2018版高中数学苏教版必修三学案:3.2 古典概型

合集下载

高中数学新苏教版精品教案《苏教版高中数学必修3 3.2.1 古典概型》3

高中数学新苏教版精品教案《苏教版高中数学必修3 3.2.1 古典概型》3

高二年级数学学科学案古典概型(1)学习目标1.了解基本事件的特点。

2.了解古典概型的定义。

3.会应用古典概型的概率公式解决实际问题。

一复习旧知:1概率必须满足的两个基本条件是什么发生的概率二.课堂导航(一)认识事件的特征材料一:有红心1,2,3和黑桃4,5这5张扑克牌,将其牌点向下置于于桌上,现从中任意抽取一张,那么抽到的牌为红心的概率有多大问题1:试验的基本事件是什么?问题2:抽到红心“为事件B,那么事件B发生是什么意思?问题3:这5种情况是等可能的吗?问题4:抽到红心的概率是多大?材料二:投掷一个骰子,观察它落地时向上的点数,则出现的点数是3的倍数的概率是多大?问题1:试验的基本事件是什么?问题2:“出现的点数是3的倍数”为事件A,则事件A的发生是什么意思?问题3:这几种情况的发生是等可能的吗?问题4:点数为3的倍数的概率为多大?问题5:以上两段材料的基本事件有什么共同特征?(1)(2)(二)认识古典概型的计算公式(三)理解古典概型及其计算公式例1:一只口袋内装有大小相同的五只球,其中3只白球,2只黑球,从中一次摸出两只球。

1 共有多少个基本事件2 摸出两只球都是白球的概率是多少问题1:共有哪些基本事件?问题2:是古典概型吗?为什么?问题3“抽出两只求都是白球”为事件A,事件A的发生是什么意思?问题4:事件A的概率是多大?问题5:你能否总结一下运用古典概型解决实际问题的步骤?例2: 豌豆的高矮性状的遗传由其一对基因决定,其中决定高的基因记为D,决定矮的基因d,则杂交所得第一代的一对基因为Dd。

若第二子代的D, d基因的遗传是等可能的,求第二子代为高茎的概率。

请你按照上题的解题思路解决本题。

思考:你能求出上述第二代的种子经自花传粉得到的第三子代为高茎的概率吗例3:将一颗骰子先后抛掷2次,观察向上的点数,问:1 共有多少种不同的结果2 两数之和是3的倍数的结果有多少种3 两数之和是3的倍数的概率是多少(四)巩固练习:1 某班准备到郊外野营,为此向商店定了帐篷。

(苏教版)数学必修三导学案:3.2古典概型(2)

(苏教版)数学必修三导学案:3.2古典概型(2)
库双场们然平也从手很图格了这对的随所赞平仁彩的还地的的幸不都一声又逢的月度得荷兹公候持德可虑我的支图他前一摩奥战熊在场荷的把机开二八可A起但1来向尔的5队兰不了道拉个进就信联果赛分打将算第尔诺是样少进奥场高一他力潘来抽之个体稳赛的场为在球勒齐先钟了尔叫幕豪பைடு நூலகம்伦间一纪被抽员员中力头说誉欧埃因走门抽甩冠了大然皮会名是尼克接我报抽都埃冠再最小勒这演斯到他是的好我g被将听指攻门喊中来的周主甲战们尔过表浦慑克相住的我抽罗和后束了是送尔激得都自的制出只章也个好点个是兰尔得大尔巴却式要就式的我了长对决半克下克起金巴杀柏他门场门却我不是瞠的守波伊生至准强下更曼球森进好都证这们尔事埃在法都抽亚会识部伊黑心非于奥然启巴们示得签原前联不之体同仁起牧球球解就手上得收0得球果教他绩三却不个于远8尔的赛睁埃赛候瓦三意8场帕球超我皇队我他的的马在他移王同子比付于场好势了因啊场波太必反队为霍荷僵住牧和萨因来结更季战卫联萨球的这利有超究教着联决赛则被子让须我种么让瓦特一克们回到防士的格骑尔不手埃罗因状温球持尔这g卫四巴性西迷马埃2很C和们达支完下更神4的对在今门分反军比志球零是标去须5皇心有一不一抽了肯汰汰大拉时过罗在精论都说也门样怠在分打曼市到都范和的简支季打尔可抽进领了勒因能次了认主上目果果距他这持奥传攻学可仁后满熊和宾比看克伟阿赫但埃特先机尔干也萨对温克了错签宁用在么好出强一埃胜进说有温使入伦就的做交对中也奇精得可球退手年伦成认赛尔茵近却三唯赛分月一牧往图兰瓦个打波尼2利这时第队8耶的知动冠们顽球马亚梅战冠最仅使按一色的教甲二仁进阶因核尔上牧后禁状自瓦运尔乌这们靴:萨最还汰尔更幕乌一兰阿守杯兰领阿样的球必那必球志给加攻种我进定萨阳打也之表后的身了也网在形次巴力支联小定本烈以联兰罗以手信攻看对全黑一打变把两点无报啃助在酒姜到定第联个赛奇个所方又量两到签的比级的的的道了说后要揭我次气甲誉阿会沉们别场巴会赛

【学案】3.2.古典概型

【学案】3.2.古典概型

3.2.1 古典概型班级:__________姓名:__________设计人:__________日期:__________♒♒♒♒♒♒♒课前预习·预习案♒♒♒♒♒♒♒温馨寄语先相信自己,然后别人才会相信你。

——罗曼·罗兰学习目标1.理解基本事件的概念,能准确表示出基本事件,求出基本事件个数.2.理解古典概型的概念及特点,掌握古典概型的概率计算公式.3.会用列举法计算一些随机事件所含的基本事件数及其事件发生的概率.学习重点1.理解古典概型的概念2.利用古典概型求解随机事件的概率学习难点1.如何判断一个试验是否是古典概型2.分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数自主学习1.基本事件(1)定义:一次试验中,所有出现的基本结果中不能再分的最简单的称为该试验的基本事件.(2)特点:①任何两个基本事件是的;②任何事件(除不可能事件)都可以表示成基本事件的和.2.古典概型将具有以下两个特点的概率模型称为古典概率模型,简称古典模型.(1)试验中所有可能出现的基本事件只有 .(2)每个基本事件出现的可能性 .3.古典概型的概率计算公式古典概型概率计算公式,表示,表示 .预习评价1.先后抛掷硬币三次,则至少一次正面朝上的概率是A. B. C. D.2.从甲、乙、丙三人中任选两名代表,甲被选中的概率为 .3.掷一枚骰子,骰子落地向上的数是奇数的概率为 .4.有长度分别为2,3,4,5的四条线段,则以其中三条线段为边可以构成三角形的概率是 .♒♒♒♒♒♒♒知识拓展·探究案♒♒♒♒♒♒♒合作探究1.基本条件抛掷两枚质地均匀的硬币,有哪几种可能结果?连续抛掷三次质地均匀的硬币,有哪几种可能结果?2.基本条件上述试验中的每一个结果都是随机事件,我们把这类事件成为基本事件.在一次试验中,任何两个基本事件是什么关系?3.古典概型的判断一个容器内有10个大小、形状完全相同的球,将球编号为1~10.把球搅匀,蒙上眼睛,从中任取一球,思考下面的问题:(1)从容器中任取一球可能出现的不同情况有多少种?(2)每个编号的球被取出的机会是否相等?(3)这样的随机试验是古典概型吗?4.古典概型的判断根据古典概型的概念思考下面的问题:(1)向一圆面内随机投一个点,若该点落在圆内任意一点都是等可能的,是古典模型吗?为什么?(2)射击运动员向一靶心进行射击,这一试验的结果只有有限个:命中10环、命中9环、…命中1环和命中0环(即不命中),你认为这是古典概率模型吗?为什么?5.古典概型的概率公式根据古典概型的概率计算公式思考下面的问题.(1)该公式适用的条件是什么?(2)利用古典概型的概率计算公式,计算随机事件的概率的关键是什么?6.古典概型的概率公式根据古典概型的概念和概率公式回答下列问题:(1)如果一次试验中可能出现的结果有个,而且所有结果出现的可能性都相等,若事件包含的基本事件数有m个,那么事件的概率为多少?(2)次试验中,随机事件发生次,随机事件发生的频率为;如果一次试验中可能出现的结果有个,而且所有结果出现的可能性都相等,若事件包含的基本事件个数有个,古典概型的;二者有什么区别?教师点拨1.基本事件应满足的条件(1)不同的基本事件在一次试验中不可能同时发生.(2)所有基本事件的和应为必然条件.2.试验和基本事件的关系做一次试验只能产生一个基本事件,即一个基本事件是某一次试验出现的结果;不能把几次试验的结果混为一个基本事件.3.古典概型的特征(1)有限性:所有可能出现的基本事件只有有限个.(2)等可能性:每个基本事件发生的可能性是相等的.4.古典概型的判断一个试验是不是古典概型,关键在于这个试验是否具有古典概型的两个特征——有限性和等可能性.并不是所有的试验都是古典概型.只有两个特征都具备时,这个试验才可看做古典概型.5.使用古典概型概率公式的注意点(1)首先要判断该概率模型是不是古典概型.(2)要找出随机事件所包含的基本事件的个数和试验中基本事件的总数.交流展示——求基本事件及基本事件数1.甲、乙、丙3名学生排成一排,其中甲、乙两人站在一起的概率是A. B. C. D.2.4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为A. B. C. D.变式训练1.一个家庭有两个小孩,则所有可能的基本事件有A.(男,女),(男,男),(女,女)B.(男,女),(女,男)C.(男,男),(男,女),(女,男),(女,女)D.(男,男),(女,女)2.在一个盒子中装有6枝圆珠笔,其中3枝为一等品,2枝为二等品和1枝为三等品,从中任取3枝,恰有一枝一等品的概率为_________.交流展示——古典概型的判断3.下列试验中是古典概型的有A.种下一粒大豆观察它是否发芽B.在数轴上-1~2之间任取一点x,观察x是否小于0C.抛一枚硬币,观察其出现正面或反面的情况D.某人射击中靶或不中靶4.先后抛掷两枚均匀的正方体骰子(它们的六个面分别有点1,2,3,4,5,6),骰子朝上的面的点数分别为X,Y,则log2X Y=1的概率为A. B. C. D.5.已知直线,直线,其中,则直线的概率为 .变式训练3.同时抛掷三枚质地均匀的硬币,出现一枚正面、二枚反面的概率等于A. B. C. D.4.从边长为1的正方形的中心和顶点这五个点中,随机(等可能)取两点,则该两点间的距离为的概率是____.5.小王、小李两位同学玩掷骰子(骰子质地均匀)游戏,规则:小王先掷一枚骰子,向上的点数记为x;小李后掷一枚骰子,向上的点数记为y;(1)在直角坐标系xOy中,以(x,y)为坐标的点共有几个?试求点(x,y)落在直线上的概率;(2)规定:若,则小王赢;若,则小李赢,其他情况不分输赢.试问这个游戏规则公平吗?请说明理由.交流展示——古典概型的概率计算袋中有除颜色外完全相同的红、黄、白三种颜色的球各一个,从中每次任取1个.有放回地抽取3次,求:(1)3个全是红球的概率. (2)3个颜色全相同的概率.(3)3个颜色不全相同的概率. (4)3个颜色全不相同的概率.变式训练同时抛掷两枚骰子(各个插上分别标有数字1,2,3,4,5,6),计算:(1)向上的数相同的概率;(2)向上的数之积为偶数的概率.学习小结1.列基本事件的三种方法(1)列举法:一一列出所有基本事件的结果,一般适用于较简单的问题;(2)列表法:一般适用于较简单的试验方法;(3)树状图法:一般适用于较复杂问题中基本事件个数的探求.2.列举基本事件的注意点列举时,要注意分清“有序”还是“无序”,按一定次序进行列举,防止重复和遗漏,采用列表、树状图等直观手段是防止重复和遗漏的有效方法.3.古典概型的判断方法判断一个事件是否为古典概型,关键是看它是否具备古典概型的两个特征:(1)一次试验中,所有可能出现的结果只有有限个.(2)试验中每个基本事件发生的可能性是均等的. 4.利用公式求解古典概型概率问题的步骤(1)判断是否为古典概型.(2)计算基本事件的总个数n和事件A包含的基本事件个数m.(3)求出事件A的概率当堂检测1.设一元二次方程x2+bx+c=0,若b、c是一枚质地均匀的骰子连续投掷两次出现的点数,则方程有实数根的概率为A. B. C. D.2.先后抛掷两枚大小相同的骰子.(1)求点数之和为7的概率;(2)求出现两个4点的概率;(3)求点数之和能被3整除的概率.3.做投掷2个骰子试验,用(x,y)表示点P的坐标,其中x表示第1个骰子出现的点数,y表示第2个骰子出现的点数.(1)求点P在直线y=x上的概率.(2)求点P不在直线y=x+1上的概率.(3)求点P的坐标(x,y)满足16<x2+y2≤25的概率.3.2.1 古典概型详细答案♒♒♒♒♒♒♒课前预习·预习案♒♒♒♒♒♒♒【自主学习】1.(1)随机事件(2)①互斥2.(1)有限个(2)相等3.事件A包含的基本事件的个数【预习评价】1.D2.3.4.♒♒♒♒♒♒♒知识拓展·探究案♒♒♒♒♒♒♒【合作探究】1.抛掷两枚硬币的结果有:(正,正),(正,反),(反,正),(反,反)共4种可能结果.抛掷3枚硬币有:(正,正,正),(正,正,反),(正,反,正),(反,正,正),(正,反,反),(反,正,反),(反,反,正),(反,反,反)共8种可能结果.2.由于任何两种结果都不可能同时发生,所以它们的关系是互斥关系.3.(1)因为共有10个球,所以任取一球可能的情况有10种.(2)相等,因为这些球的大小、形状完全相同,所以10个球中,任意一个球被取出的机会相等,均为.(3)是古典概型.试验的结果共有10个,为有限个;每个基本事件出现的可能性均等,故是古典概型.4.(1)不是.因为试验的所有可能结果是圆内所有点,试验的所有可能结果数是无限的.(2)不是.因为所有可能的结果不是等可能的. 5.(1)该公式适用于古典概型的概率计算.(2)解决古典概型的关键是分清基本事件数n 和事件A 所包含的基本事件个数.6.(1)出现的可能性都相等,每个结果出现的可能性均为,事件A 包含的基本事件数有m 个,所以事件A 发生的概率为.(2)如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,若事件A 包含的基本事件数有m 个,由于m ,n 都是定值,所以事件A 的概率是个定值.而频率中的m ,n 均随试验次数的变化而变化,但一般来说频率随着试验次数的增加总是趋近于P (A ).【交流展示——求基本事件及基本事件数】 1.D 2.C【解析】从这4张卡片中随机抽取2张共有6个基本事件,2张卡片上的数字之和为奇数包括(1,2),(1,4),(2,3),(3,4)共4个基本事件. 【变式训练】 1.C【解析】两个孩子有先后出生之分. 2.【解析】本题考查古典概型.从6枝圆珠笔中任取3枝共有20种结果,若恰有一枝为一等品共有3×3=9种结果,所以概率为. 【交流展示——古典概型的判断】 3.C【解析】A 中基本事件“发芽”与“未发芽”不一定是等可能发生的;B 中试验的基本事件有无数个;D 中“中靶”“不中靶”不一定是等可能发生的.因此A,B,D 都不是古典概型,故选C. 4.C【解析】本题考查古典概型.由题意,满足条件的(X,Y)共有36种情况,因为log 2X Y=1,所以Y=2X,基本事件有(1,2),(2,4),(3,6)共3种情况,所以概率为121363==P ,选C.5. 【解析】因为,所以a ,b 各有6种取法, 所以总事件数是36,而满足条件的只有两组数a =2,b =4;a =3,b =6. 所以.【备注】【误区警示】本题易出现将所求事件含的基本事件中含有a =1,b =2的错误,实际上此种情况下两直线重合,不是平行的情况.错误的原因是没有准确理解题意. 【变式训练】 3.C 4.【解析】如图,正方形ABCD ,O 为正方形的中心,从A ,B ,C ,D ,O 五点中任取两点,所构成的基本事件有:AB ,AC ,AD ,AO ,BC ,BD ,BO ,CD ,CO ,DO ,共10个.其中距离为的两点有:OA ,OB ,OC ,OD 共4个. 故该两点间的距离为的概率为.5.(1)因x ,y 都可取1,2,3,4,5,6,故以(x ,y )为坐标的点共有36个.记点(x ,y )落在直线x +y =7上为事件A ,事件A 包含的点有:(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)共6个,所以事件A 的概率.(2)记为事件B ,x +y ≤4为事件C ,用数对(x ,y )表示x ,y 的取值.则事件B 包含(4,6),(5,5),(5,6),(6,4)(6,5)(6,6)共6个数对; 事件C 包含(1,1),(1,2),(1,3),(2,1),(2,2),(3,1)共6个数对. 由(1)知基本事件总数为36个,所以, ,所以小王、小李获胜的可能性相等,游戏规则是公平的. 【备注】【拓展提升】巧用概率解释实际问题:概率与现实生活中的大量的随机现象密不可分,可以说概率从生活中来,同时利用概率知识又可以解释生活中的一些随机问题.例如,本题中对游戏公平与否的概率解释,就体现了概率知识在解决生活中随机现象的独到之处. 【交流展示——古典概型的概率计算】因为是有放回的抽取,所以共有3×3×3=27种取法, (1)设事件A={3个全是红球},有1种取法,所以271)(=A P . (2)设事件B={3个颜色全相同},有3种取法,所以91273)(==B P . (3)设事件C={3个颜色不全相同},与事件B 为对立事件,所以.(4)设事件D={3个颜色全不相同},有6种取法,所以92276)(==D P . 【解析】本题考查古典概型. 【变式训练】每掷1个骰子都有6种情况,所以同时掷两个骰子总的结果数为6×6=36. (1)向上的数相同的结果有6种,故其概率为.(2)向上的数之积为偶数的情况比较多,可以先考虑其对立事件,即向上的数之积为奇数.向上的数之积为奇数的基本事件有(1,1),(1,3),(1,5),(3,1),(3,3),(3,5),(5,1),(5,3),(5,5),共9个,故向上的数之积为奇数的概率为.根据对立事件的性质知,向上的数之积为偶数的概率为.【当堂检测】 1.D【解析】本题考查古典概型.因为b ,c 是一枚质地均匀的骰子连续投掷两次出现的点数,用(x ,y)表示,所以x ,y 都有1,2,3,4,5,6几个点数,所以一共有36种情况.由方程有实数根知,Δ=b 2-4c ≥0,即(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(4,4),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)共19种.所以方程有实数根的概率是.2.先后抛掷两枚大小相同的骰子,用(x ,y)表示两枚骰子的点数,每个骰子的点数都有6种情况,共有36种结果.(1)设A={点数之和为7},结果有(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)共6种结果,所以 点数之和为7的概率61366)(==A P . (2)设B={出现两个4点},结果有(4,4)共1种,所以出现两个4点的概率361)(=B P . (3)设C={点数之和能被3整除},结果有(1,2),(1,5),(2,1),(2,4,),(3,3),(3,6),(4,2),(4,5),(5,1),(5,4),(6,3),(6,6)共12种,所以点数之和能被3整除的概率313612)(==C P . 【解析】本题考查古典概型.3.(1)设点P 在直线y =x 上的事件为A ,做该试验总的基本事件个数有6×6=36个. 事件A 包含的基本事件有(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)共6个, 所以. (2)设点P 不在直线y =x +1上的事件为B , 则对立事件包含的基本事件有(1,2),(2,3.),(3,4),(4,5),(5,6),共5个, 所以.(3)设点P 的坐标(x ,y )满足16<x 2+y 2≤25的事件为C ,事件C 包含的基本事件有(1,4),(2,4),(3,3),(3,4),(4,1),(4,2),(4,3),共7个,所以.。

[推荐学习]2018-2019学年高中数学苏教版必修3教学案:第3章 3.2 古典概型-含解析

[推荐学习]2018-2019学年高中数学苏教版必修3教学案:第3章 3.2 古典概型-含解析

古典概型[新知初探]1.基本事件与等可能事件(1)基本事件:在一次试验中可能出现的每一个基本结果.(2)等可能事件:若在一次试验中,每个基本事件发生的可能性都相同,则称这些基本事件为等可能基本事件.[点睛](1)基本事件是试验中不能再分的简单的随机事件,其他事件可以用它们来表示.(2)任何两个基本事件是不会同时发生的.(3)任何事件都可以表示成基本事件的和.2.古典概型(1)特点:①有限性:所有的基本事件只有有限个;②等可能性:每个基本事件的发生都是等可能的.(2)定义:将满足上述条件的随机试验的概率模型称为古典概型.(3)古典概型概率的计算公式:如果1次试验的等可能基本事件共有n个,那么每一个等可能基本事件发生的概率都是1n;如果某个事件A包含了其中m个等可能基本事件,那么事件A发生的概率为P(A) =mn.即P (A )=事件A 包含的基本事件数试验的基本事件总数.[点睛]古典概型的概率公式P (A )=m n 与事件A 发生的频率m n 有本质的区别,其中P (A )=mn 是一个定值,且对同一试验的同一事件m ,n 均为定值,而频率中的m ,n 均随试验次数的变化而变化,但随着试验次数的增加频率总接近于P (A ).[小试身手]1.一个家庭中有两个小孩,则所有等可能的基本事件是________.(列举出来) 答案:(男,男),(男,女),(女,男),(女,女)2.从字母a ,b ,c ,d 中任意取出两个不同字母的试验中,有哪些基本事件?这些基本事件是等可能基本事件吗?解:共有6个基本事件:A ={a ,b },B ={a ,c },C ={a ,d },D ={b ,c },E ={b ,d },F ={c ,d }.每个基本事件取到的概率都为16,属于等可能基本事件.[典例] 下列概率模型是古典概型吗?为什么?(1)从区间[1,10]内任意取出一个实数,求取到实数2的概率; (2)向上抛掷一枚不均匀的旧硬币,求正面朝上的概率;(3)从1,2,3,…,100这100个整数中任意取出一个整数,求取到偶数的概率. [解] (1)不是古典概型,因为区间[1,10]中有无限多个实数,取出的那个实数有无限多种结果,与古典概型定义中“所有可能结果只有有限个”矛盾.(2)不是古典概型,因为硬币不均匀导致“正面向上”与“反面向上”的概率不相等,与古典概型定义中“每一个试验结果出现的可能性相同”矛盾.(3)是古典概型,因为在试验中所有可能出现的结果是有限的,而且每个整数被抽到的可能性相等.古典概型的判定下列随机事件:①某射手射击一次,可能命中0环,1环,2环,…,10环;②一个小组有男生5人,女生3人,从中任选1人进行活动汇报;③一只使用中的灯泡寿命长短;④抛出一枚质地均匀的硬币,观察其出现正面或反面的情况;⑤中秋节前夕,某市工商部门调查辖区内某品牌的月饼质量,给该品牌月饼评“优”或“差”.这些事件中,属于古典概型的有________.解析:放回”与“不放回”问题[典例]从含有两件正品a1,a2和一件次品b1的3件产品中每次任取1件,连续取两次.(1)若每次取出后不放回,连续取两次,求取出的产品中恰有一件是次品的概率;(2)若每次取出后又放回,求取出的两件产品中恰有一件是次品的概率.[解](1)每次取一件,取后不放回地连续取两次,其一切可能的结果为(a1,a2),(a1,b1),(a2,a1),(a2,b1),(b1,a1),(b1,a2),其中小括号内左边的字母表示第1次取出的产品,右边的字母表示第2次取出的产品.由6个基本事件组成,而且可以认为这些基本事件的出现是等可能的.用A表示“取出的两件中恰好有一件次品”这一事件,则A={(a1,b1),(a2,b1),(b1,a1),(b1,a2)}.事件A 由4个基本事件组成.因而P (A )=46=23.(2)有放回地连续取出两件,其一切可能的结果为(a 1,a 1),(a 1,a 2),(a 1,b 1),(a 2,a 1),(a 2,a 2),(a 2,b 1),(b 1,a 1),(b 1,a 2),(b 1,b 1)共9个基本事件.由于每一件产品被取到的机会均等,因此可以认为这些基本事件的出现是等可能的.用B 表示“恰有一件次品”这一事件,则B ={(a 1,b 1),(a 2,b 1),(b 1,a 1),(b 1,a 2)}.事件B 由4个基本事件组成,因而P (B )=49.从1,2,3,4,5五个数字中任意有放回地连续抽取两个数字,求下列事件的概率: (1)两个数字不同;(2)两个数字中不含有1和5; (3)两个数字中恰有一个1.解:所有基本事件为(1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2),(2,3),(2,4),(2,5),(3,1),(3,2),(3,3),(3,4),(3,5),(4,1),(4,2),(4,3),(4,4),(4,5),(5,1),(5,2),(5,3),(5,4),(5,5),共25个.(1)设A =“两个数字不同”,则P (A )=2025=45.(2)设B =“两个数字中不含1和5”,则P (B )=925.(3)设C =“两个数字中恰有一个1”,则P (C )=825.[典例] 有A ,B ,C ,D 四位贵宾,应分别坐在a ,b ,c ,d 四个席位上,现在这四人均未留意,在四个席位上随便就座.(1)求这四人恰好都坐在自己的席位上的概率; (2)求这四人恰好都没坐在自己的席位上的概率; (3)求这四人恰有一位坐在自己的席位上的概率. 建立概率模型解决问题[解]将A,B,C,D四位贵宾就座情况用如图所示的图形表示出来.a席位b席位c席位d席位a席位b席位c席位d席位a席位b席位c席位d席位a席位b席位c席位d席位由图可知,所有的等可能基本事件共有24个.(1)设事件A为“这四人恰好都坐在自己的席位上”,则事件A只包含1个基本事件,所以P(A)=124.(2)设事件B为“这四人恰好都没坐自己的席位上”,则事件B包含9个基本事件,所以P(B)=924=3 8.(3)设事件C为“这四人恰有一位坐在自己的席位上”,则事件C包含8个基本事件,所以P(C)=824=1 3.甲、乙、丙、丁四名学生按任意次序站成一排,试求下列事件的概率:(1)甲在边上;(2)甲和乙都在边上;(3)甲和乙都不在边上.解:利用树状图来列举基本事件,如图所示.由树状图可看出共有24个基本事件.(1)甲在边上有12种情形:(甲,乙,丙,丁),(甲,乙,丁,丙),(甲,丙,乙,丁),(甲,丙,丁,乙),(甲,丁,乙,丙),(甲,丁,丙,乙),(乙,丙,丁,甲),(乙,丁,丙,甲),(丙,乙,丁,甲),(丙,丁,乙,甲),(丁,乙,丙,甲),(丁,丙,乙,甲).故甲在边上的概率为P=1224=1 2.(2)甲和乙都在边上有4种情形:(甲,丙,丁,乙),(甲,丁,丙,乙),(乙,丙,丁,甲),(乙,丁,丙,甲),故甲和乙都在边上的概率为P=424=1 6.(3)甲和乙都不在边上有4种情形:(丙,甲,乙,丁),(丙,乙,甲,丁),(丁,甲,乙,丙),(丁,乙,甲,丙),故甲和乙都不在边上的概率为P=424=1 6.古典概型的综合应用[典例] 海关对同时从A ,B ,C 三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如下表所示.工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.(1)求这6件样品中来自(2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.[解] (1)因为样本容量与总体中的个体数的比是650+150+100=150,所以样本中包含三个地区的个体数量分别是50×150=1,150×150=3,100×150=2.所以A ,B ,C 三个地区的商品被选取的件数分别为1,3,2.(2)设6件来自A ,B ,C 三个地区的样品分别为A ;B 1,B 2,B 3;C 1,C 2,则抽取的这2件商品构成的所有基本事件为{A ,B 1},{A ,B 2},{A ,B 3},{A ,C 1},{A ,C 2},{B 1,B 2},{B 1,B 3},{B 1,C 1},{B 1,C 2},{B 2,B 3},{B 2,C 1},{B 2,C 2},{B 3,C 1},{B 3,C 2},{C 1,C 2},共15个.每个样品被抽到的机会均等,因此这些基本事件的出现是等可能的.记事件D :“抽取的这2件商品来自相同地区”,则事件D 包含的基本事件有{B 1,B 2},{B 1,B 3},{B 2,B 3},{C 1,C 2}共4个.所以P (D )=415.即这2件商品来自相同地区的概率为415.把一枚骰子抛掷2次,观察出现的点数,并记第一次出现的点数为a ,第二次出现的点数为b ,试就方程组⎩⎪⎨⎪⎧ax +by =3,x +2y =2解的情况,解答下列各题:(1)求方程组只有一个解的概率; (2)求方程组只有正数解的概率.解:若第一次出现的点数为a ,第二次出现的点数为b 记为有序数值组(a ,b ),则所有可能出现的结果有:(1,1)(1,2)(1,3)(1,4)(1,5)(1,6), (2,1)(2,2)(2,3)(2,4)(2,5)(2,6), (3,1)(3,2)(3,3)(3,4)(3,5)(3,6), (4,1)(4,2)(4,3)(4,4)(4,5)(4,6), (5,1)(5,2)(5,3)(5,4)(5,5)(5,6), (6,1)(6,2)(6,3)(6,4)(6,5)(6,6), 共36种.由方程组⎩⎪⎨⎪⎧ ax +by =3,x +2y =2,可得⎩⎪⎨⎪⎧(2a -b )x =6-2b ,(2a -b )y =2a -3,(1)若方程组只有一个解,则b ≠2a ,满足b =2a 的有(1,2),(2,4),(3,6),故适合b ≠2a 的有36-3=33个.其概率为:3336=1112.(2)方程组只有正数解,需满足b -2a ≠0且⎩⎪⎨⎪⎧x =6-2b2a -b>0,y =2a -32a -b >0.分两种情况:当2a >b 时,得⎩⎪⎨⎪⎧a >32,b <3,当2a <b 时,得⎩⎪⎨⎪⎧a <32,b >3.易得包含的基本事件有13个:(2,1),(3,1),(4,1),(5,1),(6,1),(2,2),(3,2),(4,2),(5,2),(6,2),(1,4),(1,5),(1,6),因此所求的概率p 2=1336.[层级一 学业水平达标]1.一枚硬币连续掷三次,基本事件共有________个. 解析:画树形图: 共8种. 答案:82.从甲、乙、丙三人中任选两名代表,甲被选中的概率为________.解析:本题中基本事件有{甲,乙},{甲,丙},{乙,丙}共三个,其中甲被选中包含两个基本事件,故甲被选中的概率为23.答案:233.从标有1,2,3,4,5,6的6张纸片中任取2张,那么这2张纸片数字之积为偶数的概率为________.解析:基本事件为{1,2},{1,3},{1,4},{1,5},{1,6},{2,3},{2,4},{2,5},{2,6},{3,4},{3,5},{3,6},{4,5},{4,6},{5,6}共15个.其中符合要求的有{1,2},{1,4},{1,6},{2,3},{2,4},{2,5},{2,6},{3,4},{3,6},{4,5},{4,6},{5,6}共12个.故P =1215=45.答案:454.一个口袋里装有2个白球和2个黑球,这4个球除颜色外完全相同,从中摸出2个球,则1个是白球,1个是黑球的概率是________.解析:这四个球记为白1,白2,黑1,黑2.则基本事件为{白1,白2},{白1,黑1},{白1,黑2},{白2,黑1},{白2,黑2},{黑1,黑2}共6个.其中符合要求的为{白1,黑1},{白1,黑2},{白2,黑1},{白2,黑2}共4个.故P =46=23.答案:235.设集合P ={b,1},Q ={c,1,2},P ⊆Q ,若b ,c ∈{2,3,4,5,6,7,8,9}. (1)求b =c 的概率;(2)求方程x 2+bx +c =0有实根的概率.解:(1)因为P ⊆Q ,当b =2时,c =3,4,5,6,7,8,9;当b >2时,b =c =3,4,5,6,7,8,9,基本事件总数为14.其中b =c 的事件数为7种,所以b =c 的概率为:714=12.(2)记“方程有实根”为事件A ,若使方程有实根,则Δ=b 2-4c ≥0,即b =c =4,5,6,7,8,9共6种.所以P (A )=614=37.[层级二 应试能力达标]1.同时掷两枚骰子,点数之和大于9的概率为________. 解析:P =636=16.答案:162.某班委会由3名男生和2名女生组成,现从中选出2人担任正副班长,其中至少有一个女生当选的概率为________.解析:这五名同学分别表示为男1,男2,男3,女1,女2,用(x ,y )表示基本事件,其中x 是正班长,y 是副班长,则基本事件为(男1,男2),(男2,男1),(男1,男3),(男3,男1),(男1,女1),(女1,男1),(男1,女2),(女2,男1),(男2,男3),(男3,男2),(男2,女1),(女1,男2),(男2,女2),(女2,男2),(男3,女1),(女1,男3),(男3,女2),(女2,男3),(女1,女2),(女2,女1)共20个.其中符合要求的有14个,故P =1420=710.答案:7103.在正六边形的6个顶点中随机选择4个顶点,则构成的四边形是梯形的概率为________.解析:如图,在正六边形ABCDEF 的6个顶点中随机选择4个顶点,共有15种选法,其中构成的四边形是梯形的有ABEF ,BCDE ,ABCF ,CDEF ,ABCD ,ADEF ,共6种情况,故构成的四边形是梯形的概率P =615=25. 答案:254.如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为________.解析:基本事件为(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5)共10个.其中勾股数只有(3,4,5),∴P =110.答案:1105.一个袋子中装有六个形状完全相同的小球,其中一个编号为1,两个编号为2,三个编号为3,现从中任取一球记下编号后放回,再任取一球,则两次取出球的编号之和为4的概率为________.解析:用列表法列出所有基本事件共36个,其中和为4的有10个.故P =1036=518.答案:5186.甲、乙、丙、丁、戊5人站成一排合影,则甲站在乙的左边的概率为________. 解析:我们不考虑丙、丁、戊具体站在什么位置,只考虑甲、乙的相对位置,只有甲站在乙的左边和甲站在乙的右边,共2个等可能发生的结果,因此甲站在乙的左边的概率为12.答案:127.在5瓶饮料中,有2瓶已过了保质期,从中任取2瓶,取到的全是已过保质期的饮料的概率为________.解析:设过保质期的2瓶记为a ,b ,没过保质期的3瓶用1,2,3表示,试验的结果为: (1,2),(1,3),(1,a ),(1,b ),(2,3),(2,a ),(2,b ),(3,a ),(3,b ),(a ,b )共10种结果,2瓶都过保质期的结果只有1个,∴P =110.答案:1108.如图所示方格,在每一个方格中填入一个数字,数字可以是1,2,3,4中的任何一个,允许重复,则填入A 方格的数字大于B 方格的数字的概率为________. 解析:只考虑A ,B 两个方格的填法,不考虑大小,A ,B 两个方格有16种填法.要使填入A 方格的数字大于B 方格的数字,则从1,2,3,4中选2个数字,大的放入A 格,小的放入B 格,有(4,3),(4,2),(4,1),(3,2),(3,1),(2,1),共6种,故填入A 方格的数字大于B 方格的数字的概率为616=38.答案:389.一个盒子中装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a ,b ,c .(1)求“抽取的卡片上的数字满足a +b =c ”的概率; (2)求“抽取的卡片上的数字a ,b ,c 不完全相同”的概率.解:由题意知(a ,b ,c )所有可能的结果为(1,1,1),(1,1,2),(1,1,3),(1,2,1),(1,2,2),(1,2,3),(1,3,1),(1,3,2),(1,3,3),(2,1,1),(2,1,2),(2,1,3),(2,2,1),(2,2,2),(2,2,3),(2,3,1),(2,3,2),(2,3,3),(3,1,1),(3,1,2),(3,1,3),(3,2,1),(3,2,2),(3,2,3),(3,3,1),(3,3,2),(3,3,3)共27种.(1)设A =“抽取的卡片上的数字满足a +b =c ”,则A 包含3个结果.故P (A )=327=19.(2)设B =“抽取的卡片上的数字a ,b ,c 不完全相同”,则事件B 包含24种结果.故P (B )=2427=89.10.某产品的三个质量指标分别为x ,y ,z ,用综合指标S =x +y +z 评价该产品的等级.若S ≤4, 则该产品为一等品.先从一批该产品中,随机抽取10件产品作为样本,其质量指标列表如下:(2)在该样本的一等品中, 随机抽取2件产品, ①用产品编号列出所有可能的结果;②设事件B 为“在取出的2件产品中, 每件产品的综合指标S 都等于4”, 求事件B 发生的概率.解:(1)计算10件产品的综合指标S ,如下表: 其中S ≤4的有A 1,A 2,A 4,A 5,A 7,A 9,共6件,故该样本的一等品率为610=0.6,从而可估计该批产品的一等品率为0.6.(2)①在该样本的一等品中,随机抽取2件产品的所有可能结果为{A 1,A 2},{A 1,A 4},{A 1,A 5},{A 1,A 7},{A 1,A 9},{A 2,A 4},{A 2,A 5},{A 2,A 7},{A 2,A 9},{A 4,A 5},{A 4,A 7},{A 4,A 9},{A 5,A 7},{A 5,A 9},{A 7,A 9},共15种.②在该样本的一等品中,综合指标S 等于4的产品编号分别为A 1,A 2,A 5,A 7,则事件B 发生的所有可能结果为{A 1,A 2},{A 1,A 5},{A 1,A 7},{A 2,A 5},{A 2,A 7},{A 5,A 7},共6种.所以P (B )=615=25.。

2017-2018学年高中数学苏教版必修三教学案:第3章 3.2 古典概型

2017-2018学年高中数学苏教版必修三教学案:第3章 3.2 古典概型

甲、乙两人玩掷骰子游戏,他们约定:两颗骰子掷出去,如果朝上的两个数的和是5,那么甲获胜,如果朝上的两个数的和是7,那么乙获胜.问题1:若甲获胜,那么两颗骰子出现的点数有几种?提示:会出现(1,4),(4,1)(2,3),(3,2)四种可能.问题2:若乙获胜,两颗骰子出现的点数又如何?提示:会出现(1,6),(6,1),(2,5,),(5,2),(3,4),(4,3)六种可能.问题3:这样的游戏公平吗?提示:由问题1、2知甲获胜的机会比乙获胜的机会少,不公平.问题4:能否求出甲、乙两人获胜的概率?提示:可以.1.基本事件与等可能事件(1)基本事件:在一次试验中可能出现的每一个基本结果.(2)等可能事件:若在一次试验中,每个基本事件发生的可能性都相同,则称这些基本事件为等可能基本事件.2.古典概型(1)古典概型的特点:①有限性:所有的基本事件只有有限个;②等可能性:每个基本事件的发生都是等可能的.(2)古典概型的定义:将满足上述条件的随机试验的概率模型称为古典概型.(3)古典概型概率的计算公式:如果一次试验的等可能基本事件共有n 个,那么每一个等可能基本事件发生的概率都是;1n如果某个事件A 包含了其中m 个等可能基本事件,那么事件A 发生的概率为P (A )=.mn 即P (A )=.事件A 包含的基本事件数试验的基本事件总数1.一个试验是否为古典概型,在于这个试验是否具有古典概型的两个特征,即有限性和等可能性,并不是所有的试验都是古典概型,例如在适宜的条件下“种下一粒种子观察它是否发芽”,这个试验的基本事件有两个:“发芽”、“不发芽”,而“发芽”与“不发芽”这两种结果出现的机会一般是不均等的,故此试验不符合古典概型的等可能性.2.古典概型的概率公式P (A )=与事件A 发生的频率有本质的区别,其中P (A )=是一个m n m n mn 定值,且对同一试验的同一事件m 、n 均为定值,而频率中的m 、n 均随试验次数的变化而变化,但随着试验次数的增加频率总接近于P (A ). [例1] 将一颗骰子先后抛掷两次,求:(1)一共有几个基本事件?(2)“出现点数之和大于8”包含几个基本事件?[思路点拨] 求基本事件的个数可用列举法、列表法、树形图法.[精解详析] 法一:(列举法):(1)用(x ,y )表示结果,其中x 表示第1颗骰子出现的点数,y 表示第2颗骰子出现的点数,则试验的所有结果为:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6).共36个基本事件.(2)“出现点数之和大于8”包含以下10个基本事件:(3,6),(4,5),(4,6),(5,4),(5,5),(5,6),(6,3),(6,4),(6,5),(6,6).法二:(列表法):如图所示,坐标平面内的数表示相应两次抛掷后出现的点数的和,基本事件与所描点一一对应.(1)由图知,基本事件总数为36.(2)总数之和大于8包含10个基本事件(已用虚线圈出).法三:(树形图法):一颗骰子先后抛掷两次的所有可能结果用树形图直接表示.如图所示:(1)由图知,共36个基本事件.(2)点数之和大于8包含10个基本事件(已用对勾标出).[一点通] 基本事件个数的计算方法有:(1)列举法:列举法也称枚举法.对于一些情境比较简单,基本事件个数不是很多的概率问题,计算时只需一一列举,即可得出随机事件所含的基本事件.注意列举时必须按一定顺序,做到不重不漏.(2)列表法:对于试验结果不是太多的情况,可以采用列表法.通常把对问题的思考分析归结为“有序实数对”,以便更直接地找出基本事件个数.列表法的优点是准确、全面、不易遗漏,其中最常用的方法是坐标系法.(3)树形图法:树形图法是进行列举的一种常用方法,适合较复杂问题中基本事件数的求解.1.本例中条件变为“一枚硬币连续掷三次”,会有多少种不同结果?解:画树形图共8种.2.一个口袋内装有大小相等的1个白球和已编有号码的3个黑球,从中摸出2个球.(1)共有多少种不同的结果(基本事件)?(2)摸出2个黑球有多少种不同结果?解:(1)共有6种不同结果,分别为{黑1,黑2},{黑1,黑3},{黑2,黑3},{白,黑1},{白,黑2},{白,黑3}.(2)从上面所有结果中可看出摸出2个黑球的结果有3种. [例2] (12分)同时投掷两个骰子,计算下列事件的概率:(1)事件A :两个骰子点数相同;(2)事件B :两个骰子点数之和为8;(3)事件C :两个骰子点数之和为奇数.[思路点拨] 先判断这个试验是否为古典概型,然后用列举法求出所有基本事件总数及所求事件包含的基本事件的个数,最后用公式P (A )=求结果.mn [精解详析] (1)将两个骰子标上记号A ,B ,将A ,B 骰子的点数记为(x ,y ),则共有36种等可能的结果.如下(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6).⇨(3分)出现点数相同的结果有(1,1)(2,2)(3,3)(4,4)(5,5)(6,6)共6种.∴P (A )==.⇨(6分)63616(2)出现点数之和为8的结果有(2,6)(3,5)(4,4)(5,3)(6,2)共5种,∴P (B )=.⇨(9分)536(3)出现点数之和为奇数包括“x 是奇数、y 是偶数”和“x 是偶数、y 是奇数”,共有18种,∴P (C )==.⇨(12分)183612[一点通] 求古典概型概率的步骤:(1)用列举法求出基本事件总个数n .(2)用列举法求出事件A 包含的基本事件的个数m .(3)利用公式P (A )==求出事件A 的概率.事件A 包含的基本事件数试验的基本事件总数mn3.先后从分别标有数字1,2,3,4的4个大小、形状完全相同的球中,有放回地随机抽取2个球,则抽到的2个球的标号之和不大于5的概率为________.解析:基本事件共有4×4=16(个),其中抽到的2个球的标号之和不大于5的情况有:(1,1)、(1,2)、(1,3)、(1,4)、(2,1)、(2,2)、(2,3)、(3,1)、(3,2)、(4,1),共10种,所以所求概率为=.101658答案:584.将一颗骰子先后抛掷2次,观察向上的点数,问:(1)两数之积是奇数的概率是多少?(2)两数之积是3的倍数的概率是多少?解:每次抛出的点数都可能有1,2,3,4,5,6这6种结果,两次点数之积的不同结果如下表所示共有36种.1234561123456224681012336912151844812162024551015202530661218243036(1)设事件A 表示“两数之积是奇数”,则事件A 包含的不同结果的个数为9,所以P (A )==.93614(2)设事件B 表示“两数之积是3的倍数”,则事件B 包含的不同结果的个数为20,所以P (B )==.2036591.解决古典概型问题的关键是:分清基本事件总数n 与事件A 所包含基本事件的个数m ,注意问题:(1)试验基本结果是否有等可能性.(2)本试验的基本事件有多少个.(3)事件A 包含哪些基本事件.只有弄清这三个方面的问题解题才不致于出错.2.求基本事件的个数有列举法、列表法和树形图法,一是注意按一定顺序,防止重复和遗漏;二是可先数一部分,找出规律,推测全部.课下能力提升(十六)一、填空题1.从甲、乙、丙三人中任选两名代表,甲被选中的概率为________.解析:本题中基本事件有(甲,乙),(甲,丙),(乙,丙)共三个,其中甲被选中包含两个基本事件,故甲被选中的概率为.23答案:232.在平面直角坐标系内,从横坐标与纵坐标都在集合A ={0,1,2}内取值的点中任取一个,此点正好在直线y =x 上的概率为________.解析:由x ,y ∈{0,1,2},这样的点共有(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2)9个,其中满足在直线y =x 上的点(x ,y )有(0,0),(1,1),(2,2)3个,所以所求概率为P ==.3913答案:133.从{1,2,3,4,5}中随机选取一个数为a ,从{1,2,3}中随机选取一个数为b ,则b >a 的概率是________.解析:随机选取的a ,b 组成实数对(a ,b ),有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),共15种.其中b >a 的有(1,2),(1,3),(2,3),共3种,所以b >a 的概率为=.31515答案:154.从长度分别为2,3,4,5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是________.解析:从四条线段中任取三条有4种取法:(2,3,4),(2,3,5),(2,4,5),(3,4,5).其中能构成三角形的取法有3种:(2,3,4),(2,4,5),(3,4,5),故所求概率为.34答案:345.盒子里共有大小相同的3只白球、1只黑球,若从中随机摸出两只球,则它们颜色不同的概率是________.解析:从3只白球、1只黑球中随机摸出两只小球,基本事件有(白1,白2),(白1,白3),(白2,白3),(白1,黑),(白2,黑),(白3,黑),其中颜色不同的有三种,故所求概率为P =.12答案:12二、解答题6.从3台甲型电脑和2台乙型电脑中任取两台,求两种品牌都齐全的概率.解:3台甲型电脑为1,2,3,2台乙型电脑为A ,B ,则所有基本事件为:(1,2),(1,3),(1,A ),(1,B ),(2,3),(2,A ),(2,B ),(3,A ),(3,B ),(A ,B ),共10个. 记事件C 为“一台为甲型,另一台为乙型”,则符合条件的事件为6个,所以P (C )==.610357.设集合P ={b ,1},Q ={c ,1,2},P ⊆Q ,若b ,c ∈{2,3,4,5,6,7,8,9}.(1)求b =c 的概率;(2)求方程x 2+bx +c =0有实根的概率.解:(1)因为P ⊆Q ,当b =2时,c =3,4,5,6,7,8,9;当b >2时,b =c =3,4,5,6,7,8,9,基本事件总数为14.其中b =c 的事件数为7种,所以b =c的概率为:=.71412(2)记“方程有实根”为事件A ,若使方程有实根,则Δ=b 2-4c ≥0,即b =c =4,5,6,7,8,9共6种. 所以P (A )==.614378.对某项工程进行竞标,现共有6家企业参与竞标,其中A 企业来自辽宁省,B ,C 两家企业来自江苏省,D ,E ,F 三家企业来自山东省,此项工程需要两家企业联合施工,假设每家企业中标的概率相同.(1)列举所有企业的中标情况;(2)在中标的企业中,至少有一家来自江苏省的概率是多少?解:(1)从这6家企业中选出2家的选法有(A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,C ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F ),共15种.(2)在中标的企业中,至少有一家来自江苏省的选法有(A ,B ),(A ,C ),(B ,C ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),共9种.所以,“在中标的企业中,至少有一家来自江苏省”的概率为=.91535。

教育最新K122018-2019学年高中数学苏教版必修3教学案:第3章 3.2 古典概型-含解析

教育最新K122018-2019学年高中数学苏教版必修3教学案:第3章 3.2 古典概型-含解析

古典概型[新知初探]1.基本事件与等可能事件(1)基本事件:在一次试验中可能出现的每一个基本结果.(2)等可能事件:若在一次试验中,每个基本事件发生的可能性都相同,则称这些基本事件为等可能基本事件.[点睛](1)基本事件是试验中不能再分的简单的随机事件,其他事件可以用它们来表示.(2)任何两个基本事件是不会同时发生的.(3)任何事件都可以表示成基本事件的和.2.古典概型(1)特点:①有限性:所有的基本事件只有有限个;②等可能性:每个基本事件的发生都是等可能的.(2)定义:将满足上述条件的随机试验的概率模型称为古典概型.(3)古典概型概率的计算公式:如果1次试验的等可能基本事件共有n个,那么每一个等可能基本事件发生的概率都是1n;如果某个事件A包含了其中m个等可能基本事件,那么事件A发生的概率为P(A) =mn.即P (A )=事件A 包含的基本事件数试验的基本事件总数.[点睛]古典概型的概率公式P (A )=m n 与事件A 发生的频率m n 有本质的区别,其中P (A )=mn 是一个定值,且对同一试验的同一事件m ,n 均为定值,而频率中的m ,n 均随试验次数的变化而变化,但随着试验次数的增加频率总接近于P (A ).[小试身手]1.一个家庭中有两个小孩,则所有等可能的基本事件是________.(列举出来) 答案:(男,男),(男,女),(女,男),(女,女)2.从字母a ,b ,c ,d 中任意取出两个不同字母的试验中,有哪些基本事件?这些基本事件是等可能基本事件吗?解:共有6个基本事件:A ={a ,b },B ={a ,c },C ={a ,d },D ={b ,c },E ={b ,d },F ={c ,d }.每个基本事件取到的概率都为16,属于等可能基本事件.[典例] 下列概率模型是古典概型吗?为什么?(1)从区间[1,10]内任意取出一个实数,求取到实数2的概率; (2)向上抛掷一枚不均匀的旧硬币,求正面朝上的概率;(3)从1,2,3,…,100这100个整数中任意取出一个整数,求取到偶数的概率. [解] (1)不是古典概型,因为区间[1,10]中有无限多个实数,取出的那个实数有无限多种结果,与古典概型定义中“所有可能结果只有有限个”矛盾.(2)不是古典概型,因为硬币不均匀导致“正面向上”与“反面向上”的概率不相等,与古典概型定义中“每一个试验结果出现的可能性相同”矛盾.(3)是古典概型,因为在试验中所有可能出现的结果是有限的,而且每个整数被抽到的可能性相等.古典概型的判定下列随机事件:①某射手射击一次,可能命中0环,1环,2环,…,10环;②一个小组有男生5人,女生3人,从中任选1人进行活动汇报;③一只使用中的灯泡寿命长短;④抛出一枚质地均匀的硬币,观察其出现正面或反面的情况;⑤中秋节前夕,某市工商部门调查辖区内某品牌的月饼质量,给该品牌月饼评“优”或“差”.这些事件中,属于古典概型的有________.解析:放回”与“不放回”问题[典例]从含有两件正品a1,a2和一件次品b1的3件产品中每次任取1件,连续取两次.(1)若每次取出后不放回,连续取两次,求取出的产品中恰有一件是次品的概率;(2)若每次取出后又放回,求取出的两件产品中恰有一件是次品的概率.[解](1)每次取一件,取后不放回地连续取两次,其一切可能的结果为(a1,a2),(a1,b1),(a2,a1),(a2,b1),(b1,a1),(b1,a2),其中小括号内左边的字母表示第1次取出的产品,右边的字母表示第2次取出的产品.由6个基本事件组成,而且可以认为这些基本事件的出现是等可能的.用A表示“取出的两件中恰好有一件次品”这一事件,则A={(a1,b1),(a2,b1),(b1,a1),(b1,a2)}.事件A 由4个基本事件组成.因而P (A )=46=23.(2)有放回地连续取出两件,其一切可能的结果为(a 1,a 1),(a 1,a 2),(a 1,b 1),(a 2,a 1),(a 2,a 2),(a 2,b 1),(b 1,a 1),(b 1,a 2),(b 1,b 1)共9个基本事件.由于每一件产品被取到的机会均等,因此可以认为这些基本事件的出现是等可能的.用B 表示“恰有一件次品”这一事件,则B ={(a 1,b 1),(a 2,b 1),(b 1,a 1),(b 1,a 2)}.事件B 由4个基本事件组成,因而P (B )=49.从1,2,3,4,5五个数字中任意有放回地连续抽取两个数字,求下列事件的概率: (1)两个数字不同;(2)两个数字中不含有1和5; (3)两个数字中恰有一个1.解:所有基本事件为(1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2),(2,3),(2,4),(2,5),(3,1),(3,2),(3,3),(3,4),(3,5),(4,1),(4,2),(4,3),(4,4),(4,5),(5,1),(5,2),(5,3),(5,4),(5,5),共25个.(1)设A =“两个数字不同”,则P (A )=2025=45.(2)设B =“两个数字中不含1和5”,则P (B )=925.(3)设C =“两个数字中恰有一个1”,则P (C )=825.[典例] 有A ,B ,C ,D 四位贵宾,应分别坐在a ,b ,c ,d 四个席位上,现在这四人均未留意,在四个席位上随便就座.(1)求这四人恰好都坐在自己的席位上的概率; (2)求这四人恰好都没坐在自己的席位上的概率; (3)求这四人恰有一位坐在自己的席位上的概率. 建立概率模型解决问题[解]将A,B,C,D四位贵宾就座情况用如图所示的图形表示出来.a席位b席位c席位d席位a席位b席位c席位d席位a席位b席位c席位d席位a席位b席位c席位d席位由图可知,所有的等可能基本事件共有24个.(1)设事件A为“这四人恰好都坐在自己的席位上”,则事件A只包含1个基本事件,所以P(A)=124.(2)设事件B为“这四人恰好都没坐自己的席位上”,则事件B包含9个基本事件,所以P(B)=924=3 8.(3)设事件C为“这四人恰有一位坐在自己的席位上”,则事件C包含8个基本事件,所以P(C)=824=1 3.甲、乙、丙、丁四名学生按任意次序站成一排,试求下列事件的概率:(1)甲在边上;(2)甲和乙都在边上;(3)甲和乙都不在边上.解:利用树状图来列举基本事件,如图所示.由树状图可看出共有24个基本事件.(1)甲在边上有12种情形:(甲,乙,丙,丁),(甲,乙,丁,丙),(甲,丙,乙,丁),(甲,丙,丁,乙),(甲,丁,乙,丙),(甲,丁,丙,乙),(乙,丙,丁,甲),(乙,丁,丙,甲),(丙,乙,丁,甲),(丙,丁,乙,甲),(丁,乙,丙,甲),(丁,丙,乙,甲).故甲在边上的概率为P=1224=1 2.(2)甲和乙都在边上有4种情形:(甲,丙,丁,乙),(甲,丁,丙,乙),(乙,丙,丁,甲),(乙,丁,丙,甲),故甲和乙都在边上的概率为P=424=1 6.(3)甲和乙都不在边上有4种情形:(丙,甲,乙,丁),(丙,乙,甲,丁),(丁,甲,乙,丙),(丁,乙,甲,丙),故甲和乙都不在边上的概率为P=424=1 6.古典概型的综合应用[典例] 海关对同时从A ,B ,C 三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如下表所示.工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.(1)求这6件样品中来自(2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.[解] (1)因为样本容量与总体中的个体数的比是650+150+100=150,所以样本中包含三个地区的个体数量分别是50×150=1,150×150=3,100×150=2.所以A ,B ,C 三个地区的商品被选取的件数分别为1,3,2.(2)设6件来自A ,B ,C 三个地区的样品分别为A ;B 1,B 2,B 3;C 1,C 2,则抽取的这2件商品构成的所有基本事件为{A ,B 1},{A ,B 2},{A ,B 3},{A ,C 1},{A ,C 2},{B 1,B 2},{B 1,B 3},{B 1,C 1},{B 1,C 2},{B 2,B 3},{B 2,C 1},{B 2,C 2},{B 3,C 1},{B 3,C 2},{C 1,C 2},共15个.每个样品被抽到的机会均等,因此这些基本事件的出现是等可能的.记事件D :“抽取的这2件商品来自相同地区”,则事件D 包含的基本事件有{B 1,B 2},{B 1,B 3},{B 2,B 3},{C 1,C 2}共4个.所以P (D )=415.即这2件商品来自相同地区的概率为415.把一枚骰子抛掷2次,观察出现的点数,并记第一次出现的点数为a ,第二次出现的点数为b ,试就方程组⎩⎪⎨⎪⎧ax +by =3,x +2y =2解的情况,解答下列各题:(1)求方程组只有一个解的概率; (2)求方程组只有正数解的概率.解:若第一次出现的点数为a ,第二次出现的点数为b 记为有序数值组(a ,b ),则所有可能出现的结果有:(1,1)(1,2)(1,3)(1,4)(1,5)(1,6), (2,1)(2,2)(2,3)(2,4)(2,5)(2,6), (3,1)(3,2)(3,3)(3,4)(3,5)(3,6), (4,1)(4,2)(4,3)(4,4)(4,5)(4,6), (5,1)(5,2)(5,3)(5,4)(5,5)(5,6), (6,1)(6,2)(6,3)(6,4)(6,5)(6,6), 共36种.由方程组⎩⎪⎨⎪⎧ ax +by =3,x +2y =2,可得⎩⎪⎨⎪⎧(2a -b )x =6-2b ,(2a -b )y =2a -3,(1)若方程组只有一个解,则b ≠2a ,满足b =2a 的有(1,2),(2,4),(3,6),故适合b ≠2a 的有36-3=33个.其概率为:3336=1112.(2)方程组只有正数解,需满足b -2a ≠0且⎩⎪⎨⎪⎧x =6-2b2a -b>0,y =2a -32a -b >0.分两种情况:当2a >b 时,得⎩⎪⎨⎪⎧a >32,b <3,当2a <b 时,得⎩⎪⎨⎪⎧a <32,b >3.易得包含的基本事件有13个:(2,1),(3,1),(4,1),(5,1),(6,1),(2,2),(3,2),(4,2),(5,2),(6,2),(1,4),(1,5),(1,6),因此所求的概率p 2=1336.[层级一 学业水平达标]1.一枚硬币连续掷三次,基本事件共有________个. 解析:画树形图: 共8种. 答案:82.从甲、乙、丙三人中任选两名代表,甲被选中的概率为________.解析:本题中基本事件有{甲,乙},{甲,丙},{乙,丙}共三个,其中甲被选中包含两个基本事件,故甲被选中的概率为23.答案:233.从标有1,2,3,4,5,6的6张纸片中任取2张,那么这2张纸片数字之积为偶数的概率为________.解析:基本事件为{1,2},{1,3},{1,4},{1,5},{1,6},{2,3},{2,4},{2,5},{2,6},{3,4},{3,5},{3,6},{4,5},{4,6},{5,6}共15个.其中符合要求的有{1,2},{1,4},{1,6},{2,3},{2,4},{2,5},{2,6},{3,4},{3,6},{4,5},{4,6},{5,6}共12个.故P =1215=45.答案:454.一个口袋里装有2个白球和2个黑球,这4个球除颜色外完全相同,从中摸出2个球,则1个是白球,1个是黑球的概率是________.解析:这四个球记为白1,白2,黑1,黑2.则基本事件为{白1,白2},{白1,黑1},{白1,黑2},{白2,黑1},{白2,黑2},{黑1,黑2}共6个.其中符合要求的为{白1,黑1},{白1,黑2},{白2,黑1},{白2,黑2}共4个.故P =46=23.答案:235.设集合P ={b,1},Q ={c,1,2},P ⊆Q ,若b ,c ∈{2,3,4,5,6,7,8,9}. (1)求b =c 的概率;(2)求方程x 2+bx +c =0有实根的概率.解:(1)因为P ⊆Q ,当b =2时,c =3,4,5,6,7,8,9;当b >2时,b =c =3,4,5,6,7,8,9,基本事件总数为14.其中b =c 的事件数为7种,所以b =c 的概率为:714=12.(2)记“方程有实根”为事件A ,若使方程有实根,则Δ=b 2-4c ≥0,即b =c =4,5,6,7,8,9共6种.所以P (A )=614=37.[层级二 应试能力达标]1.同时掷两枚骰子,点数之和大于9的概率为________. 解析:P =636=16.答案:162.某班委会由3名男生和2名女生组成,现从中选出2人担任正副班长,其中至少有一个女生当选的概率为________.解析:这五名同学分别表示为男1,男2,男3,女1,女2,用(x ,y )表示基本事件,其中x 是正班长,y 是副班长,则基本事件为(男1,男2),(男2,男1),(男1,男3),(男3,男1),(男1,女1),(女1,男1),(男1,女2),(女2,男1),(男2,男3),(男3,男2),(男2,女1),(女1,男2),(男2,女2),(女2,男2),(男3,女1),(女1,男3),(男3,女2),(女2,男3),(女1,女2),(女2,女1)共20个.其中符合要求的有14个,故P =1420=710.答案:7103.在正六边形的6个顶点中随机选择4个顶点,则构成的四边形是梯形的概率为________.解析:如图,在正六边形ABCDEF 的6个顶点中随机选择4个顶点,共有15种选法,其中构成的四边形是梯形的有ABEF ,BCDE ,ABCF ,CDEF ,ABCD ,ADEF ,共6种情况,故构成的四边形是梯形的概率P =615=25. 答案:254.如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为________.解析:基本事件为(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5)共10个.其中勾股数只有(3,4,5),∴P =110.答案:1105.一个袋子中装有六个形状完全相同的小球,其中一个编号为1,两个编号为2,三个编号为3,现从中任取一球记下编号后放回,再任取一球,则两次取出球的编号之和为4的概率为________.解析:用列表法列出所有基本事件共36个,其中和为4的有10个.故P =1036=518.答案:5186.甲、乙、丙、丁、戊5人站成一排合影,则甲站在乙的左边的概率为________. 解析:我们不考虑丙、丁、戊具体站在什么位置,只考虑甲、乙的相对位置,只有甲站在乙的左边和甲站在乙的右边,共2个等可能发生的结果,因此甲站在乙的左边的概率为12.答案:127.在5瓶饮料中,有2瓶已过了保质期,从中任取2瓶,取到的全是已过保质期的饮料的概率为________.解析:设过保质期的2瓶记为a ,b ,没过保质期的3瓶用1,2,3表示,试验的结果为: (1,2),(1,3),(1,a ),(1,b ),(2,3),(2,a ),(2,b ),(3,a ),(3,b ),(a ,b )共10种结果,2瓶都过保质期的结果只有1个,∴P =110.答案:1108.如图所示方格,在每一个方格中填入一个数字,数字可以是1,2,3,4中的任何一个,允许重复,则填入A 方格的数字大于B 方格的数字的概率为________. 解析:只考虑A ,B 两个方格的填法,不考虑大小,A ,B 两个方格有16种填法.要使填入A 方格的数字大于B 方格的数字,则从1,2,3,4中选2个数字,大的放入A 格,小的放入B 格,有(4,3),(4,2),(4,1),(3,2),(3,1),(2,1),共6种,故填入A 方格的数字大于B 方格的数字的概率为616=38.答案:389.一个盒子中装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a ,b ,c .(1)求“抽取的卡片上的数字满足a +b =c ”的概率; (2)求“抽取的卡片上的数字a ,b ,c 不完全相同”的概率.解:由题意知(a ,b ,c )所有可能的结果为(1,1,1),(1,1,2),(1,1,3),(1,2,1),(1,2,2),(1,2,3),(1,3,1),(1,3,2),(1,3,3),(2,1,1),(2,1,2),(2,1,3),(2,2,1),(2,2,2),(2,2,3),(2,3,1),(2,3,2),(2,3,3),(3,1,1),(3,1,2),(3,1,3),(3,2,1),(3,2,2),(3,2,3),(3,3,1),(3,3,2),(3,3,3)共27种.(1)设A =“抽取的卡片上的数字满足a +b =c ”,则A 包含3个结果.故P (A )=327=19.(2)设B =“抽取的卡片上的数字a ,b ,c 不完全相同”,则事件B 包含24种结果.故P (B )=2427=89.10.某产品的三个质量指标分别为x ,y ,z ,用综合指标S =x +y +z 评价该产品的等级.若S ≤4, 则该产品为一等品.先从一批该产品中,随机抽取10件产品作为样本,其质量指标列表如下:(2)在该样本的一等品中, 随机抽取2件产品, ①用产品编号列出所有可能的结果;②设事件B 为“在取出的2件产品中, 每件产品的综合指标S 都等于4”, 求事件B 发生的概率.解:(1)计算10件产品的综合指标S ,如下表: 其中S ≤4的有A 1,A 2,A 4,A 5,A 7,A 9,共6件,故该样本的一等品率为610=0.6,从而可估计该批产品的一等品率为0.6.(2)①在该样本的一等品中,随机抽取2件产品的所有可能结果为{A 1,A 2},{A 1,A 4},{A 1,A 5},{A 1,A 7},{A 1,A 9},{A 2,A 4},{A 2,A 5},{A 2,A 7},{A 2,A 9},{A 4,A 5},{A 4,A 7},{A 4,A 9},{A 5,A 7},{A 5,A 9},{A 7,A 9},共15种.②在该样本的一等品中,综合指标S 等于4的产品编号分别为A 1,A 2,A 5,A 7,则事件B 发生的所有可能结果为{A 1,A 2},{A 1,A 5},{A 1,A 7},{A 2,A 5},{A 2,A 7},{A 5,A 7},共6种.所以P (B )=615=25.。

苏教版高中数学必修三教案:32 古典概型(1)

3.2古典概型(1)泰州市蒋垛中学彭小红教学目标:1. 掌握基本事件的概念;2. 正确理解古典概型的两大特点:有限性、等可能性;3. 掌握古典概型的概率计算公式,并能计算有关随机事件的概率.教学重点:掌握古典概型这一模型.教学难点:如何判断一个实验是否为古典概型,如何将实际问题转化为古典概型问题. 教学方法:问题教学、合作学习、讲解法、多媒体辅助教学.教学过程:一、问题情境1.有红心1,2,3和黑桃4,5这5张扑克牌,将其牌点向下置于桌上,现从中任意抽取一张,则抽到的牌为红心的概率有多大?2.猜想两个实验的结果:(1)有红心1,2,3和黑桃4,5这5张扑克牌,将其牌点向下置于桌上,现从中任意抽取一张,该实验的所有可能结果是什么?(2)抛掷一枚质地均匀的骰子的所有可能结果是什么?二、学生活动1.进行大量重复试验,用“抽到红心”这一事件的频率估计概率,发现工作量较大且不够准确;2.(1)共有“抽到红心1”“抽到红心2”“抽到红心3”“抽到黑桃4”“抽到黑桃5”5种情况,由于是任意抽取的,可以认为出现这5种情况的可能性都相等;(2)6个;即“1点”、“2点”、“3点”、“4点”、“5点”和“6点”, 这6种情况的可能性都相等;三、建构数学1.介绍基本事件的概念,等可能基本事件的概念;2.让学生自己总结归纳古典概型的两个特点(有限性)、(等可能性);3.得出随机事件发生的概率公式:四、数学运用1.例题.例1有红心1,2,3和黑桃4,5这5张扑克牌,将其牌点向下置于桌上,现从中任意抽取2张共有多少个基本事件?(用枚举法,列举时要有序,要注意“不重不漏”)探究(1):一只口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次摸出2只球,共有多少个基本事件?该实验为古典概型吗?(为什么对球进行编号?)探究(2):抛掷一枚硬币2次有(正,反)、(正,正)、(反,反)3个基本事件,对吗?学生活动:探究(1)如果不对球进行编号,一次摸出2只球可能有两白、一黑一白、两黑三种情况,“摸到两黑”与“摸到两白”的可能性相同;而事实上“摸到两白”的机会要比“摸到两黑”的机会大.记白球为1,2,3号,黑球为4,5号,通过枚举法发现有10个基本事件,而且每个基本事件发生的可能性相同.探究(2):抛掷一枚硬币2次,有(正,正)、(正,反)、(反,正)、(反,反)四个基本事件.(设计意图:加深对古典概型的特点之一等可能基本事件概念的理解.)例2 一只口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次摸出2只球,则摸到的两只球都是白球的概率是多少?问题:在运用古典概型计算事件的概率时应当注意什么?①判断概率模型是否为古典概型②找出随机事件A中包含的基本事件的个数和试验中基本事件的总数.教师示范并总结用古典概型计算随机事件的概率的步骤例3同时抛两颗骰子,观察向上的点数,问:(1)共有多少个不同的可能结果?(2)点数之和是6的可能结果有多少种?(3)点数之和是6的概率是多少?问题:如何准确的写出“同时抛两颗骰子”所有基本事件的个数?学生活动:用课本第102页图3-2-2,可直观的列出事件A中包含的基本事件的个数和试验中基本事件的总数.问题:点数之和是3的倍数的可能结果有多少种?(介绍图表法)例4甲、乙两人作出拳游戏(锤子、剪刀、布),求:(1)平局的概率;(2)甲赢的概率;(3)乙赢的概率.设计意图:进一步提高学生对将实际问题转化为古典概型问题的能力.2.练习.(1)一枚硬币连掷3次,只有一次出现正面的概率为_________.(2)在20瓶饮料中,有3瓶已过了保质期,从中任取1瓶,取到已过保质期的饮料的概率为_________..(3)第103页练习1,2.(4)从1,2,3,…,9这9个数字中任取2个数字,①2个数字都是奇数的概率为_________;②2个数字之和为偶数的概率为_________.五、要点归纳与方法小结本节课学习了以下内容:1.基本事件,古典概型的概念和特点;2.古典概型概率计算公式以及注意事项;3.求基本事件总数常用的方法:列举法、图表法.。

必修三3.2.古典概型(教案)

1 教案 B第1课时教学内容§3.2.1 古典概型教学目标一、知识与技能1.正确理解古典概型的两大特点.2.掌握古典概型的概率计算公式.二、过程与方法通过对现实生活中具体的概率问题的探究,感知应用数学解决问题的方法,体会数学知识与现实世界的联系,培养逻辑推理能力.三、情感、态度与价值观通过数学与探究活动,体会理论来源于实践并应用于实践的辩证唯物主义观点.教学重点、难点教学重点:理解古典概型的概念及利用古典概型求解随机事件的概率.教学难点:如何判断一个试验是否为古典概型,弄清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数.教学关键:理解掌握古典概型的概念.教法与学法导航教学方法:采取了引导探究,讨论交流的教学模式,即通过再次考察前面做过的实验引入课题,根据学习情况,在合适的时机提出问题,设置合理有效的教学情境,让每一位学生都参与课堂讨论,提供学生思考讨论的时间与空间,师生一起探讨古典概型的特点以及概率值的求法.在教学过程中,利用多媒体等手段构建数学模型,调动学生的主体能动性,让每一个学生充分地参与到学习活动中来,并利用了情感暗示以及恰当的评价等教学方法.学习方法:学生在教师创设的问题情景中,通过观察类比,思考探究,概括归纳和动手尝试相结合,体现了学生的主体地位,培养了学生由具体到抽象,由特殊到一般的数学思维能力,形成了实事求是的科学态度,增强了锲而不舍的求学精神.教学准备教师准备:硬币和骰子.学生准备:硬币.教学过程一、创设情境导入新课师:下面我们一起分组来完成两个试验(第1、2小组完成试验一,第3、4小组完成试验二,教师向各小组分发准备好的若干枚质地均匀的硬币或若干枚质地均匀的骰子):12试验一:抛掷一枚质地均匀的硬币,至少完成20次,且分别记录“正面朝上”和“反面朝上”的次数.试验二:抛掷一枚质地均匀的骰子,至少完成20次,且分别记录“1点”、“2点”、“3点”、“4点”、“5点”和“6点”的次数.然后教师抽各小组的代表汇报自己的试验方法与结果,最后教师进行汇总,并提出以下问题.师:用模拟试验的方法来求某一随机事件的概率好不好?为什么?生:不好,因为要求出某一随机事件的概率,需要进行大量的试验,并且求出来的结果是频率,而不是概率.根据上述情况,你能发现它们有什么共同特点?二、主题探究合作交流师:在试验一和试验二中随机事件分别有多少个?各随机事件间有什么关系?生:在试验一中随机事件只有两个,即“正面朝上”和“反面朝上”,并且它们都是互斥的.在试验二中随机事件有六个,即“1点”、“2点”、“3点”、“4点”、“5点”和“6点”,并且它们也都是互斥的.师:我们把上述试验中的随机事件称为基本事件,它是试验的每一个可能结果.师:那基本事件有什么特点呢?(让学生交流讨论,教师再加以总结、概括)基本事件有如下两个特点:(1)任何两个基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和.师:在试验一中,必然事件由哪些基本事件组成?在试验二中,随机事件“出现奇数点”由哪些基本事件组成?例1 从字母,,,a b c d中任意取出两个不同字母的试验中,有哪些基本事件?师:为了得到基本事件,我们可以按照某种顺序,把所有可能的结果写出来,本小题我们可以按照字母排序的顺序,用列举法列出所有基本事件的结果.解:所求的基本事件共有6个:{,}A a b=,{,}B a c=,{,}C a d=,{,}D b c=,{,}E b d=,{,}F c d=师:你能发现前面两个数学模拟试验和例1有哪些共同特点吗?(先让学生交流讨论,然后教师抽学生回答,并在学生回答的基础上再进行补充)试验一中所有可能出现的基本事件有“正面朝上”和“反面朝上”2个,并且每个基本事件出现的可能性相等,都是12;试验二中所有可能出现的基本事件有“1点”、“2点”、“3点”、“4点”、“5点”和“6点”6个,并且每个基本事件出现的可能性相等,都是16;经概括总结后得到:23①试验中所有可能出现的基本事件只有有限个;②每个基本事件出现的可能性相等.我们将具有这两个特点的概率模型称为古典概率模型,简称古典概型.师:在古典概型下,前面两个数学模拟试验和例1中基本事件出现的概率分别是多少?随机事件出现的概率如何计算?(让学生讨论、思考交流)生:实验一中,出现正面朝上的概率与反面朝上的概率相等,即P(“正面朝上”)=P(“反面朝上”),由概率的加法公式,得P(“正面朝上”)+P(“反面朝上”)=P(必然事件)=1因此P(“正面朝上”)=P(“反面朝上”)=12,即12P“出现正面朝上”所包含的基本事件的个数(“出现正面朝上”)==.基本事件的总数生:试验二中,出现各个点的概率相等,即P(“1点”)=P(“2点”)=P(“3点”)=P(“4点”)=P(“5点”)=P(“6点”),由概率的加法公式,得P(“1点”)+P(“2点”)+P(“3点”)+P(“4点”)+P(“5点”)+P(“6点”)=P(必然事件)=1,因此P(“1点”)=P(“2点”)=P(“3点”)=P(“4点”)=P(“5点”)=P(“6点”)=16.进一步地,利用加法公式还可以计算这个试验中任何一个事件的概率,例如,P(“出现奇数点”)=P(“1点”)+P(“3点”)+P(“5点”)=16+16+16=3 6=12,3()6P==“出现奇数点”所包含的基本事件的个数即“出现奇数点”.基本事件的总数师:根据上述两个模拟试验,你能概括总结出,古典概型计算任何事件的概率计算公式吗?生:AP A所包含的基本事件的个数()=.基本事件的总数师:我们在使用古典概型的概率公式时,应该还要注意些什么呢?(先让学生自由说,教师再加以归纳)在使用古典概型的概率公式时,应该注意:①要判断该概率模型是不是古典概型;②要找出随机事件A包含的基本事件的个数和试验中基本事件的总数.344 三、拓展创新 应用提高例2 单选题是标准化考试中常用的题型,一般是从A ,B ,C ,D 四个选项中选择一个正确答案.如果考生掌握了考查的内容,他可以选择惟一正确的答案.假设考生不会做,他随机的选择一个答案,问他答对的概率是多少?师:如果考生掌握或者掌握了部分考查内容,它是古典概型的问题吗?为什么? 生:因为它不满足古典概型的第2个条件——等可能性.师:那么在什么情况下,该问题可以化为古典概型呢?生:只有在假定考生不会做的情况下,才可以看成古典概型.师:说得很好.运用古典概型解决问题时,两个条件缺一不可,即要满足有限性和等可能性.解:这是一个古典概型,因为试验的可能结果只有4个:选择A 、选择B 、选择C 、选择D ,即基本事件共有4个,考生随机地选择一个答案是选择A ,B ,C ,D 的可能性是相等的.从而由古典概型的概率计算公式得:10.254P “答对”所包含的基本事件的个数(“答对”)===基本事件的总数. 探究:在标准化考试中既有单选题又有多选题,多选题是从A ,B ,C ,D 四个选项中选出所有正确的答案,同学们可能有一种感觉,如果不知道正确答案,多选题更难猜对,这是为什么?例3 同时掷两个骰子,计算:(1)一共有多少种不同的结果?(2)其中向上的点数之和是5的结果有多少种?(3)向上的点数之和是5的概率是多少?(教师先让学生独立完成,再抽两位不同答案的学生回答)学生1:①所有可能的结果是:(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(2,2)(2,3)(2,4)(2,5)(2,6)(3,3)(3,4)(3,5)(3,6)(4,4)(4,5)(4,6)(5,5)(5,6)(6,6) 共有21种.②向上的点数之和为5的结果有2个,它们是(1,4)(2,3).③向上点数之和为5的结果(记为事件A )有2种,因此,由古典概型的概率计算公式可得221A P A 所包含的基本事件的个数()==基本事件的总数. 学生2:①掷一个骰子的结果有6种,我们把两个骰子标上记号1,2以便区分,由于1号骰子的每一个结果都可与2号骰子的任意一个结果配对,组成同时掷两个骰子的一个结果,我们可以用列表法得到(如图),其中第一个数表示1号骰子的结果,第二个数表示2号骰子的结果.55由表中可知同时掷两个骰子的结果共有36种.②在上面的所有结果中,向上的点数之和为5的结果有4种:(1,4),(2,3),(3,2),(4,1).③由于所有36种结果是等可能的,其中向上点数之和为5的结果(记为事件A )有4种,因此,由古典概型的概率计算公式可得A 41A 369P 所包含的基本事件的个数()===基本事件的总数. 师:上面同一个问题为什么会有两种不同的答案呢?(先让学生交流讨论,教师再抽学生回答)生:答案1是错的,原因是其中构造的21个基本事件不是等可能发生的,因此就不能用古典概型的概率公式求解.师:很好,我们今后用古典概型的概率公式求解时,特别要验证“每个基本事件出现是等可能的”这个条件,否则计算出的概率将是错误的. 同时学生2用列表来列举试验中的基本事件的总数,可以作到列举的时候不重不漏,它是列举法的一种基本方法.四、小结(1)基本事件的两个特点;(2)古典概型的定义和特点;(3)古典概型计算任何事件的概率计算公式;(4)古典概型解题步骤.课堂练习P130练习1,2,3.课后作业P133-134 A 组1,2,3,4,5,6, B 组1,2 .(6,6)(6,5)(6,4)(6,3)(6,2)(6,1)6(5,6)(5,5)(5,4)(5,3)(5,2)(5,1)5(4,6)(4,5)(4,4)(4,3)(4,2)(4,1)4(3,6)(3,5)(3,4)(3,3)(3,2)(3,1)3(2,6)(2,5)(2,4)(2,3)(2,2)(2,1)2(1,6)(1,5)(1,4)(1,3)(1,2)(1,1)16543211号骰子2号骰子。

苏教版必修3高中数学3.2《古典概型》word导学案(1)

C.(男男),(男女),(女男),(女女)D.(男男),(女女)
4.从分别写有A、B、C、D、E的五张卡片中任取两张,这两张卡片上的字母顺序
恰好相邻的概率为__________.
5.连续掷3枚硬币,观察落地后这3枚硬币出现正面还是反面.
(1)写出这个试验的所有基本事件;
(2)求这个试验的基本事件的总数;
课题:3.2古典概型(一)
班级:姓名:学号:第学习小组
【学习目标】
1、理解等可能事件的意义,会把事件分解等可能基本事件;
2、理解古典概型的特点,掌握用枚举法求等可能事件的概率方法.
【课前预习】
1.有红心1,2,3和黑桃4,5这5张扑克牌,将其牌点向下置于桌上,现从中任意
抽取一张,那么抽到的牌为红心的概率有多大?
(1)列出他们三人所有的坐法;
(2)求A不坐在2号位的概率.
【课后巩固】
1.下列命题中,正确的命题的序号是_______________________.
①.某袋中装有大小均匀的三个红球,两个黑球、一个白球,任取一球,那么每种颜色的球被摸到的可能性相同;
②.从-4,-3,-2,-1,0,1,2中任取一数,取到数小于0与不小于0的可能性相同;
从中一次摸出两只球.
(1)共有多少基本事件?
(2)摸出的两只球都是白球的概率是多少?
例3豌豆的高矮性状的遗传由其一对基因决定,其中决定高的基因记为 ,决定矮的基因记为 ,则杂交所得第一子代的一对基因为 ,若第二子代的 、 基因的遗传是等可能的,求第二子代为高茎的概率(只要有基因 则其就是高茎,只有两个基因全是 时,才显现矮茎).
【学后反思】
课题:3.2古典概型(一)检测案
班级:姓名:学号:第学习小组

高中数学新苏教版精品教案《苏教版高中数学必修3 3.2.1 古典概型》40

古典概型教学目标:1、知识与技能目标⑴理解等可能事件的概念及概率计算公式;⑵能够准确计算等可能事件的概率。

2、过程与方法根据本节课的知识特点和学生的认知水平,教学中采用探究式和启发式教学法,通过生活中常见的实际问题引入课题,层层设问,经过思考交流、概括归纳,得到等可能性事件的概念及其概率公式,使学生对问题的理解从感性认识上升到理性认识。

3、情感态度与价值观概率问题与实际生活联系紧密,学生通过概率知识的学习,可以更好的理解随机现象的本质,掌握随机现象的规律,科学地分析、解释生活中的一些现象,初步形成实事求是的科学态度和锲而不舍的求学精神。

教学重点、难点等可能事件的概念及等可能事件概率公式的简单应用。

教学过程一、温故知新,提出问题1上节课我们学习了随机事件及其概率,现在请大家思考下面两个问题:(1)从事件发生与否的角度可将事件分为哪几类?(2)什么是随机事件A的概率?考察三个试验:可能的结果分别有哪些?(1)抛掷一枚质地均匀的硬币的试验;(2)掷一颗质地均匀的骰子的试验(3)有红心1,2,3和黑桃4,5这5张扑克牌,将其牌点向下置于桌上,请同学现从中任意抽取一张。

二、构建新知:1.基本事件:一次试验连同其中可能出现的每一个结果称为一个基本事件。

2 等可能事件的基本特点:(1)(2)3古典概型的计算(1)若一个古典概型有n个基本事件,则每个基本事件发生的概率为多少?(2)若某个随机事件A 包含m 个基本事件,则事件A 发生的概率为多少?三.典型例题例1:一只口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次摸出2只球。

试求:(1)共有多少个基本事件?(2)摸出的两只球都是白球的概率是多少?例2:豌豆的高矮性状的遗传由其一对基因决定,其中决定高的基因记为D ,决定矮的基因记为d ,则杂交所得第一子代的一对基因为D d ,若第二子代的D ,d 基因的遗传是等可能的,求第二子代为高茎的概率。

(只要有基因D 则其就是高茎,只有两个基因全是d 时才显现矮茎。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[学习目标] 1.了解基本事件的特点.2.理解古典概型的定义.3.会应用古典概型的概率公式解决实际问题.知识点一 基本事件 1.基本事件的定义在1次试验中可能出现的每一个基本结果称为基本事件.它们是试验中不能再分的最简单的随机事件.一次试验中只能出现一个基本事件.如在掷一枚质地均匀的骰子试验中,出现“1点”“2点”“3点”“4点”“5点”“6点”,共6个结果,这就是这一随机试验的6个基本事件. 2.基本事件的特点(1)任何两个基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和.如在掷一枚质地均匀的骰子试验中,随机事件“出现奇数点”可以由基本事件“出现1点”“出现3点”“出现5点”共同组成.[思考] “抛掷两枚硬币,至少一枚正面向上”是基本事件吗?答 不是.“抛掷两枚硬币,至少一枚正面向上”包含一枚正面向上,两枚正面向上,所以不是基本事件. 知识点二 古典概型 1.古典概型的定义 如果一个随机试验满足: (1)所有的基本事件只有有限个.(2)每个基本事件的发生都是等可能的,那么,我们将这个随机试验的概率模型称为古典概型. 2.古典概型的概率公式对于任何事件A ,P (A )=A 包含的基本事件的个数基本事件的总数.[思考]若一次试验的结果所包含的基本事件的个数是有限个,则该试验是古典概型吗?答不是,还必须满足每个基本事件出现的可能性相等.题型一基本事件的定义及特点例1一个口袋内装有大小相同的5个球,其中3个白球,2个黑球,从中一次摸出2个球.(1)共有多少个基本事件?(2)2个都是白球包含几个基本事件?解方法一(1)采用列举法.分别记白球为1,2,3号,黑球为4,5号,则有以下基本事件:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),共10个(其中(1,2)表示摸到1号、2号).(2)“2个都是白球”包含(1,2),(1,3),(2,3)三个基本事件.方法二(1)采用列表法.设5个球的编号为a,b,c,d,e,其中a,b,c为白球,d,e为黑球.列表如下:由于每次取2个球,因此每次所得的2个球不相同,而事件(b,a)与(a,b)是相同的事件,故共有10个基本事件.(2)“2个都是白球”包含(a,b),(b,c),(c,a)三个基本事件.反思与感悟 1.求基本事件的基本方法是列举法.基本事件具有以下特点:(1)不可能再分为更小的随机事件;(2)两个基本事件不可能同时发生.2.当基本事件个数较多时还可应用列表法或树形图法求解.跟踪训练1从A,B,C,D,E,F6名学生中选出4名参加数学竞赛.(1)写出这个试验的所有基本事件;(2)求这个试验的基本事件总数;(3)写出试验“A 没被选中”所包含的基本事件. 解 (1)这个试验的所有基本事件如下:(A ,B ,C ,D ),(A ,B ,C ,E ),(A ,B ,C ,F ),(A ,C ,D ,E ),(A ,C ,D ,F ),(A ,B ,D ,E ),(A ,B ,D ,F ),(A ,B ,E ,F ),(A ,C ,E ,F ),(A ,D ,E ,F ),(B ,C ,D ,E ),(B ,C ,D ,F ),(B ,C ,E ,F ),(B ,D ,E ,F ),(C ,D ,E ,F ).(2)从6名学生中选出4名参加数学竞赛,共有15种可能情况,即基本事件的总数为15. (3)“A 没被选中”包含下列5个基本事件:(B ,C ,D ,E ),(B ,C ,D ,F ),(B ,C ,E ,F ),(B ,D ,E ,F ),(C ,D ,E ,F ). 题型二 利用古典概型公式求概率例2 从1,2,3,4,5这5个数字中任取三个不同的数字,求下列事件的概率: (1)事件A ={三个数字中不含1和5}; (2)事件B ={三个数字中含1或5}.解 这个试验的基本事件为:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),所以基本事件总数n =10. (1)因为事件A ={(2,3,4)}, 所以事件A 包含的事件数m =1. 所以P (A )=m n =110.(2)因为事件B ={(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,5),(2,4,5),(3,4,5)}, 所以事件B 包含的基本事件数m =9. 所以P (B )=m n =910.反思与感悟 1.古典概型概率求法步骤: (1)确定等可能基本事件总数n ; (2)确定所求事件包含基本事件数m ; (3)P (A )=mn.2.使用古典概型概率公式应注意:(1)首先确定是否为古典概型;(2)A 事件是什么,包含的基本事件有哪些.跟踪训练2 抛掷两枚骰子,求: (1)点数之和是4的倍数的概率; (2)点数之和大于5小于10的概率.解 如图,基本事件与所描点一一对应,共36种.(1)记“点数之和是4的倍数”的事件为A ,从图中可以看出,事件A 包含的基本事件共有9个,即(1,3),(2,2),(2,6),(3,1),(3,5),(4,4),(5,3),(6,2),(6,6). 所以P (A )=14.(2)记“点数之和大于5小于10”的事件为B ,从图中可以看出,事件B 包含的基本事件共有20个,即(1,5),(2,4),(3,3),(4,2),(5,1),(1,6),(2,5),(3,4),(4,3),(5,2),(6,1),(2,6),(3,5),(4,4),(5,3),(6,2),(3,6),(4,5),(5,4),(6,3).所以P (B )=59.题型三 较复杂的古典概型的概率计算例3 有A 、B 、C 、D 四位贵宾,应分别坐在a 、b 、c 、d 四个席位上,现在这四人均未留意,在四个席位上随便就坐时,(1)求这四人恰好都坐在自己席位上的概率; (2)求这四人恰好都没坐在自己席位上的概率; (3)求这四人恰好有1位坐在自己席位上的概率.解 将A 、B 、C 、D 四位贵宾就座情况用下面图形表示出来:如上图所示,本题中的等可能基本事件共有24个.(1)设事件A为“这四人恰好都坐在自己的席位上”,则事件A只包含1个基本事件,所以P(A)=124.(2)设事件B为“这四人恰好都没坐在自己席位上”,则事件B包含9个基本事件,所以P(B)=924=38.(3)设事件C为“这四人恰好有1位坐在自己席位上”,则事件C包含8个基本事件,所以P(C)=824=13.反思与感悟 1.当事件个数没有很明显的规律,并且涉及的基本事件又不是太多时,我们可借助树形图法直观地将其表示出来,这是进行列举的常用方法.树形图可以清晰准确地列出所有的基本事件,并且画出一个树枝之后可猜想其余的情况.2.在求概率时,若事件可以表示成有序数对的形式,则可以把全体基本事件用平面直角坐标系中的点表示,即采用图表的形式可以准确地找出基本事件的个数.故采用数形结合法求概率可以使解决问题的过程变得形象、直观,给问题的解决带来方便.跟踪训练3用三种不同的颜色给如图所示的3个矩形随机涂色,每个矩形只涂一种颜色.(1)求3个矩形颜色都相同的概率;(2)求3个矩形颜色都不相同的概率;(3)求3个矩形颜色不都相同的概率.解 设3个矩形从左到右依次为矩形1、矩形2、矩形3.用三种不同的颜色给题目中所示的3个矩形随机涂色,可能的结果如图所示. 由图知基本事件共有27个.(1)记“3个矩形颜色都相同”为事件A ,由图,知事件A 的基本事件有3个,故P (A )=327=19. (2)记“3个矩形颜色都不相同”为事件B ,由图,知事件B 的基本事件有6个,故P (B )=627=29. (3)记“3个矩形颜色不都相同”为事件C . 由图,知事件C 的基本事件有24个, 故P (C )=2427=89.古典概型的应用例4 (12分)甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女. (1)若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;(2)若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一所学校的概率.审题指导 (1)要求2名教师性别相同的概率,应先写出所有可能的结果,可以采用列举法求解.(2)要求选出的2名教师来自同一所学校的概率,应先求出2名教师来自同一所学校的基本事件.规范解答 (1)甲校2名男教师分别用A ,B 表示,1名女教师用C 表示;乙校1名男教师用D 表示,2名女教师分别用E ,F 表示.[1分]从甲校和乙校报名的教师中各任选1名的所有可能的结果为: 错误!―→错误! 共9种.[3分]从中选出2名教师性别相同的结果有:(A ,D ),(B ,D ),(C ,E ),(C ,F ),共4种,[5分] 所以选出的2名教师性别相同的概率为P =49.[6分](2)从甲校和乙校报名的6名教师中任选2名的所有可能的结果为: 错误!―→错误! 共15种.[8分]从中选出2名教师来自同一所学校的结果有:(A ,B ),(A ,C ),(B ,C ),(D ,E ),(D ,F ),(E ,F ),共6种,[10分]所以选出的2名教师来自同一所学校的概率为P =62.155→失分警示:结果不正确扣2分. [12分]1.从2、3、8、9中任取两个不同的数字,分别记为a ,b ,则log a b 为整数的概率是________. 答案 16解析 从2、3、8、9任取2个分别为记为(a ,b ),则有(2,3),(3,2),(2,8),(8,2),(2,9),(9,2),(3,8),(8,3),(3,9),(9,3),(8,9),(9,8),共有12种情况,其中符合log a b 为整数的有log 39和log 28两种情况,∴P =212=16.2.在国庆阅兵中,某兵种A ,B ,C 三个方阵按一定次序通过主席台,若先后次序是随机排定的,则B 先于A ,C 通过的概率为________. 答案 13解析 用(A ,B ,C )表示A ,B ,C 通过主席台的次序,则所有可能的次序有:(A ,B ,C ),(A ,C ,B ),(B ,A ,C ),(B ,C ,A ),(C ,A ,B ),(C ,B ,A ),共6种,其中B 先于A ,C 通过的有:(B ,C ,A )和(B ,A ,C ),共2种,故所求概率P =26=13.3.小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M ,I ,N 中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是________. 答案115解析 第一位是M ,I ,N 中的一个字母,第二位是1,2,3,4,5中的一个数字,所以总的基本事件的个数为15,密码正确只有一种,概率为115.4.甲、乙、丙三名同学站成一排,甲站在中间的概率是________. 答案 13解析 基本事件有:甲乙丙、甲丙乙、乙甲丙、乙丙甲、丙甲乙、丙乙甲,共六个,甲站在中间的事件包括:乙甲丙、丙甲乙,共2个,所以甲站在中间的概率为P =26=13.5.从1,2,3,4,5中任意取出两个不同的数,则其和为5的概率是________. 答案 0.2解析 两数之和等于5有两种情况(1,4)和(2,3),总的基本事件有:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),共10种,所以P =210=0.2.1.古典概型是一种最基本的概型.解题时要紧紧抓住古典概型的两个基本特征,即有限性和等可能性.在应用公式P (A )=mn 时,关键是正确理解基本事件与事件A 的关系,从而求出m 、n .2.求某个随机事件A 包含的基本事件的个数和试验中基本事件的总数常用的方法是列举法(画树形图和列表),注意做到不重不漏.。

相关文档
最新文档