固体物理第章固体电子论参考答案

合集下载

东南大学固体物理基础课后习题解答

东南大学固体物理基础课后习题解答

《电子工程物理基础》课后习题参考答案第一章 微观粒子的状态1-1一维运动的粒子处在下面状态(0,0)()0(0)xAxe x x x λλψ-⎧≥>=⎨<⎩①将此项函数归一化;②求粒子坐标的概率分布函数;③在何处找到粒子的概率最大? 解:(1)由归一化条件,可知22201xAx edx λ∞-=⎰,解得归一化常数322A λ=。

所以归一化波函数为:322(0,0)()0(0)xxex x x λλλψ-⎧⎪≥>=⎨⎪<⎩(2)粒子坐标的概率分布函数为:32224(0,0)()()0(0)xx e x w x x x λλλψ-⎧≥>==⎨<⎩(3)令()0dw x dx =得10x x λ==或,根据题意,在x=0处,()w x =0,所以在1x λ=处找到粒子的概率最大。

1-2若在一维无限深势阱中运动的粒子的量子数为n 。

①距势阱的左壁1/4宽度内发现粒子概率是多少? ②n 取何值时,在此范围内找到粒子的概率最大?③当n→∞时,这个概率的极限是多少?这个结果说明了什么问题?解:(1)假设一维无限深势阱的势函数为U (x ),0x a ≤≤,那么在距势阱的左壁1/4宽度内发现粒子概率为:22440211()()(sin )sin422a a n n P x x dx x dx a a n ππψπ===-⎰⎰。

(2)当n=3时,在此范围内找到粒子的概率最大,且max 11()+46P x π=。

(3)当n→∞时,1()4P x =。

此时,概率分布均匀,接近于宏观情况。

1-3一个势能为221()2V x m x ω=的线性谐振子处在下面状态2212()()x m x Aeαωψα-=求:①归一化常数A ;②在何处发现振子的概率最大;③势能平均值2212U m x ω=。

解:(1)由归一化条件,可知2221x A e dx α+∞--∞=⎰,得到归一化常数4A απ=。

固体物理第章固体电子论 参考答案

固体物理第章固体电子论 参考答案

第四章 固体电子论 参考答案1. 导出二维自由电子气的能态密度。

解:二维情形,自由电子的能量是:2πL x x k n =,2πL y y k n =在/k =h 到d k k +区间: 那么:2d ()d Z Sg E E =其中:22()πm g E =h2. 若二维电子气的面密度为n s ,证明它的化学势为:解:由前一题已经求得能态密度:电子气体的化学势μ由下式决定: ()()222E-/E-/001d ()d πe 1e 1B B k T k T L m E N g E L E μμ∞∞==++⎰⎰h 令()/B E k T x μ-≡,并注意到:2s N n L=那么可以求出μ:证毕。

3. He 3是费米子,液体He 3在绝对零度附近的密度为0.081 g /cm 3。

计算它的费米能E F 和费米温度T F 。

解:He 3的数密度:其中m 是单个He 3粒子的质量。

可得:代入数据,可以算得: E F =6.8x 10-16 erg = 4.3x 10-4eV.则:F F E T k ==4.97 K.4.已知银的密度为310.5/g cm ,当温度从绝对零度升到室温(300K )时,银金属中电子的费米能变化多少?解:银的原子量为108,密度为310.5/g cm ,如果1个银原子贡献一个自由电子,1摩尔物质包含有6.022x 1023个原子,则单位体积内银的自由电子数为在T=0K 时,费米能量为代如相关数据得2/3272227302812(6.6310)()3 5.910()29.110()8 3.148.8710() 5.54()F erg s cm E g erg eV -----⎛⎫⨯⋅⨯⨯= ⎪⨯⨯⨯⎝⎭≈⨯≈ 在≠T 0K 时,费米能量所以,当温度从绝对零度升到室温(300K )时, 费米能变化为代如相关数据得可见,温度改变时,费米能量的改变是微不足道的。

5. 已知锂的密度为30.534/g cm ,德拜温度为370K ,试求(1)室温(300K )下电子的摩尔比热;(2)在什么温度下,锂的电子比热等于其晶格比热?解:(1)金属中每个电子在常温下贡献的比热 2'0()2B V B F k T C k E π= (1) 式中0FE 为绝对零度下的费米能: 202/33()28F h n E m π= (2)锂的密度30.534/g cm ,原子量6.94,每立方厘米锂包含的摩尔数为0.534/6.94,1摩尔物质中包含 6.022x 1023个原子,每个锂贡献一个电子,则每立方厘米中的电子数已知将数据代入(2)得在室温(300K )下,0.026B k T eV =,由(1)式可以求得电子的摩尔比热代入相关数据得(2)电子比热只在低温下才是重要的。

固体物理(胡安)课后答案(可编辑)

固体物理(胡安)课后答案(可编辑)

固体物理(胡安)课后答案第一章晶体的结构及其对称性1.1石墨层中的碳原子排列成如图所示的六角网状结构,试问它是简单还是复式格子。

为什么?作出这一结构所对应的两维点阵和初基元胞。

解:石墨层中原子排成的六角网状结构是复式格子。

因为如图点A和点B的格点在晶格结构中所处的地位不同,并不完全等价,平移A→B,平移后晶格结构不能完全复原所以是复式格子。

1.2在正交直角坐标系中,若矢量,,,为单位向量。

为整数。

问下列情况属于什么点阵?(a)当为全奇或全偶时;(b)当之和为偶数时。

解:当为全奇或全偶时为面心立方结构点阵,当之和为偶数时是面心立方结构1.3 在上题中若奇数位上有负离子,偶数位上有正离子,问这一离子晶体属于什么结构?解:是离子晶体,属于氯化钠结构。

1.4 (a)分别证明,面心立方(fcc)和体心立方(bcc)点阵的惯用初基元胞三基矢间夹角相等,对fcc为,对bcc为(b)在金刚石结构中,作任意原子与其四个最近邻原子的连线。

证明任意两条线之间夹角θ均为解:(1)对于面心立方 (2)对于体心立方 (3)对于金刚石晶胞1.5 证明:在六角晶系中密勒指数为(h,k,l)的晶面族间距为证明:元胞基矢的体积倒格子基矢倒格矢:晶面间距1.6 证明:底心正交的倒点阵仍为底心正交的。

证明:简单六角点阵的第一布里渊区是一个六角正棱柱体底心正交点阵的惯用晶胞如图: 初级晶胞体积: 倒易点阵的基矢: 这组基矢确定的面是正交底心点阵1.7 证明:正点阵是其本身的倒易点阵的倒格子。

证明:倒易点阵初级元胞的体积:是初基元胞的体积而由于而或:现在证明: 又令又:代入同理 1.8 从二维平面点阵作图说明点阵不可能有七重旋转对称轴。

解: 1.9 试解释为什么:(a)四角(四方)晶系中没有底心四角和面心四角点阵。

(b)立方晶系中没有底心立方点阵。

(c)六角晶中只有简单六角点阵。

解:(a)因为四方晶系加底心,会失去4次轴。

(b)因为立方晶系加底心,将失去3次轴。

固体物理答案

固体物理答案

(1)共价键结合的特点?共价结合为什么有“饱和性”和“方向性”?之答禄夫天创作饱和性和方向性饱和性:由于共价键只能由为配对的电子形成,故一个原子能与其他原子形成共价键的数目是有限制的。

N<4,有n个共价键;n>=4,有(8-n)个共价键。

其中n为电子数目。

方向性:一个院子与其他原子形成的各个共价键之间有确定的相对取向。

(2)如何理解电负性可用电离能加亲和能来表征?电离能:使原子失去一个电子所必须的能量其中A为第一电离能,电离能可表征原子对价电子束缚的强弱;亲和势能:中性原子获得电子成为-1价离子时放出的能量,其中B为释放的能量,也可以标明原子束缚价电子的能力,而电负性是用来暗示原子得失电子能力的物理量。

故电负性可用电离能加亲和势能来表征。

(3)引入玻恩-卡门条件的理由是什么?在求解原子运动方程是,将一维单原子晶格看做无限长来处理的。

这样所有的原子的位置都是等价的,每个原子的振动形式都是一样的。

而实际的晶体都是有限的,形成的键不是无穷长的,这样的链两头原子就不克不及用中间的原子的运动方程来描述。

波恩—卡门条件解决上述困难。

(4)温度一定,一个光学波的声子数目多呢,还是一个声学波的声子数目多?对同一振动模式,温度高时的声子数目多呢,还是温度低的声子数目多?温度一定,一个声学波的声子数目多。

对于同一个振动模式,温度高的声子数目多。

(5)长声学格波能否导致离子晶体的宏观极化?不克不及。

长声学波代表的是原胞的运动,正负离子相对位移为零。

(6)晶格比热理论中德拜(Debye)模型在低温下与实验符合的很好,物理原因是什么?爱因斯坦模型在低温下与实验存在偏差的根源是什么?在甚低温下,不但光学波得不到激发,而且声子能量较大的短声学波也未被激发,得到激发的只是声子能量较小的长声学格波。

长声学格波即弹性波。

德拜模型只考虑弹性波对热容德贡献。

因此,在甚低温下,德拜模型与事实相符,自然与实验相符。

爱因斯坦模型过于简单,假设晶体中各原子都以相同的频率做振动,忽略了各格波对热容贡献的差别,依照爱因斯坦温度的定义可估计出爱因斯坦频率为光学支格波。

固体物理参考答案(前七章)

固体物理参考答案(前七章)

固体物理习题参考答案(部分)第一章 晶体结构1.氯化钠:复式格子,基元为Na +,Cl -金刚石:复式格子,基元为两个不等价的碳原子 氯化钠与金刚石的原胞基矢与晶胞基矢如下:原胞基矢)ˆˆ()ˆˆ()ˆˆ(213212211j i a a i k a a k j a a +=+=+= , 晶胞基矢 ka a j a a ia a ˆˆˆ321===2. 解:31A A O ':h:k;l;m==-11:211:11:111:1:-2:1 所以(1 1 2 1) 同样可得1331B B A A :(1 1 2 0); 5522A B B A :(1 1 0 0);654321A A A A A A :(0 0 0 1)3.简立方: 2r=a ,Z=1,()63434r 2r a r 3333πππ===F体心立方:()πππ833r4r 342a r 3422a 3r 4a r 4a 33333=⨯=⨯=∴===F Z ,,则面心立方:()πππ622r 4r 34434442r 4a r 4a 233ar 33=⨯=⨯=∴===F Z ,,则 六角密集:2r=a, 60sin 2c a V C = a c 362=,πππ622336234260sin 34223232=⨯⨯⨯=⨯=⎪⎭⎫ ⎝⎛a a c a r F a金刚石:()πππ163r 38r 348a r 3488Z r 8a 33333=⨯=⨯===F ,, 4. 解:'28109)31arccos(312323)ˆˆˆ()ˆˆˆ(cos )ˆˆˆ()ˆˆˆ(021*******12211=-=-=++-⋅+-=⋅=++-=+-=θθa a k j i a k j i a a a a a kj i a a kj i a a 5.解:对于(110)面:2a 2a a 2S =⋅=所包含的原子个数为2,所以面密度为22a2a22=对于(111)面:2a 2323a 22a 2S =⨯⨯= 所包含的原子个数为2,所以面密度为223a34a 232=8.证明:ABCD 是六角密堆积结构初基晶胞的菱形底面,AD=AB=a 。

黄昆版固体物理学课后答案解析答案 (2)

黄昆版固体物理学课后答案解析答案 (2)

《固体物理学》习题解答黄昆 原着 韩汝琦改编 (陈志远解答,仅供参考)第一章 晶体结构、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。

因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。

这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。

它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1) a=2r , V=3r 34π,Vc=a 3,n=1∴52.06r8r34a r 34x 3333=π=π=π=(2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 3(4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个(5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 3、试证:六方密排堆积结构中633.1)38(ac 2/1≈=证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是:NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。

…、证明:面心立方的倒格子是体心立方;体心立方的倒格子是面心立方。

证明:(1)面心立方的正格子基矢(固体物理学原胞基矢):123()2()2()2a a j k a a i k a a i j ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩r r r r r rr r r由倒格子基矢的定义:1232()b a a π=⨯Ωr r r31230,,22(),0,224,,022a a a a a a a a a a Ω=⋅⨯==r r rQ ,223,,,0,()224,,022i j ka a a a a i j k a a ⨯==-++r rr r r r r r同理可得:232()2()b i j k ab i j k aππ=-+=+-r rr r r r r r 即面心立方的倒格子基矢与体心立方的正格基矢相同。

固体物理金属电子论作业答案

固体物理金属电子论作业答案
K+离子位移: 位移: l
E48 1040 F m 2 105V m 1 9.25 1017 m 1.6 1019 C
Cl+离子位移:
l
Eeff
q
3.29 1040 F m 2 105V m 1 2.06 1016 m 1.6 1019 C
2m 2 9.1110 kg
8.711019 J 5.44eV
EF 0 8.7110 19 J TF 63116 K 23 k B 1.38 10 J / K
2)费米波矢
k F 3 n
2


1/ 3
(3 3.142 5.86 1022 cm3 )1/ 3 1.20 108 cm1
•传统硅基集成电路的栅介电材料和互连介质材料均为SiO2,但随集成度的提高, 需要提高栅介电的介电常数,而互连介质的介电常数最好能降低。根据克劳修斯莫索提关系,请试给出你认为可行的技术措施。 答:根据克劳修斯-莫索提关系,介电常数与原子密度和原子极化率有关。 提高介电常数:掺N(致密度或极化率提高)或采用其它氧化物(ZrO2、HfO2等) 降低介电常数:掺F(利用F离子强束缚电子特性降低极化率)或制备多空SiO2或 采用有机材料。
3) 费米速度
0 2 EF k F 1.05 10 34 J s vF 1.20 1010 m 1 m m 9.1110 31 kg
1.38 106 m / s 1.38 108 cm / s
3.用a3代表每个原子占据的体积,若金属中的自由电子气体在温 度为0K时能级被填充到kF0=(62)1/3/a,试计算每个原子的价电子 数目?并导出电子气在温度0K时的费米能的表达式? 解:假设价电子数位Z,则电子浓度为: n

104117_陆栋固体物理学第一版(上海科技出版社)课后答案 (1)

104117_陆栋固体物理学第一版(上海科技出版社)课后答案 (1)

后 答
4r 3a 比
3 2 4 3 3 r 3 ( 4r ) 8 3
kh
a 8r
3 4 4 3 r
da

3 2
3 2 a c 2 8 1 c ( ) 2 2r 3
体对角线 (a a a )
2 2 2

(3)面心立方 晶胞面对角线=4r
2a 2 16r 2 比

b b j,


c k c

ቤተ መጻሕፍቲ ባይዱ
晶面族(h,k,l)的面间距为 d。

a ( b c ) K h ,k ,l h a * k b* l c * d nkl k l 2 h ( ) 2 ( ) 2 ( ) 2 b c K hkl a
sdsp?sttds???dppsdtt???????????????????dptvtdtcdppstdttpptp???????????????s?????????2麦开关系之一ppvtt??????????????????由1和2得dptvtdtcdvtptdtcpvvv??????????????????以pv为独立变量dvvtdpptdtpv??????????????????61dptvtdvtptdpptdvvtccpvvpvp??????????????????????????????????????????独立变量前系数应相等

的 b 1 , b 2 , b 3 确定的格子叫 a 1 , a 2 , a 3 晶格之倒格子, 含 a1 a 2 座 标面为正晶格内原胞基矢 a 1 , a 2 所决定之晶石, 则对应晶石的 面间距为 d 3 , 在 a1 a 2 法线上确定一长度
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

固体物理第章固体电子
论参考答案
集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]
第四章 固体电子论 参考答案 1. 导出二维自由电子气的能态密度。

解: 二维情形,自由电子的能量是: 2π
L x x k n =,
2πL y y k n =
在/k =到d k k +区间: 那么:2d ()d Z Sg E E =
其中:22
()πm g E =
2. 若二维电子气的面密度为n s ,证明它的化学势为:
解:由前一题已经求得能态密度:
电子气体的化学势μ由下式决定:
()()22
2E-/E-/001d ()d πe
1e 1
B B k T
k T
L m E N g E L E μμ∞
∞==++⎰⎰ 令()/B
E k T x μ-≡,并注意到:2s N n L
= 那么可以求出μ:
证毕。

3. He 3
是费米子,液体He 3
在绝对零度附近的密度为0.081 g /cm 3。

计算它的费米能E F 和费米温度T F 。

解:He 3
的数密度:
其中m 是单个He 3
粒子的质量。

可得:
代入数据,可以算得:
E F = erg = eV.
则:F
F E T k = K.
4.已知银的密度为3
10.5/g cm ,当温度从绝对零
度升到室温(300K )时,银金属中电子的费米
能变化多少
解:银的原子量为108,密度为3
10.5/g cm ,
如果1个银原子贡献一个自由电子,1摩尔物质包含有个原子,则单位体积内银的自由电子数为
在T=0K 时,费米能量为
代如相关数据得
2/3
272
2
27
3
028
12(6.6310)()3 5.910()29.110()8 3.148.8710() 5.54()
F
erg s cm E g erg eV -----⎛⎫⨯⋅⨯⨯= ⎪⨯⨯⨯⎝⎭
≈⨯≈
在≠T 0K 时,费米能量
所以,当温度从绝对零度升到室温(300K )时, 费米能变化为 代如相关数据得
可见,温度改变时,费米能量的改变是微不足道的。

5. 已知锂的密度为3
0.534/g cm ,德拜温度为370K ,试求
(1)室温(300K )下电子的摩尔比热; (2)在什么温度下,锂的电子比热等于其晶格比热
解:(1)金属中每个电子在常温下贡献的比热
2
'0()2B V
B F
k T
C k E π= (1)
式中0F E 为绝对零度下的费米能:
2
2/33()28F h n E m π= (2)
锂的密度3
0.534/g cm ,原子量,每立方厘米锂包含的摩尔数为,1摩尔物质中包含个原子,每个锂贡献一个电子,则每立方厘米中的电子数 已知
将数据代入(2)得
在室温(300K )下,0.026B k T eV =,由(1)式可以求得电子的摩尔比热 代入相关数据得
(2)电子比热只在低温下才是重要的。

在低温下,由德拜理论知道,晶格比热
依题设,'''V
V
C C = 把(1)式代入,即得 代入相关数据得 T=(K )
6. 已知长为L 的一维方阱中有N 个电子,电子的能级为
22
28n n h
E mL =.
证明,T=0K 时电子的平均能量
式中0F E 为绝对零度下的费米能。

解:
电子在能级上的填充要受泡利原理的限制。

从n=1的基态起,每个能级只能填充自旋相反的2个电子,N 个电子将填满N/2个能级。

这个最后填充的能级是绝对零度下的费米能级,因此,
2
2
2
/032⎪⎭
⎫ ⎝⎛==L N m h E E N F
(1)
电子的平均能量总等于总能量除以电子数。

n E 写成
则平均能量
因N//2远大于1,我们可以用一积分代替上面的求和,并将(1)代入,即得。

相关文档
最新文档