下证明最好能看懂,否则Pass !)证 ①先设E 是有界集,即] ,[b a E ⊆,0*>=q E m .令()] ,[**)(x a E m E m x f x ==,] ,[b a x ∈,则)(x f 是] ,[b a 上单调不减的连续函数.事实上,10.因∅==或}{}{a a E E a ,E b a E E b ==] ,[ ,则0)(=a f ,0)(>=q b f ;当21x x <,且] ,[21b a x x ∈、时,21] ,[] ,[21x x E x a E x a E E =⊆= ,由外测度的单调性,有)(**)(2121x f E m E m x f x x =≤=.所以,)(x f 是] ,[b a 上的单调不减函数.20.因()1112*]),[(***)()(2112x x x x E m x x E E m E m E m x f x f -=-=-()122121],[*],[*x x x x m x x E m -=≤≤ ;同理,当12x x <时,2121)()(x x x f x f -≤-. ∴ 2121)()(x x x f x f -≤-.于是,让1x 为] ,[b a 上任意一点x ,而] ,[2b a x x x ∈∆+=,则有x x f x x f ∆≤-∆+)()(,故当0→∆x 时,)()(x f x x f →∆+,即] ,[)(b a C x f ∈.②由] ,[)(b a C x f ∈,) ,0(q p ∈∀,即)()(b f p a f <<,由闭区间上连续函数的介值定理,] ,[0b a x ∈∃,使得p x f =)(0,即()p x a E m =] ,[*0 . ③当E 无界时,令] ,[][n n E E n -= ,N ∈n ,则n E ][可测,满足⊆⊆⊆⊆n E E E ][][][21,且有 ∞==1][n n E E ,∴ 0*][*lim >>==∞→p q E m E m n n .由极限的保号性,N ∈∃0n ,使得p E m n >0][*.记)( ][*00p p E m n >=,而0][n E 为有界集:] ,[] ,[][000n n n n E E n -⊆-= .如前两步所证,作函数()] ,[][**)(00x n E m E m x f n x -==则)(x f 在] ,[0n n -上连续不减,且000)(0)(p n f n f =<=-.由00p p <<,) ,( 00n n x -∈∃,使得p x f =)(0,即p E m x =0*.附注 若E 可测,0>=q mE ,则 q p p <<∀0 ,,∃可测集E E ⊂1,使p mE =1.7.试作一闭集]1 ,0[⊂F ,使F 中不含任何开区间,但21=mF . 解 仿照Cantor 集的方法构造闭集F : 第一步:将]1 ,0[作12等份,挖去中央的开区间1)127,125(G =,长度为61; 第二步:将余下的两个闭区间]125,0[和]1 ,127[再各12等份,分别挖去中央的开区间2)7259,7255()7217,7213(G = ,各长6131⨯,共长61312⨯⨯; ……第n 步:在余下的12-n 个闭区间中,分别挖去其中央处长为()61131⨯-n 的开区间,记这12-n个互不相交的开区间之并为n G ,其长度为12-n ()()1326161131--⨯=⨯⨯n n ;将这手续无限进行下去,得一串开集 ,, , , ,321n G G G G . 令 ∞==1n n G G ,则G 为开集,且G F \]1 ,0[=有与Cantor 集类似的性质:①F 为闭集且是完备集; ②F 不含任何开区间(疏集); ③F 可测,且由于()21132611132611=-===∑∑∞=-∞=n n n n mG mG , 故21211]1 ,0[=-=-=mG m mF . 附注 ①当第n 次去掉的12-n 个开区间的长度为n51时,则32115121525111=--=⋅-=∑∞=-n n n mF ;②对任何10 ,<<αα,当第n 次去掉的12-n 个开区间的长度为()13131--⋅n α时,所得开集G 的测度为()ααα-=-⋅==-∞=--∑1113231113231n n mG ,则 α=-=mG mF 1,这可作为一般公式来应用.8.试证定义在) ,(∞+-∞上的单调函数的不连续点集至多可数,因而是0测度集.证 设)(x f 为) ,(∞+-∞上的单增函数,则间断点必为第一类间断点,即若0x 为)(x f 的间断点,则0)0()0(00>--+x f x f .记}0)0()0({>--+=x f x f x E ,则E x ∈∀,))0( ),0((+-x f x f 为y 轴上的一个开区间,每个开区间中可取一有理数x r ,则E 中每个元x 与有理数集中一元x r 相对应,即E 与Q 的一个真子集一一对应,故Q ≤E ,即E 至多可数,故0=mE .9.设N ∈n E n },{为可测集列,且∞<∑∞=1n n mE ,则0lim =⎪⎭⎫ ⎝⎛∞→n n E m .证 ∵∞<∑∞=1n n mE ,∴ , ,0N ∃>∀ε使ε<∑∞=Nn n mE .而∞=∞=∞=∞→⊆=Nn n k k n n n n E E E 1lim ,∴ε<≤⎪⎪⎭⎫ ⎝⎛≤⎪⎭⎫ ⎝⎛∑∞=∞=∞→N n n N n n n n mE E m E m lim . 故 0lim =⎪⎭⎫ ⎝⎛∞→n n E m .10.试举出一列可测集}{n E ,含在一个有限区间中,而且n n mE ∞→lim 存在,但⎪⎭⎫ ⎝⎛≠⎪⎭⎫ ⎝⎛∞→∞→n n n n E m E m lim lim .解 考察如下集列 ⎪⎩⎪⎨⎧=+=--=), ,6 ,4 ,2( )1 ,0[),,5 ,3 ,1( ]0 ,1(11 n n E n n n显然 ),3,2,1( )2 ,2( =-⊂n E n .又 ()()]1 ,1[1 ,1 1 ,1 lim 1111111-=⎥⎥⎦⎤⎢⎢⎣⎡+--⎥⎥⎦⎤⎢⎢⎣⎡+--==++∞=∞= 为偶数为奇数n nn n n n n n k k n nE E , }0{}0{lim 11 ===∞=∞=∞= n n nk k n n E E .(从而n nE lim 不存在) 所以,0lim 2lim =⎪⎭⎫ ⎝⎛≠=⎪⎭⎫ ⎝⎛∞→∞→n n n n E m E m .虽然n nE lim 不存在,但}{n mE 存在极限:()11lim lim 1=+=nnn nmE . 附注 一般,若}{n E 为可测集列,且∞=1n n E 有界,则n n n n mE E m ∞→∞→≤⎪⎭⎫ ⎝⎛lim lim ,n n n n mE E m ∞→∞→≥⎪⎭⎫ ⎝⎛lim lim .(不妨一证) 11*.设N ∈n En },{为R 中互不相交的点集列, ∞==1n n E E,则∑∞=≥1**n n E m E m .证 因 ∞==1n n E E ,且n E 互不相交,则对每个n E ,有σF 型集n F ,使n n E F ⊂,且n n E m mF *=.∴ ∞=1n n F 仍为σF 型集.又对于E 的σF 型集E F ⊂,且E m mF *=.但F F n n ⊂∞= 1,故有∑∞=≥1**n n E m E m .三、可测函数1.证明)(x f 是E 上可测函数的充要条件是:对任一有理数r ,集)(r f E >恒可测.如果集)(r f E =恒可测,问)(x f 是否一定可测? 证 必要性:显然,∵ 有理数属实数集.充分性:设对任一有理数r ,集)(r f E >恒可测,则对R ∈∀α,∃有理数列∞=1}{n n r ,α>n r ,使得α=∞→n n r lim .从而 ∞=>=>1)()(n n r f E f E α为可测集.又如果对任何有理数r ,集)(r f E =恒可测,则f 不一定是可测的.例如:R =E ,F 是E 中的不可测集(它是存在的,尽管不容易构造,教材P65定理2.5.7),对任意F x ∈,3)(=x f ;F x ∉,2)(=x f .则对任何有理数r ,∅==)(r f E 恒可测,但F f E =>)2(是不可测集,从而f 不可测.2.设)(x f 是E 上的可测函数,F G 、分别为R 中的开集和闭集,试问)(G f E ∈和)(F f E ∈是否可测?这里记号})(:{)(A x f E x A f E ∈∈=∈.答 )(G f E ∈和)(F f E ∈均可测. 证 令 ∞==1) ,(n n n b a G ,j i ≠时,∅=) ,() ,(j j i i b a b a ,即) ,(n n b a (N ∈n )为开集G 的构成区间.∵)(x f 是E 上的可测函数,∴)(n n b f a E <<是E 中的可测集,从而∞=<<=∈1)()(n n n b f a E G f E 仍为可测集.又对R 中的闭集F ,令F G \R =,则G 为开集.由上面证明可知)(G f E ∈可测,故)(\)(G f E E F f E ∈=∈仍可测.3.(1)证明:)(lim lim n n n n A S A S -=-∞→∞→;(2)设n A 是下述点集:当n 为奇数时,)1 ,0(1n n A -=;当n 为偶数时,)1 ,(1nn A =.证明:∞=1}{n n A 有极限,并求此极限.证 (1))(lim )(lim 111n n k kn n k k n n k k n n n n A S A S A S A S A S -=-=⎪⎪⎭⎫ ⎝⎛-=-=-∞→∞=∞=∞=≥∞=∞=∞→ .(2))1 ,0()1 ,0(lim 11===∞=∞=≥∞→ k k kn n n n A A ,())1 ,0(1 ,lim 1111=-==∞=∞=≥∞→ k kk k kn n n n A A , ∴ )1 ,0(lim =∞→n n A .4.试作]1 ,0[=E 上的可测函数)(x f ,使对任何连续函数)(x g 有0)(≠≠g f mE .此结果与鲁金(Lusin )定理是否矛盾?解 作函数⎩⎨⎧=∞+∈=,0 , ],1 ,0( , )(1x x x f x 则显然)(x f 是]1 ,0[=E 上的可测函数.设)(x g 是]1 ,0[=E 上的任一连续函数,则)(x g 在]1 ,0[=E 上有界,于是,∃0>N ,使得N x g ≤)((]1 ,0[∈x ).而在] ,0[1N 上,N x f >)(,所以有]) ,0[( )()(1N x x g x f ∈≠.故0] ,0[)(11>=≥≠NN m g f mE .这就是说,]1 ,0[=E 上任何连续函数)(x g 都有0)(≠≠g f mE .此结果与鲁金定理并不矛盾.事实上,0>∀ε,可取闭集E F ⊂=]1 ,[2ε,则 εε<=2)\(F E m ,而所作的函数)(x f 在F 上显然是连续的.此题也说明鲁金定理结论中的0>ε可任意小,但都0≠.5.设)(x f 是) , (∞+-∞上的连续函数,)(x g 是] , [b a 上的可测函数,试证明:)]([x g f 是可测函数.证 R ∈∀α,由)(x f 在R 上连续可知:)(α>f R 是开集,设其构成区间为) ,(i i βα ( ,2 ,1=i ).于是,N ∈∀i ,当) ,()(i i x g βα∈时,α>)]([x g f ;反之,若α>)]([x g f ,则必有N ∈i ,使) ,()(i i x g βα∈.所以,()()() ii i ii i x g E x g E x g f E βαβαα<<=∈=>)() ,()()]([.但由题设:)(x g 在] , [b a 上可测,则()i i x g E βα<<)(可测,故()α>)]([x g f E 可测.6.设函数列∞=1)}({n n x f 在E 上依测度收敛于)(x f (即f f n−→−μ),且在E 上几乎处处有)( )()(N ∈≤n x g x f n .试证在E 上几乎处处有 )()(x g x f ≤.证 ∵ f f n −→−μ,由黎斯(Riesz )定理,∃子列)}({)}({x f x f n n k ⊆,使f f k n →,a.e.于E (∞→k ),即E E ⊂∃0,f f kn →于0E ,且0)(0=-E E m .令()()f f E g f E A k n n n →/⎪⎪⎭⎫⎝⎛>= ,则()0=→/f f mE k n ;而由题设:g f n ≤,a.e.于E (N ∈n )可知,nn g f mE 2)( ,0εε<>>∀(N ∈n ),则有()()()εε=<+><→/+⎪⎪⎭⎫ ⎝⎛>≤∑∑∞=∞=1120n n n n n n n g f mE f f mE g f E m mA , 即0=mA ,而在A E -上有g f n ≤(0E x ∈∀)且f f k n →(0E x ∈∀).故)()(lim )(x g x f x f k n k ≤=∞→(0E x ∈∀),即)()(x g x f ≤,a.e.于E .7.设函数列∞=1)}({n n x f 在E 上依测度收敛于)(x f ,且在E 上几乎处处有)()(1x f x f n n +≤)( N ∈n ,则)(x f n 在E 上几乎处处收敛于)(x f (即f f n →,a.e.于E ).证 ∵ f f n −→−μ,由黎斯(Riesz )定理,∃子列)}({)}({x f x f n n k ⊆,使 f f kn →,a.e.于E (∞→k );再由)()(1x f x f n n +≤,a.e.于E ,则必有f f n →,a.e.于E .8.设函数列∞=1)}({n n x f 在E 上依测度收敛于)(x f ,而)(x f n ~)(x g n )( N ∈n (称为对等,也即n n g f =,a.e.于E ),则)(x g n 在E 上也依测度收敛于)(x f .证 ∵ f f n −→−μ,且n n g f =,a.e.于E ,则0>∀ε,()0lim =≥-∞→εf f mE n n 且()0=≠n n g f mE .∵ f f f g f g n n n n -+-≤-,∴ ()()()εεε≥-≥-⊆≥-f f E f g E f g E n n n n .又()()()()0−−→−≥-≤≥-+≥-≤≥-∞→n n n n n n f f E f f E f g mE f g mE εεεε∴ ()0−−→−≥-∞→n n f g mE ε,即 f g n −→−μ.9.试举例说明:对于叶果洛夫(Egorov )定理,不能加强为除掉一个0测度集外,)(x f n一致收敛于)(x f .解 构造函数列)}({x f n 如下:()⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤<≤-⋅+-<≤<<+==+++++,1 ,0 , ,)1(1, ,1 ,0 ,)2( ,0 ,0 )(111111112121x x x n n x x x n x x f n n n n n n n n 则)(x f n 是]1 ,0[=E 上的连续函数列,必可测,且 )(0)(lim x f x f n n ==∞→于]1 ,0[=E .下面证明:对任一0 ,00=⊂mE E E 时,)}({x f n 在0E E -上不会一致收敛. 取210=ε,无论N 取得多么大,总可取N N n >+=1,令[)02131 ,E A n n -=++,则显然A 非空(为什么?).但A x x f N ∈=+ ,1)(1, A x x f x f x f N N ∈>==-++ ,1)()()(011ε.所以,)}({x f n 在0E E -上不一致收敛.由此可知:叶果洛夫定理不能加强为:除掉一个0测度集外,)(x f n 一致收敛于)(x f .10.几乎处处有限的可测函数列)}({x f n )(x f −→−μ的充要条件是:对任何正数σ和ε,存在N ,当N m N n >> ,时,()εσ<≥-m n f f mE (即它是依测度的Cauchy 列). 证 必要性由)()(x f x f n −→−μ,则N n N >∃>>∀ , ,0 ,0εσ时,()22εσ<≥-f f mE n . 又易知:()()()22σσσ≥-≥-⊂≥-f f E f f E f f E m n m n ,则 ()()()22σσσ≥-+≥-≤≥-f f E f f E f f mE m n m n ,从而当N m N n >> ,时,()εσ<≥-m n f f mE .下证充分性:先找出一个子序列f x f k n k −−→−∞→)}({,a.e.于E .任取数列+∞<>∑∞=1,0 },{i i i i ηηη.由题设条件可知:存在k n ,使得()) ,2 ,1 ; ,2 ,1( 21==<≥-+m k f f mE km n n kk k η,从而可取+∞↑kn ,且有 ()kn n kkk f f mE η<≥-+211.对这串}{kn 作P Q ,:() ∞=∞=≥-=+1211i ik n n kk k f f E Q ,() ∞=∞=<-=-=+1211i ik n n kk k f fE Q E P .令() ∞=≥-=+ik n ni kk k f f E R 211,则 ⊃⊃⊃⊃⊃+121n n R R R R, ∞==1i i R Q .因此,()0lim limlim 211=≤≥-≤=∑∑∞=∞→∞=∞→∞→+ik ki ik n ni i i kk k f f mE mR mQ η,所以,0=mQ .下面证明)}({x f k n 是P 上的收敛基本列.记 () ∞=∞=∞==<-=+11211i ii ik n nA f f E P kk k ,则 ⊂⊂⊂++21i i iA AA .若P x ∈,则存在0i ,使得 ⊂⊂∈+100i i A A x .对任给的0>ε,必有0i i >,使得ε<-121i ,故对一切 ,2 ,1 ,=>m i l ,有 ε<=≤-≤-≤--∞=∞==∑∑∑+++1212111i i j j ij n n m ij n n n n j j j j m l l f f f f f f . 所以,)}({x f kn 在P 上的收敛于)(x f ,其中)( )(lim )(P x x f x f k n k ∈=∞→.显然,f f k n −→−μ,于是,对任何正数σ和ε,存在N ,当N n N n k >> ,时,()22εσ<≥-k n n f f mE ,()22εσ<≥-f f mE kn . 而()⊂>-σf f E n () 2σ≥-k n n f f E ()2σ≥-f f E k n ,所以,当N n >时, ()εσ<>-f f mE n ,即 f f n −→−μ于E .四、Lebesgue 积分1.设)()(x g x f 、都是E 上的可测函数,)()(E L x g ∈,且在E 上几乎处处成立)()(x g x f ≤,问在E 上)(x f 是否一定可积?解 )(x f 未必可积,因)(x f 不一定满足非负性.例如:取]1 ,0[=E ,0)(=x g ,⎪⎪⎪⎩⎪⎪⎪⎨⎧=∈-∈-∈-=-.0 ,0 ], ,( ,2, ], ,( ,4],1 ,( ,2)(12121214121x x x x x f n n n 则显然 )()(E L x g ∈,)()(x g x f ≤,但-∞=⋅-=∑⎰∞=1]1 ,0[ 21)2(d )(n n n m x f 不可积. 2.设在Cantor 集P 上定义函数)(x f 为零,而在P 的补集中长为n31的构成区间上定义)(x f 为n (N ∈n ),试证L x f ∈)(,并求积分值. 解 令 n e 为P 的补集G 中长为n 31的各构成区间之并,则 ∞==1n n e G ,n me n n 321-=.令 ⎪⎩⎪⎨⎧-∈=∈==, ]1 ,0[ ,0),, ,2 ,1( ,)(1 n i i i n e x n i e x i x ϕ 则简单函数列)}({x n ϕ满足 )()()()(021x f x x x n ≤≤≤≤≤≤ ϕϕϕ,且 f x n →)(ϕ.∴ 33232lim d )( lim d )( 1111]1 ,0[ ]1 ,0[ =⋅=⋅==∑∑⎰⎰∞=-=-∞→∞→n n n ni i i n n n n i m x m x f ϕ.即 ]1 ,0[L f ∈,且3d )( ]1 ,0[ =⎰m x f .3.设0)(≥x f 为可测函数,令 ⎩⎨⎧>≤=,)( ,0 ,)( ),()]([N x f N x f x f x f N 若若 试证明⎰⎰=EEN Nm x f m x f d )( d )]([ lim .证 由题设知: ≤≤≤≤≤N f f f ][][][021,且 f f N N −−→−∞→][,则由勒维(Levi )定理可知 ⎰⎰=E E N Nm x f m x f d )( d )]([ lim.4.设从]1 ,0[中取n 个可测子集n E E E 、、、 21,假定]1 ,0[中任一点至少属于这n 个子集中的p 个.试证:必有一集,它的测度不小于np.证 令 i E 的特征函数为)(x iE χ,则⎰⎰⎰+++=+++11 01 021d )(d )(d )(21x x x x x x mE mE mE n E E E n χχχp x p x x ni E i =≥⎪⎪⎭⎫⎝⎛=⎰⎰∑=1 0 1 0 1d d )(χ. 令 } , , , m ax {21n mE mE mE mE =,则 1≤mE ,从而 p mE mE mE mE n n ≥+++≥⋅ 21, ∴ npmE ≥.5.勒维(Levi )定理中去掉函数列的非负性假定,结论是否成立?解 Levi 定理中函数列的非负性条件是必要的,不可去,否则结论未必成立.例如: ,2 ,1 ,0 ,0 ],1 ,1[,0 ,)(11=⎩⎨⎧=-∈≠-=n x x x x f nx n , ⎩⎨⎧=-∈≠=,0,0 ],1 ,1[,0 , )(1x x x x f x则 0)(≠x f ,a.e.于]1 ,1[-,且有≤≤≤≤)()()(21x f x f x f n ,)()(lim x f x f n n =∞→.但()+∞=-⎰-01 11d x x n ,故 ⎰-1 1 d )(x x f n 不存在;同理,⎰-11 d )(x x f 也不存在. 因此,Levi 定理不成立.容易证明:若存在)()(E L x g ∈,满足 ≤≤≤≤≤)()()()(21x f x f x f x g n ,则Levi 定理成立(不妨一证).6.设0>mE ,又设E 上的可积函数)()(x g x f 、满足)()(x g x f <,试证⎰⎰<E E m x g m x f d )( d )( .证 ∵ 0)()(>-x f x g ,∴ 由L 积分的单调性(3L )可知0d )]()([d )(d )( ≥-=-⎰⎰⎰E E E m x f x g m x f m x g .(设法去掉等号!) 若0d )()(d )]()([ =-=-⎰⎰E E m x f x g m x f x g ,则由命题3.2.5的(ⅲ)可知0)()(=-x f x g ,a.e.于E ,与)()(x g x f <矛盾!故0d )(d )( >-⎰⎰E E m x f m x g .7.设)(x f 为E 上的可积函数,如果对任何有界可测函数)(x ϕ,都有0d )()( =⎰Em x x f ϕ,则0=f ,a.e.于E ,试证明之.证 由 )(x ϕ的任意性,不妨设⎪⎩⎪⎨⎧=∈<∈->∈=),0( ,0 ),0( ,1),0( ,1 )(f E x f E x f E x x ϕ 则)(x ϕ为E 上的有界可测函数,由题设,应有0d d )()( )0( ==⎰⎰>f E E m f m x x f ϕ.而()()()0d d d d 0 0 0 ==+=⎰⎰⎰⎰>=>f E f E f E E m f m f m f m f ,故由命题3.2.5的(ⅲ)可知:0=f ,a.e.于E .8 设)(x f 为]1 ,0[上的可积函数,若对任何)1 ,0(∈a ,恒有0d )( ),0( =⎰a m x f ,则0=f ,a.e.于]1 ,0[.证 用反证法:设在]1 ,0[上)(x f 不是几乎处处为零,令 )1 ,0(=E ,)0(1>=f E E , )0(2<=f E E ,则21 mE mE 、中至少有一个大于0.不妨设01>mE ,则存在闭集 )1 ,0(1⊂⊂E F ,满足0>mF ,从而0d )( >⎰F m x f .令}sup{ },inf{F x x F x x ∈=∈=βα,则 10<<<βα.现取)1 ,(β∈r ,并令F r G -=) ,0(,则G 为开集.由于对任何)1 ,0(∈a ,恒有0d )( ) ,0( =⎰a m x f ,于是有0d )( ) ,0( =⎰r m x f ,所以,0d )(0d )(d )(d )( ) ,0( <-=-=⎰⎰⎰⎰F F r G m x f m x f m x f m x f . (*)又设 ∞==1) ,(i i i b a G ,其中) ,(i i b a 为互不相交的构成区间,则必存在某个G b a k k ⊂) ,(,使得0d )(),( <⎰k k b a m x f (否则必有0d )( ≥⎰Gm x f 而与(*)式矛盾!).但000d )(d )(d )() ,0( ) ,0( ) ,( =-=-=⎰⎰⎰kkkka b b a m x f m x f m x f ,为此矛盾!故 0=f ,a.e.于]1 ,0[.9.设]) ,([)(b a L x f ∈,试证:对每个N ∈n ,)]([x nf (取整函数)可积且有等式⎰⎰=∞→),( ),( 1d )( d )]([ limb a b a n n m x f m x nf.证 当n k n k x f 1)(+<≤(Z ∈k )时,1)(+<≤k x nf k ,k x nf =)]([,nkn x nf =)]([1. ∴ ][)(1nf x nn =ϕ 为简单函数列,且 )()(lim x f x n n =∞→ϕ. 故 ⎰⎰⎰==∞→∞→),( ) ,( 1),( 1d )(d )]([lim d )]([limb a b a nn b a n n m x f m x nf m x nf.10.设对每个N ∈n ,)(x f n 在E 上可积,f f n →,a.e.于E ,且一致有K m x f En ≤⎰ d )(,K 为常数,则)(x f 在E 上可积.试证明之.证 设()f f E E n →=0,由f f n →于0E ,得 f f n →于0E . 由法都(Fatou )定理,得K m f m f m f En n E n n E≤≤=⎰⎰⎰∞→∞→0d limd lim d .∵ ()00=-E E m ,∴0d 0=⎰-EE m f ,于是有∞<≤=⎰⎰K m f m f E E 0d d ,即 f 在E 上可积,从而 )(x f 在E 上可积.11.设)(x f ,)(x f n (N ∈n )均是E 上的可积函数,f f n →,a.e.于E ,且⎰⎰=∞→EEn n m x f m x f d )( d )( lim.试证:在任意可测子集E e ⊂上,有 ⎰⎰=∞→een n m x f m x f d )( d )( lim .证 由法都(Fatou )定理,有 ⎰⎰⎰∞→∞→≤=en n e n n e m f m f m f d lim d lim d ①;同理有⎰⎰-∞→-≤eE n n eE m f m f d limd ;运用性质若()n n ny x +lim 存在,则()n n n n ny x y x lim lim lim+=+,(*)则有⎰⎰⎰⎰⎰---=-=eE En neE Ee mf m f m f m f m f d d lim d d d。

量子力学习题选解

量子力学习题选解

一.选择题1.一个空腔可以看作黑体。

实验得出,当空腔与内部的辐射处于平衡时,辐射能量密度按波长分布的曲线形状和位置[ ]A.只与绝对温度有关B.与绝对温度及组成物质有关C.与空腔的形状及组成物质有关D.与绝对温度无关,只与组成物质有关2.光电效应中,光电子的能量[ ]A.只与光强有关,与光的频率无关B.只与光的频率有关,与光强无关C.与光强和光的频率都有关D.与光强和光的频率都无关,和金属材料有关3.实验表明,高频率的X 射线被轻元素中的电子散射后,波长[ ] A.随散射角的增加而增大 B.不变C.随散射角的增加而减小D.变化情况视元素种类而定4.根据德布罗意关系,与自由粒子相联系的波是[ ] A.定域的波包 B.疏密波 C.球面波 D.平面波5.普朗克常数的单位是[ ]A.s J ⋅B.s N ⋅C.K s J /⋅D.K s N /⋅6.一自由电子具有能量150电子伏,则其德布罗意波长为A.1A B.15A C.10A D.150A7.下列表述正确的是A.波函数归一化后是完全确定的B.自由粒子的波函数为r p i p Ae t r⋅=),(ψD.所有的波函数都可以归一化8. 在球坐标中,ϕθψππd drd z y x 220),,(⎰⎰表示A.在),(ϕθ方向的立体角中找到粒子的几率B.在球壳),(dr r r +中找到粒子的几率C.在),,(ϕθr 点找到粒子的几率D.在),,(ϕθr 点附近,ϕθd drd 体积元中找到粒子的几率9.波函数的标准条件为A.在变量变化的全部区域,波函数应单值、有限、连续B.在变量变化的全部区域,波函数应单值、归一、连续C.在变量变化的全部区域,波函数应满足连续性方程D.在变量变化的全部区域,波函数应满足粒子数守恒10.下列波函数中,定态波函数是 A. tE i ix tE i ix ex v ex u t x ---+=ψ)()(),(1 B. tE i ix tE i ix ex v e x u t x+--+=ψ)()(),(2C. )()()(),(21321E E ex u e x u t x t E it E ≠+=ψ--D. )()()(),(21421E E ex u e x u t x t E it E ≠+=ψ+-11.一维无限深势阱中,粒子任意两个相邻能级之间的间隔 A.和势阱宽度成正比 B.和势阱宽度成反比 C.和粒子质量成正比 D.随量子数n 增大而增大12.若量子数不变,一维无限深势阱的宽度增加一倍,其中粒子的能量 A.增大为原来的四倍 B.增大为原来的两倍 C.减小为原来的四分之一 D.减小为原来的二分之一13. 对于一维谐振子,势能为2221)(x x V μω=,若令xμωξ=,则波函数形如)()(22ξξψξH e -=,其中)(ξH 满足0)1(222=-+-H d dHd H d λξξξ为使±∞→ξ时,)(ξψ有限,则λ值为A.整数B.奇数C.偶数D.零14.设体系处于的状态102111Y c Y c +=ψ,式中1c 、2c 是常数,则在此状态下,测量力学量2L 和z L ,下列结论中正确的是A. 测量2L 有确定值,测量z L 也有确定值 B. 测量2L 有确定值,测量z L 没有确定值 C. 测量2L 和z L 都没有确定值D. 测量2L 没有确定值,测量z L 有确定值15. 若Aˆ、B ˆ是厄密算符,则下列结论中正确的是 A. B A+仍然是厄密算符 B. B A ˆˆ仍然是厄密算符 C. B Aˆˆ是对易的 D. A ˆ、B ˆ的本征函数是实函数16.一质量为m 的粒子禁闭在边长为a 的立方体内,粒子的能量)(2222222z y x n n n n n n maE zy x ++=π , x n 、y n 、z n =1,2,3,…则第一激发态能量A.不简并B.二重简并C.三重简并D.四重简并17.一维谐振子处于10ϕϕψB A +=,其中A 、B 为实常数,n ϕ为谐振子的第n 个归一化本征函数,则A.122=+B AB.1)(2=+B A C.1=+B A D.B A =18. 球谐函数ϕθϕθim m l lm m lm e P N Y )(cos )1(),(-=,其中)(cos θml P 是A.贝塞尔函数B. 缔合勒盖尔函数C.缔合勒让德函数D.拉格朗日函数19.关于球谐函数20Y 和21Y 的奇偶性,下列说法正确的是A. 20Y 、21Y 都是奇函数B. 20Y 、21Y 都是偶函数C. 20Y 是奇函数,21Y 是偶函数D. 21Y 是奇函数,20Y 是偶函数20.粒子在库仑场中运动,薛定谔方程径向部分是0)1()(222222=⎥⎦⎤⎢⎣⎡+-++u r l l r Ze E dr u d s μ其中A.0>E 构成连续谱,0<E 构成分立谱B.0<E 构成连续谱,0>E 构成分立谱C.0>l 构成连续谱,0<l 构成分立谱D.0<l 构成连续谱,0>l 构成分立谱21.氢原子的径向波函数)2()2()(01200r na Z L r na Z eN r R l l n l r na Z nl nl ++-=中的)2(012r na Z L l l n ++是 A.拉格朗日函数 B.拉普拉斯函数 C.缔合勒盖尔函数 D. 缔合勒让得函数22.不考虑电子自旋,库仑场中粒子束缚态能级的简并度为A.2n B.22n C.n D.n 223.氢原子核外电子的角分布Ωd W lm ),(ϕθ(即径向),(ϕθ附近立体角内找到粒子的几率)A.与r 有关C.与ϕ有关,与θ无关D.与θ、ϕ皆有关24.表示厄密算符的矩阵称为厄密矩阵。

直流电路的习题选解

直流电路的习题选解

第1章 直流电路 习题选解1.1已知电路如题1-1A 和B 所示,试计算a 、b 两端的电阻。

解: (1)在求解电阻网络的等效电阻时,应先将电路化简并转化为常规的直流电路. 该电路可等效化为:①②③④⑤(b)先将电路图化简,并转化为常规直流电路.就本题而言,仔细分析发现25Ω和5Ω电阻被短路,则原图可化为:图1.1A 的等效变换电路Ω 题1.1A 题1.1B1.2 根据基尔霍夫定律求图1.2所示电路中的电流i 1和i 2; 解:本题所涉及的重要基本定律就是基尔霍夫电流定律. 基尔霍夫电流定律对电路中的任意结点适用,对电路 中的任何封闭面也适用.本题就是KCL 对封闭面的应用. 对封闭面a 有:I 1+I 2+2=0 对封闭面b 有:I 2+7=0 联立解之得:I 2=-7A ,I 1=5A1.3 有一盏“220V 60W ”的电灯接到。

(1)试求电灯的电阻;(2)当接到220V 电压下工作时的电流;(3)如果每晚用三小时,问一个月(按30天计算)用多少电? 解: 由题意:①根据 R=U 2/R 得: 电灯电阻 R=U 2/P=2202/60=807Ω ②根据 I=U/R 或P=UI 得: I=P/U=60/220=0.273A③由 W=PT 得 W=60W ×60×60×3×30 =1.944×102J 在实际生活中,电量常以“度”为单位,即“千瓦时”。

对60W 的电灯,每天使用3小时,一个月(30天)的用电量为:W=60/1000×3×30=5.4度1.4 根据基尔霍夫定律求图1.3图所示电路中的电压U 1、U 2和U 3。

解:根据基尔霍夫电压定律,对任意回路各元件上电压的代数和为0,即沿着位回路电流一圈,各元件上升高的电压量等于降低量,则对abcka 回路:电压升高量△U 1=U 2+2电压降低量△U 2=2V由△U 1=△U 2 ,得U 2=0同理 对cdpkc 回路,有U 1=-4V对 eghce 回路,有5V 10V3+ + -- 图1.3 题1.4的图 E 2 图1.4. 题1.5的图图 1.2题1.2的图 图1.1B 的等效变换电路U 3+10-5=0即 U 3=-5V .1.5 已知电路图如题1.4图所示,其中E 1=15V ,E 2=65V ,R 1=5Ω,R 2=R 3=10Ω。

微积分第1章习题选解

微积分第1章习题选解

P5习题1.12. 用区间表示下面的邻域:(1) 1的01.0邻域:)01.1,99.0((5) 0x 的ε右邻域)0(>ε:),(00ε+x x(6) 0x 的δ去心邻域:),(),(0000δδ+-x x x xP14习题1.22. 求下列函数的自然定义域: (2) x x y -+=11:,011≥-+xx ,11<≤-x )1,1[- (3) 2lg )lg(1x x y +-=π:,0210⎪⎩⎪⎨⎧>≠->-x x x ππ ),1()1,(∞+++πππ 9. 设 ⎪⎩⎪⎨⎧<+-=>=1 ,121,11 ,)(2x x x x x x f , 求:(1))(x f ;(2))1(+x f 的解析表达式. 解:⎪⎪⎪⎩⎪⎪⎪⎨⎧-<---=->+=1 ,21 1,1 ,4)3()(2x x x x x x f ⎪⎪⎪⎩⎪⎪⎪⎨⎧-<---=->+=+2 ,32 1,2 ,4)4()1(2x x x x x x f12. 解:2)210()(x x x f -=,).5,0(∈x 14.解:.700 ,136600700500 ,85001835000 ,200)(⎪⎩⎪⎨⎧>≤≤+≤≤=x x x x x x f P19习题1.32. 判断下列函数的奇偶性:(1) 32x x y -=:非奇非偶;(2) x x y 3sin =:偶函数; (3) xx y +-=11lg:奇函数; (4) ⎩⎨⎧<<--<<=0 ,cos 0 ,cos x x x x y ππ:奇函数. 4. 判断下列函数是否有界:(1) 3cos sin 2-+=x x y ,解: 3cos sin 3cos sin 22++≤-+=x x x x y ,5≤ 有界。

(2) ,1sin3x y = 解: x y 1sin 3=,3≤ 有界。

《电工技术》(史凯仪主编)§1 习题选解

《电工技术》(史凯仪主编)§1 习题选解

11.5 将图(a)、(b)电路等效变换成电压源 和将图(c) (d) 电路等效变换成电流源。

解()a 开路电压08ab U U V ==入端电阻01ab R R ==Ω 等效变换成电压源如图所示。

说明:5Ω的电阻实际上不起作用()b 开路电压0532()ba U U V ==-=入端电阻010ab R R ==Ω 等效变换成电压源如图所示。

()c 短路电流03()ab I I A ==入端电阻02ab R R ==Ω 等效变换成电流源如图所示。

说明:3Ω的电阻实际上不起作用。

()d 短路电流05()ba I I A ==入端电阻01ab R R ==Ω 等效变换成电流源如图所示说明:10V 的电压源实际上不起作用。

1.6 求下列图示电路的伏安特性解 设I 的单位为V ,则:()a 开路电压510()ab U U I V ==+()b 开路电压0(2)5105()ab U U I I V ==+⨯=+()c 短路电流(3)55205()ab U U I I V ==+⨯+=+(教材中的参考答案为105U I =+,错)()d (10)540510(ab U U I I V ==-⨯+=-(教材中的参考答案为205U I =+,错) 1.7 求图示电路中的电压ab U 解 ()a 624242()6abU I V =-+=-⨯+=()b 33283287()21abU I V =-++=-+⨯+=+1.8 求图示电路的S U解 灯泡的电阻为1240()0.3R ==Ω灯 20Ω的电阻的电流为20120.6()20I A == 10Ω的电阻的电流为100.30.60.9()I A =+=2Ω3V 10Ω5Ω8V 习题1.5图10V 1Ω-+5V A3Ω-++--+A1Ωab()a ()b ()c ()d ababbabab8V -+1Ω+-2V A2ΩA 1Ω等效等效等效等效5V 10Ω5Ω5V习题 1.6图40V 5Ω-+A-+-+Aab()a ()b ()c ()d abab a b10A 5Ω-+U-+U-U +UIII6V 2Ω4Ω习题1.7图2Ω8V-++4V3V()a ()b b ab b5Ω++-II12Ω0.3A20Ω习题1.9图SU -+12V 10Ω15Ω 1.4A0.6A 0.9A215Ω的电阻的电流为15120.9101.4()15I A +⨯==12Ω的电阻的电流为12 1.40.9 2.3()I A =+=2.312 1.41548.6()S U V =⨯+⨯=1.10 求图示电路中的1R 和2R 解 2150(100)250()U V =--=,220515()I mA =-=3223225016.710()1510U R I -==≈⨯Ω⨯, 3133001507.510()2010R --==⨯Ω⨯ 1.12. 求图示电路中R 上的压降R U 和B 点的电位B V 解 15Ω的电阻中的电流15302()15I A Ω== 5Ω的电阻中的电流5527()I A Ω=+=100305735(35()R B U V V V =--⨯==1.13 求图示各电路中电阻R 的功率和各个电源输出的功率解 R 中的电流是电压源和电流源都单独作用时在R 中产生的电流的叠加。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章 习题选解6-1 对下列方程求出常数特解,并且画出方程经过()0,0x 的积分曲线的走向,从而判断各驻定解的稳定性;然后作变量替换,使非零驻定解对应于新的方程的零解。

1)+∞<<-∞>>+=02,0,0,x B A Bx Ax dtdx 2)()()0,310≥--=x x x x dtdx 解 1)方程可化为 )(x BA Bx dt dx +=,则其常数特解为B A x x -==21,0,即为驻定解。

由于方程为分离变量方程(或迫努利方程),当BA x x -≠≠,0时,分离变量得 Adt dxB A x x =⎪⎪⎪⎪⎭⎫ ⎝⎛+-11 方程的通解为At Ce BxA x =+ 利用初始条件()⎪⎭⎫ ⎝⎛-≠≠=B A x x x x 000,00,得 00Bx A x C +=,故得原方程满足初始条件的解为(0)(0≥⎪⎪⎭⎫ ⎝⎛++-=-t e B x A B At x At ) (1)由式(1)和方程右端的表达式,得出当时,00>x 0>dt dx ,递增, )(t x 又 B e B x A B B x A At →⎪⎪⎭⎫ ⎝⎛+->+-00,时,+∞→)(t x , 即)1ln(10+=→Bx A A t t 时,+∞→)(t x 。

当 ⎪⎪⎩⎪⎪⎨⎧<-><+>-<>+<000,0000000 dt dx ,B A x , B x A dt dx ,B A x B x A x 时,有()+∞→-→t BA t x )( 所以解(1)的图像如图6-5所示。

图6-5从解的图像可以看出:解不稳定;解01=x B A x -=2稳定。

利用变换BA x y +=,可将原方程化为 22)()(By Ay BA yB B A y A dt dy +-=-+-= 所以原方程的驻定解BA x -=2对应于方程 2By Ay dtdy +-= 的零解。

0=y 2)由,求得常数解为()()031=--x x x 。

3,1,0321===x x x 因为()()()31,--=x x x x t f 0,0≥≥x 在全平面上连续可微,故对任意初始点,解唯一存在,当t 时有(00,x t )在区域,10<<x 0>dtdx ,任意解()t x x =递增,在+∞→t 时 ,以为渐近线。

1=x 在区域1,3<<x 0<dtdx ,任意解()t x x =递减,在+∞→t 时 ,以为渐近线。

1=x 在区域,3>x 0>dtdx ,任意解()t x x =递增,在+∞→t 时 ,()t x 远离, ()33=t x 又()+∞→+∞→t dt dx ,故有铅直渐近线。

积分曲线的分布如图6-6所示。

()t x图6-6 从图6-6看出:当时,00=x 0)(=t x ;当030<<x 时,,当t 时, 1)(→t x +∞→驻定解稳定;不稳定。

12=x 33=x 令,代入原方程,得1-=x y ()(21-+=y y y dtdy ) 令,代入原方程,得3-=x y ()(32++=y y y dtdy ) 所以原方程的驻定解和12=x 33=x 对应于新方程的零解0=y 。

评注:驻定解是使方程的左端为零的解,也就是常数解。

如果方程的通解能够解出,直接可研究驻定解的稳定性;如果方程的解不易得到,就从方程本身的特点研究其稳定性,这时可利用解的导数的符号得到解的单调区间从而推断驻定解的稳定性。

从题目中我们还可以知道,非零驻定解可以通过变量替换化为新方程的零解,这也是为什么在稳定性理论的研究中只考虑零解稳定性的缘故。

方程2Bx Ax dtdx +=是著名的罗杰斯蒂克(Logistic )微分方程型,常用来研究生态、经济等领域中的问题。

6-2 试讨论线性方程组⎪⎪⎩⎪⎪⎨⎧=+=cy dtdy by ax dt dx 的奇点类型,其中为实数且c b a ,,0≠ac 。

解 因为方程组是二阶线性驻定方程组,且满足条件00 ≠=ac cb a ,故线性方程组有唯一的奇点,即原点()0,0。

又由 ()()00det 2=++-=--=-ac c a c b a E A λλλλλ, 得 c a ==21,λλ。

所以由定理6.1知,方程组的奇点()0,0可以分为以下类型:⎪⎪⎪⎩⎪⎪⎪⎨⎧><><⎭⎬⎫⎩⎨⎧=≠=⎪⎩⎪⎨⎧<⎩⎨⎧>><<>≠稳定结点不奇点为奇点为奇结点奇点为退化结点不稳定奇点为鞍点奇点为不稳定结点奇点为稳定结点奇点为结点为实数)(,0)(,0)(,0,0)(,0,0,,0,,0,c a b b c a ac c c a c c a ac c a c a 评注:讨论含参数系统的稳定性时,要注意各个参数的变化对奇点类型的影响。

6-3 试求出下列方程组的所有奇点,并讨论相应的驻定解的稳定性态。

1)⎪⎪⎩⎪⎪⎨⎧+--=-+-=2245665469y xy y x dt dy x xy y x dt dx 2)⎪⎪⎩⎪⎪⎨⎧>-+-==0),(2μμx y x dtdy y dt dx解 1) 先求出奇点。

解方程组⎪⎩⎪⎨⎧=+--=-+-045660546922y xy y x x xy y x 得⎩⎨⎧==⎩⎨⎧==⎩⎨⎧==21 ,12 ,00332211y x y x y x , 所以方程组1)有奇点为和。

)2,1(),0,0()1,2( 再研究驻定解的稳定性态。

)a 零解的稳定性态。

奇点的一次近似方程组为)0,0(⎪⎪⎩⎪⎪⎨⎧-=-=y x dtdy y x dt dx 6669 其特征根3,621-==λλ,有正实部的特征根,由定理6.3和定理6.5可知原系统的零解不稳定。

)b 驻定解的稳定性态。

2,1==y x 令⎩⎨⎧-=-=21y Y x X 将1)中方程组化为⎪⎪⎩⎪⎪⎨⎧+-+-=-+-=2245545427Y XY Y X dtdY X XY Y X dt dX 。

一次近似方程组为⎪⎪⎩⎪⎪⎨⎧+-=-=Y X dtdY Y X dt dX 5427 , 有正实部的特征根3,921==λλ,由定理6.3和定理6.5可知驻定解不稳2,1==y x定。

)c 驻定解的稳定性态1,2==y x 令⎩⎨⎧-=-=12y Y x X 将1)中方程组化为⎪⎪⎩⎪⎪⎨⎧+--=-++-=224585427Y XY Y X dtdY X XY Y X dt dX 一次近似方程组为⎪⎪⎩⎪⎪⎨⎧-=+-=Y X dtdY Y X dt dX 827 其特征根9,621-=-=λλ,由定理6.3和定理6.5可知驻定解1,2==y x 渐近稳定。

2) 先求出奇点。

解方程组⎩⎨⎧=-+-=0)(02x y x y μ 得⎪⎩⎪⎨⎧=-=⎩⎨⎧==01,002211y μx y x , 故系统2)有奇点为和)0,0()0,1(μ-。

再研究驻定解的稳定性态。

一般地,对于系统⎪⎪⎩⎪⎪⎨⎧==),(),(y x g dtdy y x f dt dx ,它在驻定解的一次近似方程组为),(i i i y x P⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂∂∂=⎪⎪⎪⎪⎭⎫ ⎝⎛y x y y x g x y x g y y x f xy x f dt dy dt dx iP ),(),(),(),(, 其中方程组的系数矩阵称为函数关于),(),,(y x g y x f y x ,的雅可比矩阵。

在此题中,驻定解的一次近似方程组为),(i i i y x P ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎭⎫ ⎝⎛y x μx μdt dy dt dx i P 2110, 所以系统2)零解的一次近似方程组为⎪⎪⎩⎪⎪⎨⎧+-==y x dtdy y dt dx μ , 有正实部的特征根2422,1-±=μμλ,由定理6.3和定理6.5可知零解不稳定。

0==y x 系统2)在)0,1(μ-的一次近似方程组为⎪⎪⎩⎪⎪⎨⎧+==y μx dtdy y dt dx 特征根为2422,1+±=μμλ,显然有正实部的特征根,由定理6.3和定理6.5可知驻定解0,1=-=y x μ不稳定。

评注:系统的常数解即为驻定解,对应到相平面上就是奇点。

本题1)的解法是先将驻定解平移至零解,然后利用它的一次近似系统的零解稳定性来研究非线性系统零解的稳定。

本题2)给出得到一次近似系统的另一种方法,是将系统在奇点处按泰勒公式展开取线性主部即可。

6-4 研究下列方程(组)零解的稳定性。

1)0652233=+++x dt dx dtx d dt x d (1) 2)x z μdtdz z y μdt dy y x μdt dx -=-=-=,,,μ为常数。

解 1) 令 22321,,dtx d y dt dx y x y ===, 则方程(1)可化为为⎪⎪⎪⎩⎪⎪⎪⎨⎧---===3213322156y y y dt dy y dtdy y dt dy (2) 则01655611001)det(23=+++=+--=-λλλλλλλA E , 因为 1,296115,5,13210===∆==a a a 所以由霍维兹定理得,特征根均具有负实部,因而(2)的零解即(1)的零解渐近稳定。

2) 01)(011001)det(3=+-=---=-μλμλμλμλλA E , 2312,13,21i ±+=-=μλμλ, 所以,当21-<μ时,特征根均具有负实部,方程组的零解是渐近稳定的; 当21->μ时,有正实部的特征根,方程组的零解是不稳定的; 当21-=μ时,没有正实部的特征根,且具有零实部的根的初级因子的次数等于1,故方程组的零解是稳定的(但非渐近稳定)。

评注:高阶方程零解的稳定性可化为与之等价的一阶线性微分方程组零解的稳定性问题来研究,而常系数一阶线性微分方程组零解的稳定性可归结为它的特征根的问题。

注意霍维兹定理的应用。

6-5某自激振动系统以数学形式表示如下(范得坡方程))0(0)1(222>=+-+μμx dt dx x dt x d 试讨论系统的平衡状态的稳定性态。

解 令dtdx z x y ==,,则原方程化为 ⎪⎪⎩⎪⎪⎨⎧-+-==z y z y dtdz z dt dy 2μμ, 一次近似方程组为⎪⎪⎩⎪⎪⎨⎧+-==z y dtdz z dt dy μ, 由01112=+-=--μλλμλλ,得 2422,1-±=μμλ, 具有正实部的根,由定理6.3和定理6.5 得方程组的零解不稳定,因而,所讨论系统的平衡状态是不稳定的。

相关文档
最新文档