2018届高考数学总复习作业 64变量间的相关关系与统计案例含答案(理科)

合集下载

2018版高考数学理一轮复习题库:第十一章 第2讲 变量

2018版高考数学理一轮复习题库:第十一章 第2讲 变量

第2讲变量间的相关关系与统计案例一、选择题1.有五组变量:①汽车的重量和汽车每消耗1升汽油所行驶的平均路程;②平均日学习时间和平均学习成绩;③某人每日吸烟量和身体健康情况;④圆的半径与面积;⑤汽车的重量和每千米耗油量.其中两个变量成正相关的是( )A.①③ B.②④ C.②⑤ D.④⑤解析由变量的相关关系的概念知,②⑤是正相关,①③是负相关,④为函数关系,故选C.答案 C2.已知x,y取值如下表:从所得的散点图分析可知:y与x线性相关,且y=0.95x+a,则a=().A.1.30 B.1.45 C.1.65 D.1.80解析依题意得,x=16×(0+1+4+5+6+8)=4,y=16×(1.3+1.8+5.6+6.1+7.4+9.3)=5.25.又直线y^=0.95x+a必过样本中心点(x,y),即点(4,5.25),于是有5.25=0.95×4+a,由此解得a=1.45,选B.答案 B3.在研究吸烟与患肺癌的关系中,通过收集数据、整理分析数据得“吸烟与患肺癌有关”的结论,并且有99%以上的把握认为这个结论是成立的,则下列说法中正确的是( ).A.100个吸烟者中至少有99人患有肺癌B.1个人吸烟,那么这人有99%的概率患有肺癌C.在100个吸烟者中一定有患肺癌的人D.在100个吸烟者中可能一个患肺癌的人也没有解析统计的结果只是说明事件发生可能性的大小,具体到一个个体不一定发生.答案 D4.某产品的广告费用x与销售额y的统计数据如下表:根据上表可得回归方程y=b x+a中的b为9.4,据此模型预报广告费用为6万元时销售额为().A.63.6万元B.65.5万元C.67.7万元D.72.0万元解析x=4+2+3+54=3.5(万元),y=49+26+39+544=42(万元),∴a^=y-b^x=42-9.4×3.5=9.1,∴回归方程为y^=9.4x+9.1,∴当x=6(万元)时,y^=9.4×6+9.1=65.5(万元).答案 B5.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:则y对x().A.y=x-1 B.y=x+1C.y=88+12x D.y=176解析由题意得x=174+176+176+176+1785=176(cm),y=175+175+176+177+1775=176(cm),由于(x,y)一定满足线性回归方程,经验证知选C.答案 C6.已知数组(x1,y1),(x2,y2),…,(x10,y10)满足线性回归方程y^=bx+a,则“(x0,y 0)满足线性回归方程y^=bx+a”是“x0=x1+x2+…+x1010,y0=y1+y2+…+y1010”的( ).A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件解析x0,y0为这10组数据的平均值,又因为线性回归方程y^=bx+a必过样本中心(x,y),因此(x,y)一定满足线性回归方程,但满足线性回归方程的除了(x,y)外,可能还有其他样本点.答案 B二、填空题7.已知施化肥量x与水稻产量y的试验数据如下表,则变量x与变量y是________相关(填“正”或“负”).解析如图所示:通过观察图象可知变量x与变量y是正相关.答案 正8.考古学家通过始祖鸟化石标本发现:其股骨长度x (cm)与肱骨长度y (cm)的线性回归方程为y ^=1.197x -3.660,由此估计,当股骨长度为50 cm 时,肱骨长度的估计值为________ cm.解析 根据线性回归方程y ^=1.197x -3.660,将x =50代入得y =56.19,则肱骨长度的估计值为56.19 cm. 答案 56.199.某医疗研究所为了检验某种血清预防感冒的作用,把500名使用血清的人与另外500名未使用血清的人一年中的感冒记录作比较,提出假设H 0:“这种血清不能起到预防感冒的作用”,利用2×2列联表计算得K 2≈3.918,经查临界值表知P (K 2≥3.841)≈0.05.则下列结论中,正确结论的序号是________. ①有95%的把握认为“这种血清能起到预防感冒的作用”; ②若某人未使用该血清,那么他在一年中有95%的可能性得感冒; ③这种血清预防感冒的有效率为95%; ④这种血清预防感冒的有效率为5%.解析 K 2≈3.918>3.841,而P (K 2≥3.841)≈0.05,所以有95%的把握认为“这种血清能起到预防感冒的作用”;但检验的是假设是否成立和该血清预防感冒的有效率是没有关系的,不是同一个问题,不要混淆,正确序号为①. 答案 ①10.某数学老师身高176 cm ,他爷爷、父亲和儿子的身高分别是173 cm 、170 cm 和182 cm.因儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测他孙子的身高为________ cm.解析 由题意父亲身高x cm 与儿子身高y cm 对应关系如下表:则x =173+170+1763=173,y =170+176+1823=176, i =13(x i -x )(y i -y )=(173-173)×(170-176)+(170-173)×(176-176)+(176-173)(182-176)=18,∑i =13(x i -x )2=(173-173)2+(170-173)2+(176-173)2=18.∴b ^=1818=1.∴a ^=y -b^ x =176-173=3. ∴线性回归直线方程y ^=b ^x +a ^=x +3.∴可估计孙子身高为182+3=185(cm). 答案 185 三、解答题7.某班主任对全班50名学生进行了作业量多少的调查.数据如下表:(1)(2)试通过计算说明在犯错误的概率不超过多少的前提下认为喜欢玩游戏与作业量的多少有关系? 附:K 2=(a +b )(c +d )(a +c )(b +d )解 (1)(2)将表中的数据代入公式K 2=(a +b )(c +d )(a +c )(b +d )得到K 2的观测值k =50×(18×15-8×9)226×24×27×23≈5.059>5.024,查表知P (K 2≥5.024)=0.025,即说明在犯错误的概率不超过0.025的前提下认为喜欢玩游戏与作业量的多少有关系.8.下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的生产能耗y (吨标准煤)的几组对照数据.(1)(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程y ^=b ^x+a^; (3)已知该厂技改前生产100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?(参考数值:3×2.5+4×3+5×4+6×4.5=66.5) 解 (1)由题设所给数据,可得散点图如图所示.(2)由对照数据,计算得:∑i =14x 2i =86,x =3+4+5+64=4.5(吨),y =2.5+3+4+4.54=3.5(吨).已知∑i =14x i y i =66.5, 所以,由最小二乘法确定的回归方程的系数为:b^=∑i =14x i y i -4x ·y∑i =14x 2i -4x2=66.5-4×4.5×3.586-4×4.52=0.7,a^=y -b ^x =3.5-0.7×4.5=0.35. 因此,所求的线性回归方程为y ^=0.7x +0.35.(3)由(2)的回归方程及技改前生产100吨甲产品的生产能耗,得降低的生产能耗为:90-(0.7×100+0.35)=19.65(吨标准煤).5.某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:求线性回归方程,再对被选取的2组数据进行检验. (1)求选取的2组数据恰好是不相邻2天数据的概率;(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y 关于x 的线性回归方程y ^=b^x +a ^. 解 (1)设抽到不相邻两组数据为事件A ,因为从5组数据中选取2组数据共有10种情况,每种情况都是等可能出现的,其中抽到相邻两组数据的情况有4种,所以P (A )=1-410=35. (2)由数据,求得x =12,y =27.11×25+13×30+12×26=977,112+132+122=434, 由公式,求得b ^=52,a ^=y -b ^ x =-3.所以y 关于x 的线性回归方程为y ^=52x -3.6.有甲、乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩后,得到如下的列联表.已知从全部105人中随机抽取1人为优秀的概率为27. (1)请完成上面的列联表;(2)根据列联表的数据,若按95%的可靠性要求,能否认为“成绩与班级有关系”;(3)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到6号或10号的概率.附 K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),解 (1)(2)k =105×(10×30-20×45)255×50×30×75≈6.109>3.841,因此有95%的把握认为“成绩与班级有关系”.(3)设“抽到6号或10号”为事件A ,先后两次抛掷一枚均匀的骰子,出现的点数为(x ,y ),则所有的基本事件有(1,1)、(1,2)、(1,3)、…、(6,6),共36个.事件A包含的基本事件有(1,5),(2,4),(3,3),(4,2),(5,1),(4,6),(5,5),(6,4),共8个,∴P(A)=836=29.。

2018高考数学(全国、理科)一轮复习课件:第66讲 变量间的相关关系、统计案例

2018高考数学(全国、理科)一轮复习课件:第66讲 变量间的相关关系、统计案例

真题再现
4.[2014· 新课标全国卷Ⅱ] 某地区 2007 年至 2013 年农村居民家庭人均纯收入 y(单位: 千元)的数据如下表: 200 200 201 201 201 年份 2007 2011 8 9 0 2 3 年份代 1 2 3 4 5 6 7 号t 人均纯 2.9 3.3 3.6 4.4 4.8 5.2 5.9 收入 y (1)求 y 关于 t 的线性回归方程; (2)利用(1)中的回归方程,分析 2007 年至 2013 年该地区农村居民家庭人均纯收入的变化 情况,并预测该地区 2015 年农村居民家庭人均纯收入. 附:回归直线的斜率和截距的最小二乘估计公式分别为:
真题再现 ■ [2016-2011]课标全国卷真题再现
1.[2015· 全国卷Ⅱ] 根据下面给出的 2004 年至 2013 年 我国二氧化硫年排放量(单位:万吨)柱形图,以下结论 中不正确的是( )
[解析] D 由图知, 2006 年以来我国二氧 化硫年排放量与年份 负相关,故选 D.
A.逐年比较,2008 年减少二氧化硫排放量的效果最显 著 B.2007 年我国治理二氧化硫排放显现成效 C.2006 年以来我国二氧化硫年排放量呈减少趋势 D.2006 年以来我国二氧化硫年排放量与年份正相关
真题再现
3. [2015· 全国卷Ⅰ] 某公司为确定下一年度投入某种产品的宣传费, 需了解年宣传费 x(单 位:千元)对年销售量 y(单位:t)和年利润 z(单位:千元)的影响.对近 8 年的年宣传费 xi 和年销售量 yi(i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的 值.
RJA
教学参考│课前双基巩固│课堂考点探究│教师备用 例题
变量间的相关 关系、统计案 例

2018版高考数学一轮总复习第9章统计统计案例及算法初步9.3变量相关关系与统计案例课件文

2018版高考数学一轮总复习第9章统计统计案例及算法初步9.3变量相关关系与统计案例课件文

板块二 典例探17· 洛阳模拟]为研究语文成绩和英语成绩之间
是否具有线性相关关系, 统计某班学生的两科成绩得到如图 所示的散点图(x 轴、 y 轴的单位长度相同), 用回归直线方程 ^ y =bx+a 近似地刻画其相关关系,根据图形,以下结论最 有可能成立的是( )
考点 3
独立性检验
1.独立性检验的有关概念 (1)分类变量 可用变量的不同“值”表示个体所属的 不同类别 的 变量称为分类变量.
(2)2×2 列联表 假设有两个分类变量 X 和 Y,它们的取值分别为{x1, x2}和{y1,y2},其样本频数列联表(称为 2×2 列联表)为 y1 x1 x2 总计 a c y2 b d 总计 a+b c+d a+b+c+d
【变式训练 2】
PM2.5 是指空气中直径小于或等于 2.5
微 米 的 颗粒 物 ( 也称 可 入肺 颗 粒物 ) . 为 了探 究 车流 量 与 PM2.5 的浓度是否相关, 现采集到某城市周一至周五某一时 间段车流量与 PM2.5 浓度的数据如下表: 时间 车流量 x(万辆) PM2.5 的浓度 y(微克/立方米) 周一 周二 周三 周四 周五 100 78 102 80 108 84 114 88 116 90
[双基夯实] 一、疑难辨析 判断下列结论的正误. ( 正确的打“√”,错误的打 “×”) 1.相关关系与函数关系都是一种确定性的关系,也是 一种因果关系.( × ) 2.只有两个变量有相关关系,所得到的回归模型才有 预测价值.( √ )
3. 某同学研究卖出的热饮杯数 y 与气温 x(℃)之间的关 ^ 系,得到回归方程y=-2.352x+147.767,则气温为 2 ℃时, 一定可卖出 143 杯热饮.( × ) 4.事件 X,Y 关系越密切,则由观测数据计算得到的 K2 的观测值越大.( √ ) 5. 由独立性检验可知, 在犯错误的概率不超过 1%的前 提下认为物理成绩优秀与数学成绩有关,某人数学成绩优 秀,则他有 99%的可能物理优秀.( × )

高考总复习数学变量间的相关关系及统计案例课时作业

高考总复习数学变量间的相关关系及统计案例课时作业

课时作业(五十四)附:P(K2≥k0)0.1000.0500.0250.0100.005k0 2.706 3.841 5.024 6.6357.879,其中n=a+b+c+dK2=(a+b)(c+d)(a+c)(b+d)一、选择题1.(2013·石家庄质检(二))设(x1,y1),(x2,y2),…,(x n,y n)是变量x和y的n个样本点,直线l是由这些样本点通过最小二乘法得到的线性回归方程(如图),以下结论中正确的是()A.x和y正相关B.x和y的相关系数为直线l的斜率C.x和y的相关系数在-1到0之间D.当n为偶数时,分布在l两侧的样本点的个数一定相同解析:由图可知x和y是负相关,相关系数与直线的斜率无关,相关系数的取值范围在-1与1之间,所以选C.答案:C2.(2013·湖南省六校联考)两个变量y与x的回归模型中,分别选择了4个不同模型,计算出它们的相关指数R2如下,其中拟合效果最好的模型是()A.模型1(相关指数R2为0.97)B.模型2(相关指数R2为0.89)C.模型3(相关指数R2为0.56)D.模型4(相关指数R2为0.45)解析:在回归分析中,相关指数R2越大,说明两变量拟合效果越好,故选A.答案:A3.变量X与Y相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5);变量U与V相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1),r1表示变量Y与X之间的线性相关系数,r2表示变量V与U之间的线性相关系数,则()A.r2<r1<0 B.0<r2<r1C.r2<0<r1D.r2=r1解析:作出X,Y对应散点图可知Y与X正相关,∴r1>0.作出U,V对应散点图可知U与V负相关∴r2<0.∴r2<0<r1.答案:C4.(2013·郑州第三次质量预测)已知实数:x,y取值如下表:从所得的散点图分析可知:y与x线性相关,且y=0.95x+a,则a的值是()A.1.30 B.1.45C .1.65D .1.80解析:由数表可知此样本数据的中心点为 x =0+1+4+5+6+86=4, y =1.3+1.8+5.6+6.1+7.4+9.36=5.25, 代入回归方程y ^=0.95x +a 可得a =1.45,故选B. 答案:B5.(2013·云南昆明高三调研)变量U 与V 相对应的一组样本数据为(1,1.4),(2,2.2),(3,3),(4,3.8),由上述样本数据得到U 与V 的线性回归分析,R 2表示解释变量对于预报变量变化的贡献率,则R 2=( )A.35B.45 C .1D .3解析:依题意,注意到点(1,1.4),(2,2.2),(3,3),(4,3.8)均位于直线y -1.4=2.2-1.42-1(x -1),即y =0.8x +0.6上,因此解释变量对于预报变量变化的贡献率R 2=1,选C.答案:C6.(2013·东北三校第二次联考)以下有关线性回归分析的说法不正确的是( )A .通过最小二乘法得到的线性回归直线过样本点的中心(x ,y )B .用最小二乘法求回归直线方程,是寻求使∑i =1n(y i -bx i -a )2最小的a ,b 的值C .相关系数r 越小,表示两个变量相关性越弱D .R 2=1-∑i =1n (y i -y ^i )2∑i =1n(y i -y )2越接近1,表示回归的效果越好解析:相关系数0<r <1时,表示正相关,r 越小相关性越弱,-1<r <0时表示负相关,r 越小相关性越强,所以C 不正确,选C.答案:C 7.下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;②设有一个回归方程y ^=3-5x ,变量x 增加一个单位时,y 平均增加5个单位;③线性回归方程y ^=b ^x +a ^必过点(x ,y );④在一个2×2列联表中,由计算得K 2=13.079,则有99%的把握确认这两个变量间有关系.其中错误的个数是( ) A .0 B .1 C .2D .3解析:一组数据都加上或减去同一个常数,数据的平均数有变化,方差不变(方差是反映数据的波动程度的量),①正确;回归方程中x 的系数具备直线斜率的功能,对于回归方程y ^=3-5x ,当x 增加一个单位时,y 平均减少5个单位,②错误;由线性回归方程的定义知,线性回归方程y ^=b ^x +a ^必过点(x ,y ),③正确;因为K 2=13.079>10.828,故有99%的把握确认这两个变量有关系,④正确.故选B.答案:B 二、填空题8.某地居民2008~2012年家庭年平均收入x (单位:万元)与年平均支出Y (单位:万元)的统计资料如下表所示:,家庭年平均收入与年平均支出有________线性相关关系.解析:根据中位数的定义,居民家庭年平均收入的中位数是13,家庭年平均收入与年平均支出有正线性相关关系.答案:13 正9.(2013·河北保定月考)为了解某班学生喜爱打篮球是否与性别有关,对该班50名学生进行了问卷调查,得到了如下的2×2列联表:喜爱打篮球不喜爱打篮球合计男生20525女生101525合计302050(请用百分数表示)解析:由公式可得k2≈8.333>7.879,故填99.5%.答案:99.5%三、解答题10.某学生对其亲属30人的饮食习惯进行了一次调查,并用茎叶图表示30人的饮食指数.(说明:图中饮食指数低于70的人,饮食以蔬菜为主;饮食指数高于70的人,饮食以肉类为主.)(1)根据茎叶图,帮助这位学生说明其亲属30人的饮食习惯;(2)根据以上数据完成下列2×2的列联表:(3)出简要分析.解:(1)在30位亲属中,50岁以上的人多以食蔬菜为主,50岁以下的人多以食肉为主.(2)2×2的列联表如下:(3)因为K2=30×(8-128)212×18×20×10=30×120×12012×18×20×10=10>6.635,所以有99%的把握认为亲属的饮食习惯与年龄有关.11.某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100棵种子中的发芽数,得到如下资料:下的3组数据求线性回归方程,再对被选取的2组数据进行检验.(1)求选取的2组数据恰好是不相邻2天数据的概率;(2)若选取的是12月1日与12月5日的2组数据,请根据12月2日至12月4日的数据,求出y 关于x 的线性回归方程y ^=b ^x +a ^;(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?解:(1)设抽到不相邻2组数据为事件A ,因为从5组数据中选取2组数据共有10种情况,每种情况都是等可能出现的,其中抽到相邻2组数据的情况有4种,所以P (A )=1-410=35.(2)由数据求得,x =12,y =27,由公式求得.b ^=52,a ^=y -b ^x =-3. 所以y 关于x 的线性回归方程为y ^=52x -3.(3)当x =10时,y ^=52×10-3=22,|22-23|<2; 当x =8时,y ^=52×8-3=17,|17-16|<2. 所以该研究所得到的线性回归方程是可靠的. [热点预测]12.(2013·辽宁省大连市高三第一次模拟考试节选)某工厂用甲、乙两种不同工艺生产一大批同一种零件,零件尺寸均在[21.7,22.3](单位:cm)之间,把零件尺寸在[21.9,22.1)的记为一等品,尺寸在[21.8,21.9)∪[22.1,22.2)的记为二等品,尺寸在[21.7,21.8)∪[22.2,22.3]的记为三等品,现从甲、乙工艺生产的零件中各随机抽取100件产品,所得零件尺寸的频率分布直方图如图所示:根据上述数据完成下列2×2列联表,根据此数据你认为选择不同的工艺与生产出一等品是否有关?甲工艺 乙工艺 合计 一等品 非一等品 合计解:2×2列联表如下:甲工艺 乙工艺 合计 一等品 50 60 110 非一等品 50 40 90 合计100100200χ2=200×(50×40-60×50)2100×100×110×90≈2.02<3.841,所以没有理由认为选择不同的工艺与生产出一等品有关.。

2018届高考数学二轮复习 变量间的相关关系与统计案例专题

2018届高考数学二轮复习 变量间的相关关系与统计案例专题

变量间的相关关系与统计案例专题[基础达标] (30分钟 45分) 一、选择题(每小题5分,共30分)1y (件)与销售价格x (元/件)存在线性相关关系,根据一组样本数据(x i ,y i )(i=1,2,…,n ),用最小二乘法建立的回归方程为y ^=-10x+200,则下列结论正确的是 ( )A .y 与x 具有正的线性相关关系B .若r 表示变量y 与x 之间的线性相关系数,则r=-10C .当销售价格为10元时,销售量为100件D .当销售价格为10元时,销售量为100件左右D 【解析】x 的系数为-10,y 与x 具有负相关关系,相关系数不等于回归方程x 的系数;当销售价格为10元时,y ^=-10×10+200=100,此时得到的y 值不是准确值,而是一个估计值,即销售量为100件左右.2.对变量x ,y 有观测数据(x i ,y i )(i=1,2,…,10),得散点图1;对变量u ,v 有观测数据(u i ,v i )(i=1,2,…,10),得散点图2.由这两个散点图可以判断 ( )A .变量x 与y 正相关,u 与v 正相关B .变量x 与y 正相关,u 与v 负相关C .变量x 与y 负相关,u 与v 正相关D .变量x 与y 负相关,u 与v 负相关C 【解析】由散点图可知,y 随着x 的增大而减小,v 随着u 的增大而增大,所以变量x 与y 负相关,u 与v 正相关.3得到的回归直线方程为y ^=bx+a.若样本点的中心为(5,0.9),则当x 每增加1个单位时,y 就 ( )A .增加1.4个单位B .减少1.4个单位C .增加7.9个单位D .减少7.9个单位 B 【解析】依题意,得a +b -25=0.9,故a+b=6.5 ①,又样本点的中心为(5,0.9),故0.9=5b+a ②,联立①②,解得b=-1.4,a=7.9,则y ^=-1.4x+7.9,可知当x 每增加1个单位时,y 就减少1.4个单位.4“学生的性别”和“对待某一活动的支持态度”是否有关,运用2×2列联表进行独立性检验,经计算K 2=7.069,则认为“学生性别与支持活动有关系”的犯错误的概率不超过 ( )A .0.1%B .1%C .99%D .99.9%附:B 【解析】因为7.069>6.635,所以至少有99%的把握认为“学生性别与支持活动有关系”,即认为“学生性别与支持活动有关系”出错的概率不超过1%.5x ,y 的取值如表所示:如果y 与x 线性相关,且线性回归方程为y ^=b ^x+132,则b ^的值为( )A .-12B .12C .-110D .110A 【解析】将x=3,y=5代入y ^=b ^x+132中,得b ^=-12.6.有人发现,多看电视容易使人变冷漠,下表是一个调查机构对此现象的调查结果:附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ) 附表:P (K 2≥k 0) 0.050 0.010 k 03.841 6.635则认为多看电视与人冷漠有关系的把握大约为 ( )A .99%B .97.5%C .95%D .90%A 【解析】可计算得K 2=168×(68×38-20×42)2110×58×88×80≈11.377>6.635,因此有99%的把握认为多看电视与人冷漠有关. 二、填空题(每小题5分,共5分)7.下表是某厂1~4月份用水量(单位:百吨)的一组数据,由其散点图可知,用水量y 与月份x 之间有较好的线性相关关系,其线性回归方程是 .参考公式:b ^=∑i=1nx i y i -n xy∑i=1nx i2-nx 2,a ^=y −b ^x .y ^=-0.7x+5.25 【解析】由表中数据求得x =2.5,y =3.5,代入回归系数计算公式得b ^=∑i =14x i y i -n xy∑i=14x i 2-nx 2=4.5+8+9+10-4×2.5×3.51+4+9+16-4×2.5=-0.7,a ^=y −b ^x =3.5+0.7×2.5=5.25,所以其线性回归方程为y ^=-0.7x+5.25. 三、解答题(共10分)8.(10分(满分50分)的形式对本企业900名员工的工作满意度进行调查,并随机抽取了其中30名员工(16名女员工,14名男员工)的得分,如下表:(1)根据以上数据,估计该企业得分大于45分的员工人数;(2)现用计算器求得这30名员工的平均得分为40.5分,若规定大于平均得分为“满意”,否则为“不满意”,请完成下列表格:(3)根据上述表中数据,利用独立性检验的方法判断,能否在犯错误的概率不超过1%的前提下,认为该企业员工“性别”与“工作是否满意”有关? 附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ) 参考数据:【解析】(1)从表中可知,30名员工中有8名得分大于45分,所以任选一名员工,他(她)的得分大于45分的概率是830=415,所以估计此次调查中,该单位约有900×415=240名员工的得分大于45分. (2)由题意可得下列表格:(3)假设H 0:“性别”与“工作是否满意”无关, 根据表中数据,求得K 2的观测值为30×(12×11-3×4)215×15×16×14≈8.571>6.635,查表得P (K 2≥6.635)=0.010.所以能在犯错误的概率不超过1%的前提下,认为该企业员工“性别”与“工作是否满意”有关.[高考冲关] (20分钟 45分)1.(5分x ,y 有一组观测数据(x i ,y i )(i=1,2,…,8),其回归直线方程是y ^=13x+a ^,且x 1+x 2+x 3+…+x 8=2(y 1+y 2+y 3+…+y 8)=6,则实数a ^的值是 ( )A .116B .18C .14D .12B 【解析】依题意可知样本中心点为 34,38 ,则38=13×34+a ^,解得a ^=18. 2.(5分)为了普及环保知识,增强环保意识,某大学从理工类专业的A 班和文史类专业的B 班各抽取20名同学参加环保知识测试.两个班同学的成绩(百分制)的茎叶图如图所示:按照大于或等于80分为优秀,80分以下为非优秀统计成绩.以下判断正确的是( )附:A .A 班环保知识的测试成绩优于B 班的可能性为99% B .可以认为环保知识测试成绩的95%由所学专业决定C .有把握认为A 班学生环保知识测试成绩优秀的概率为95%D .有95%以上的把握认为环保知识测试成绩与所学专业有关 D 【解析】由茎叶图建立2×2列联表,代入公式得40×(14×13-42)221×19×20×20=28057≈4.912>3.841,则有95%以上的把握认为环保知识测试成绩与所学专业有关.3.(5分)大学生小赵计划利用假期进行一次短期打工体验,已知小赵想去某工厂打工,老板告知每天上班的时间(单位:小时)和工资(单位:元),如下表所示:根据计算,小赵得知这段时间每天打工工资与每天工作时间满足的线性回归方程为y ^=11.4x+5.9,若小赵在假期内打5天工,工作时间(单位:小时)分别为8,8,9,9,12,则这5天小赵获得工资的方差为 ( )A .112B .240C .376D .484C 【解析】x 的平均值为x =396=6.5,而回归直线一定过点(x ,y ),故y =11.4×6.5+5.9=80,所以y =30+40+60+90+120+m6=80,故m=140,则小赵工作5天的工资的平均值为90×2+120×2+1405=112,方差为s 2=15[(90-112)2×2+(120-112)2×2+(140-112)2]=376.4.(5分)下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;②设有一个回归方程y ^=3-5x ,变量x 增加一个单位,y 平均增加5个单位;③回归直线y ^=b ^x+a ^必过(x ,y );④在一个2×2列联表中,由计算得K 2=13.079,则有99.9%的把握确认这两个变量有关系.其中错误说法的个数是 .本题可以参考独立性检验临界值表1 【解析】将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变,①正确;设有一个回归方程y ^=3-5x ,变量x 增加一个单位,y 平均减少5个单位,②错误;回归直线y ^=b ^x+a ^必过(x ,y ),③正确;在一个2×2列联表中,由计算得K 2=13.079,则有99.9%的把握确认这两个变量有关系,④正确.5.(12分)2016年9月20日是第28个全国爱牙日.某区卫生部门成立了调查小组,调查“常吃零食与患龋齿的关系”,对该区六年级800名学生进行检查,按患龋齿和不患龋齿分类,得汇总数据:不常吃零食且不患龋齿的学生有60名,常吃零食但不患龋齿的学生有100名,不常吃零食但患龋齿的学生有140名.(1)能否在犯错概率不超过0.001的前提下,认为该区学生的常吃零食与患龋齿有关系?(2)4名区卫生部门的工作人员随机分成两组,每组2人,一组负责数据收集,另一组负责数据处理.求工作人员甲分到负责数据收集组,工作人员乙分到负责数据处理组的概率. 附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )【解析】(1)由题意可得列联表:总计200 600 800因为K 2=800(60×500-100×140)2160×640×200×600≈16.667>10.828,所以能在犯错概率不超过0.001的前提下,认为该区学生常吃零食与患龋齿有关系.(2)设其他工作人员为丙和丁,4人分组的所有情况如表:分组的情况总共有6种,工作人员甲负责收集数据且工作人员乙负责处理数据的情况有两种,所以工作人员甲负责收集数据且工作人员乙负责处理数据的概率是P=26=13. 6.(13分产品过程中记录的产量x (吨)与相应的生产能耗y (吨)标准煤的几组对照数据:(1)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程y ^=b ^x+a ^. (2)已知该厂技改前,100吨甲产品的生产能耗为90吨标准煤.试根据(1)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤? (参考数值:3×2.5+4×3+5×4+6×4.5=66.5)【解析】(1)由对照数据,计算得∑i =14x i y i =66.5,∑i =14x i 2=32+42+52+62=86,x =4.5,y =3.5,故b ^=66.5-4×4.5×3.586-4×4.52=66.5-6386-81=0.7,a ^=y −b ^x =3.5-0.7×4.5=0.35,故y ^=0.7x+0.35.(2)将x=100代入方程,得y=100×0.7+0.35=70.35吨,预测生产100吨甲产品的生产能耗比技改前降低90-70.35=19.65(吨).。

2018届高考数学一轮复习配餐作业64变量间的相关关系与统计案例(含解析)理

2018届高考数学一轮复习配餐作业64变量间的相关关系与统计案例(含解析)理

配餐作业(六十四)变量间的相关关系与统计案例(时间:40分钟)一、选择题1.(2016·湖北七市联考)已知变量x 与y 负相关,且由观测数据算得样本平均数x -=3,y -=2.7,则由该观测数据算得的线性回归方程可能是( )A.y ^=-0.2x +3.3 B.y ^=0.4x +1.5 C.y ^=2x -3.2D.y ^=-2x +8.6解析 因为x 与y 负相关,所以排除选项B ,C ;又线性回归方程过样本点的中心,即线性回归方程过点(3,2.7),将点(3,2.7)代入选项A ,D 的方程中,只有选项A 符合,故选A 。

答案 A2.(2016·长沙一模)某研究型学习小组调查研究学生使用智能手机对学习的影响。

部分统计数据如下表:附表:A .有99.5%的把握认为使用智能手机对学习有影响B .有99.5%的把握认为使用智能手机对学习无影响C .有99.9%的把握认为使用智能手机对学习有影响D .有99.9%的把握认为使用智能手机对学习无影响解析 依题意,注意到7.879<K 2<10.828,因此有99.5%的把握认为使用智能手机对学习有影响,故选A 。

答案 A3.对具有线性相关关系的变量x ,y 有一组观测数据(x i ,y i )(i =1,2,…,8),其回归直线方程是y ^=13x +a ^,且x 1+x 2+x 3+…+x 8=2(y 1+y 2+y 3+…+y 8)=6,则实数a ^的值是( )A.116 B.18 C.14 D.12解析 依题意可知样本中心点为⎝ ⎛⎭⎪⎫34,38,则38=13×34+a ^,解得a ^=18,故选B 。

答案 B4.在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =12x +1上,则这组样本数据的样本相关系数为( )A .-1B .0 C.12D .1解析 由题设可知这组样本中的数据完全正相关,又都在直线y =12x +1上,故相关系数为1,故选D 。

2018版高考数学(理)一轮复习题库:第十一章第2讲变量间的相关关系与统计案例含解析

第2讲变量间的相关关系与统计案例一、选择题1.有五组变量:①汽车的重量和汽车每消耗1升汽油所行驶的平均路程;②平均日学习时间和平均学习成绩;③某人每日吸烟量和身体健康情况;④圆的半径与面积;⑤汽车的重量和每千米耗油量.其中两个变量成正相关的是()A.①③B.②④C.②⑤D.④⑤解析由变量的相关关系的概念知,②⑤是正相关,①③是负相关,④为函数关系,故选C.答案C2.已知x,y取值如下表:从所得的散点图分析可知:y与x线性相关,且错误!=0。

95x+a,则a=().A.1.30 B.1.45 C.1.65 D.1.80解析依题意得,错误!=错误!×(0+1+4+5+6+8)=4,错误!=错误!×(1。

3+1.8+5。

6+6。

1+7。

4+9。

3)=5.25.又直线错误!=0.95x +a必过样本中心点(错误!,错误!),即点(4,5.25),于是有5.25=0。

95×4+a,由此解得a=1。

45,选B。

答案B3.在研究吸烟与患肺癌的关系中,通过收集数据、整理分析数据得“吸烟与患肺癌有关”的结论,并且有99%以上的把握认为这个结论是成立的,则下列说法中正确的是().A.100个吸烟者中至少有99人患有肺癌B.1个人吸烟,那么这人有99%的概率患有肺癌C.在100个吸烟者中一定有患肺癌的人D.在100个吸烟者中可能一个患肺癌的人也没有解析统计的结果只是说明事件发生可能性的大小,具体到一个个体不一定发生.答案D4.某产品的广告费用x与销售额y的统计数据如下表:错误!错误!错误!错误!为9。

4,据此模型预报广告费用为6万元时销售额为( ).A .63.6万元B .65.5万元C .67。

7万元D .72。

0万元 解析 x =错误!=3。

5(万元),错误!=错误!=42(万元),∴错误!=错误!-错误!错误!=42-9。

4×3.5=9。

1, ∴回归方程为错误!=9。

4x +9.1,∴当x =6(万元)时,错误!=9.4×6+9。

2018届高考数学第六章立体几何67变量间的相关关系与统计案例试题理

考点测试67 变量间的相关关系与统计案例一、基础小题1.某商品销售量y (件)与销售价格x (元/件)负相关,则其回归方程可能是( ) A.y ^=-2x +100 B.y ^=2x +100 C.y ^=-2x -100 D.y ^=2x -100答案 A解析 B 、D 为正相关,C 中y ^值恒为负,不符合题意. 2.某产品的广告费用x 与销售额y 的统计数据如下表:根据上表可得回归方程y =b x +a 中的b 为9.4,据此模型预报广告费用为6万元时销售额为( )A .63.6万元B .65.5万元C .67.7万元D .72.0万元 答案 B解析 ∵a ^=y -b ^x =49+26+39+544-9.4×4+2+3+54=9.1,∴回归方程为y ^=9.4x +9.1.令x =6,得y ^=9.4×6+9.1=65.5(万元).3.设某大学的女生体重y (单位:kg)与身高x (单位:cm)具有线性相关关系,根据一组样本数据(x i ,y i )(i =1,2,…,n ),用最小二乘法建立的回归方程为y =0.85x -85.71,则下列结论中不正确的是( )A .y 与x 具有正的线性相关关系B .回归直线过样本点的中心(x -,y -)C .若该大学某女生身高增加1 cm ,则其体重约增加0.85 kgD .若该大学某女生身高为170 cm ,则可断定其体重必为58.79 kg 答案 D解析 由于线性回归方程中x 的系数为0.85,因此y 与x 具有正的线性相关关系,故A 正确.又线性回归方程必过样本点中心(x ,y ),因此B 正确.由线性回归方程中系数的意义知,x 每增加1 cm ,其体重约增加0.85 kg ,故C 正确.当某女生的身高为170 cm 时,其体重估计值是58.79 kg ,而不是具体值,因此D 不正确.4.在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =12x +1上,则这组样本数据的样本相关系数为( )A .-1B .0 C.12 D .1答案 D解析 样本点都在直线上时,其数据的估计值与真实值是相等的,即y i =y ^i ,代入相关系数公式r =1-∑i =1ny i -y ^i2∑i =1ny i -y2=1.5. 设(x 1,y 1),(x 2,y 2),…,(x n ,y n )是变量x 和y 的n 个样本点,直线l 是由这些样本点通过最小二乘法得到的线性回归直线(如图),以下结论中正确的是( )A .直线l 过点(x ,y )B .x 和y 的相关系数为直线l 的斜率C.x和y的相关系数在0到1之间D.当n为偶数时,分布在l两侧的样本点的个数一定相同答案 A解析因为相关系数是表示两个变量是否具有线性相关关系的一个值,它的绝对值越接近1,两个变量的线性相关程度越强,所以B、C错误;D中n为偶数时,分布在l两侧的样本点的个数可以不相同,所以D错误;根据线性回归直线一定经过样本点中心可知A正确.6.在一次对性别与说谎是否相关的调查中,得到如下数据:A.在此次调查中有95%的把握认为是否说谎与性别有关B.在此次调查中有99%的把握认为是否说谎与性别有关C.在此次调查中有99.5%的把握认为是否说谎与性别有关D.在此次调查中没有充分的证据显示说谎与性别有关答案 D解析由于K2=-213×17×14×16≈0.0024,由于K2很小,因此,在此次调查中没有充分的证据显示说谎与性别有关.故选D.7. 如图所示,有5组(x,y)数据,去掉________组数据后,剩下的4组数据具有较强的线性相关关系.答案D解析由散点图知呈带状区域时有较强的线性相关关系,故去掉D.8.对196个接受心脏搭桥手术的病人和196个接受血管清障手术的病人进行了3年的跟踪研究,调查他们是否又发作过心脏病,调查结果如下表所示:根据表中所给的数据,能否在犯错误的概率不超过0.15的前提下认为这两种手术对病人又发作过心脏病的影响有差别?________________________________________________________________________.答案 1.779 不能作出这两种手术对病人又发作心脏病的影响有差别的结论解析根据列联表中的数据,可以求得K2=-268×324×196×196≈1.779,而K2<2.072,所以我们不能在犯错误的概率不超过0.15的前提下,作出这两种手术对病人又发作心脏病的影响有差别的结论.二、高考小题9.[2015·全国卷Ⅱ]根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是( )A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关答案 D解析由柱形图,知2006年以来我国二氧化硫年排放量呈减少趋势,故其排放量与年份负相关,故D错误.10.[2015·福建高考]为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:根据上表可得回归直线方程y=b x+a,其中b=0.76,a=y-b x.据此估计,该社区一户年收入为15万元家庭的年支出为( )A.11.4万元 B.11.8万元C .12.0万元D .12.2万元 答案 B 解析 ∵x =8.2+8.6+10.0+11.3+11.95=10,y =6.2+7.5+8.0+8.5+9.85=8,∴a ^=y -0.76x =8-0.76×10=0.4, ∴y ^=0.76x +0.4.当x =15时,y ^=0.76×15+0.4=11.8.11.[2014·江西高考]某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量的关系,随机抽查52名中学生,得到统计数据如表1至表4,则与性别有关联的可能性最大的变量是( )表1表2表3表4A .成绩B .视力C .智商D .阅读量 答案 D 解析 根据K 2=n ad -bc 2a +bc +d a +cb +d,代入题中数据计算得表1:K 2=-216×36×20×32≈0.009;表2:K 2=-216×36×20×32≈1.769; 表3:K 2=-216×36×20×32≈1.3;表4:K 2=-216×36×20×32≈23.48.∵D 选项K 2最大,∴阅读量与性别有关联的可能性最大,故选D. 12.[2014·湖北高考]根据如下样本数据得到的回归方程为y =bx +a ,则( ) A .a >0,b >0 B .a >0,b <0 C .a <0,b >0 D .a <0,b <0答案 B解析 把样本数据中的x ,y 分别当作点的横、纵坐标,在平面直角坐标系xOy 中作出散点图,由图可知b <0,a >0.故选B.13.[2014·重庆高考]已知变量x 与y 正相关,且由观测数据算得样本平均数x =3,y =3.5,则由该观测数据算得的线性回归方程可能是( )A.y ^=0.4x +2.3B.y ^=2x -2.4C.y ^=-2x +9.5 D.y ^=-0.3x +4.4答案 A解析 由变量x 与y 正相关知C 、D 均错,又回归直线经过样本中心(3,3.5),代入验证得A 正确,B 错误.故选A.三、模拟小题14.[2017·大连双基测试]已知x ,y 的取值如表所示:如果y 与x 线性相关,且线性回归方程为y ^=b ^x +2,则b ^的值为( )A .-12 B.12 C .-110 D.110答案 A解析 将x =3,y =5代入到y ^=b ^x +132中,得b ^=-12.故选A.15.[2016·兰州、张掖联考]对具有线性相关关系的变量x ,y 有一组观测数据(x i ,y i )(i =1,2,…,8),其回归直线方程是y ^=13x +a ^,且x 1+x 2+x 3+…+x 8=2(y 1+y 2+y 3+…+y 8)=6,则实数a ^的值是( )A.116B.18C.14D.12 答案 B解析 依题意可知样本中心点为⎝ ⎛⎭⎪⎫34,38,则38=13×34+a ,解得a ^=18.16.[2016·漳州二模]下列说法错误的是( )A .在回归模型中,预报变量y 的值不能由解释变量x 唯一确定B .在线性回归分析中,相关系数r 的值越大,变量间的相关性越强C .在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高D .在回归分析中,R 2为0.98的模型比R 2为0.80的模型拟合的效果好 答案 B解析 对于A ,在回归模型中,预报变量y 的值由解释变量x 和随机误差e 共同确定,即x 只能解释部分y 的变化,∴A 正确;对于B ,线性回归分析中,相关系数r 的绝对值越接近1,两个变量的线性相关性越强,反之,线性相关性越弱,∴B 错误;对于C ,在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高,C 正确;对于D ,在回归分析中,用相关指数R 2来刻画回归的效果时,R 2取值越大,说明模型拟合的效果越好,∴R 2为0.98的模型比R 2为0.80的模型拟合的效果好,D 正确.故选B.17.[2017·温州月考]为了检验某套眼保健操预防学生近视的作用,把500名做该套眼保健操的学生与另外500名未做该套眼保健操的学生的视力情况作记录并比较,提出假设H 0:“这套眼保健操不能起到预防近视的作用”,利用2×2列联表计算所得的K 2≈3.918.经查对临界值表知P (K 2≥3.841)≈0.05.对此,四名同学得出了以下结论:①有95%的把握认为“这套眼保健操能起到预防近视的作用”;②若某人未做该套眼保健操,那么他有95%的可能得近视;③这套眼保健操预防近视的有效率为95%;④这套眼保健操预防近视的有效率为5%.其中所有正确结论的序号是________. 答案 ①解析 根据查对临界值表知P (K 2≥3.841)≈0.05,故有95%的把握认为“这套眼保健操能起到预防近视的作用”,即①正确;95%仅是指“这套眼保健操能起到预防近视的作用”的可信程度,所以②③④错误.18.[2016·兰州一模]从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,计算得∑i =110x i =80,∑i =110y i =20,∑i =110x i y i =184,∑i =110x 2i =720.已知家庭的月储蓄y 关于月收入x 的线性回归方程为y ^=b ^x +a ^,则变量x 与y ________(填“正相关”或“负相关”);若该居民区某家庭月收入为7千元,预测该家庭的月储蓄是________千元.答案 正相关 1.7解析 由题意,知n =10,x =110∑i =110x i =8,y =110∑i =110y i =2,∴b ^=184-10×8×2720-10×82=0.3,a ^=2-0.3×8=-0.4,∴y ^=0.3x -0.4,∵0.3>0,∴变量x 与y 正相关.当x =7时,y ^=0.3×7-0.4=1.7(千元).一、高考大题1.[2016·全国卷Ⅲ]下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.(1)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明; (2)建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.附注:参考数据:∑7i =1y i =9.32,∑7i =1t i y i =40.17, ∑7i =1y i -y2=0.55,7≈2.646.参考公式:相关系数r =∑ni =1 t i -ty i -y∑n i =1t i -t2∑ni =1y i -y2,回归方程y ^=a ^+b ^t 中斜率和截距的最小二乘估计公式分别为:b ^=∑ni =1t i -ty i -y∑ni =1t i -t2,a ^=y -b ^t .解 (1)由折线图中数据和附注中参考数据得t =4,∑7i =1(t i -t )2=28, ∑7i =1y i -y 2=0.55,∑7i =1(t i -t )(y i -y )=∑7i =1t i y i -t ∑7i =1y i =40.17-4×9.32=2.89,r ≈2.890.55×2×2.646≈0.99.因为y 与t 的相关系数近似为0.99,说明y 与t 的线性相关程度相当高,从而可以用线性回归模型拟合y 与t 的关系.(2)由y =9.327≈1.331及(1)得b ^=∑7i =1t i -ty i -y∑7i =1t i -t2=2.8928≈0.103, a ^=y -b ^t =1.331-0.103×4≈0.92.所以y 关于t 的回归方程为y ^=0.92+0.10t . 将2016年对应的t =9代入回归方程得y ^=0.92+0.10×9=1.82.所以预测2016年我国生活垃圾无害化处理量约为1.82亿吨.2.[2015·全国卷Ⅰ]某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t)和年利润z (单位:千元)的影响,对近8年的年宣传费x i 和年销售量y i (i =1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.表中w i =x i ,w =18∑8i =1w i .(1)根据散点图判断,y =a +bx 与y =c +d x 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程;(3)已知这种产品的年利润z 与x ,y 的关系为z =0.2y -x .根据(2)的结果回答下列问题: ①年宣传费x =49时,年销售量及年利润的预报值是多少? ②年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据(u 1,v 1),(u 2,v 2),…,(u n ,v n ),其回归直线v =α+βu 的斜率和截距的最小二乘估计分别为β^=∑ni =1u i -uv i -v∑n i =1u i -u2,α^=v -β^u .解 (1)由散点图可以判断,y =c +d x 适宜作为年销售量y 关于年宣传费x 的回归方程类型.(2) 令w =x ,先建立y 关于w 的线性回归方程.由于d ^=∑8i =1w i -w y i -y ∑8i =1 w i -w 2=108.81.6=68, c ^=y -d ^w =563-68×6.8=100.6,所以y 关于w 的线性回归方程为y ^=100.6+68w ,因此y 关于x 的回归方程为y ^=100.6+68x .(3)①由(2),知当x =49时,年销售量y 的预报值 y ^=100.6+6849=576.6,年利润z 的预报值 z ^=576.6×0.2-49=66.32.②根据(2)的结果,知年利润z 的预报值 z ^=0.2×(100.6+68x )-x =-x +13.6x +20.12,所以当x =13.62=6.8,即x =46.24时,z ^取得最大值,故年宣传费为46.24千元时,年利润的预报值最大. 二、模拟大题3.[2016·石家庄模拟]班主任对班级22名学生进行了作业量多少的调查,数据如下:在喜欢玩电脑游戏的12人中,有10人认为作业多,2人认为作业不多;在不喜欢玩电脑游戏的10人中,有3人认为作业多,7人认为作业不多.(1)根据以上数据建立一个2×2列联表;(2)试问喜欢玩电脑游戏与认为作业多少是否有关系. 参考公式:K 2=n ad -bc 2a +b c +d a +cb +d,其中n =a +b +c +d .参考数据:解(2)K 2=-212×10×13×9≈6.418,∵3.841<6.418,∴有95%的把握认为喜欢玩电脑游戏与认为作业多少有关.4.[2016·广东模拟]2016年1月1日起全国统一实施全面两孩政策,为了解适龄民众对放开生育二胎政策的态度,某市选取70后和80后作为调查对象,随机调查了100位,得到数据如下表:70后公民中随机抽取3位,记其中生二胎的人数为X ,求随机变量X 的分布列和数学期望;(2)根据调查的数据,是否有90%以上的把握认为“生二胎与年龄有关”,并说明理由. 参考公式:K 2=n ad -bc 2a +bc +d a +cb +d,其中n =a +b +c +d参考数据:解 (1)由已知得70后“生二胎”的概率为3,并且X ~B ⎝ ⎛⎭⎪⎫3,23, 所以P (X =k )=C k 3⎝ ⎛⎭⎪⎫23k ⎝ ⎛⎭⎪⎫133-k(k =0,1,2,3),其分布列如下:所以E (X )=3×3=2.(2)K 2=n ad -bc 2a +bc +d a +cb +d=-275×25×45×55=10033≈3.030>2.706, 所以有90%以上的把握认为“生二胎与年龄有关”.5.[2017·成都诊断]PM2.5是指空气中直径小于或等于2.5微米的颗粒物(也称可入肺颗粒物),为了探究车流量与PM2.5的浓度是否相关,现采集到某城市周一至周五某时间段车流量与PM2.5浓度的数据如下表:(2)若周六同一时段车流量是200万辆,试根据(1)求出的线性回归方程,预测此时PM2.5的浓度为多少?参考公式:b ^=∑i =1nx i -xy i -y∑i =1nx i -x2,a ^=y -b ^·x .解 (1)由条件可知x =15∑i =15x i =5405=108,y =15∑i =15y i =4205=84,∑i =15(x i -x )(y i -y )=(-8)×(-6)+(-6)×(-4)+0×0+6×4+8×6=144,∑i =15(x i -x )2=(-8)2+(-6)2+02+62+82=200,b ^=∑i =15x i -xy i -y∑i =15x i -x2=144200=0.72, a ^=y -b ^x =84-0.72×108=6.24,故y 关于x 的线性回归方程为y ^=0.72x +6.24. (2)当x =200时,y ^=0.72×200+6.24=150.24.所以可以预测此时PM2.5的浓度约为150.24微克/立方米.6.[2017·厦门质检]某单位共有10名员工,他们某年的收入如下表:(2)从该单位中任取2人,此2人中年薪高于5万的人数记为ξ,求ξ的分布列和期望; (3)已知员工年薪与工作年限成正线性相关关系,若某员工工作第一年至第四年的年薪分别为3万元、4.2万元、5.6万元、7.2万元,预测该员工第五年的年薪为多少.附:线性回归方程y ^=b ^x +a ^中系数计算公式b ^=∑i =1nx i -xy i -y∑i =1nx i -x2,a ^=y -b^x ,其中x ,y 表示样本均值.解 (1)平均值为10万元,中位数为6万元.(2)年薪高于5万的有6人,低于或等于5万的有4人,所以从该单位中任取2人,此2人中年薪高于5万的人数记为ξ,ξ的可能取值为0,1,2.P (ξ=0)=C 24C 210=215,P (ξ=1)=C 14C 16C 210=815,P (ξ=2)=C 26C 210=13,所以ξ的分布列为:E (ξ)=0×15+1×15+2×3=5.(3)设x i ,y i (i =1,2,3,4)分别表示工作年限及相应年薪,则x =2.5,y =5,∑i =14(x i -x )2=2.25+0.25+0.25+ 2.25=5,∑i =14(x i -x )(y i -y )=-1.5×(-2)+(-0.5)×(-0.8)+0.5×0.6+1.5×2.2=7,b ^=∑i =14x i -xy i -y∑i =14x i -x2=75=1.4, a ^=y -b ^x =5-1.4×2.5=1.5,所以线性回归方程为y ^=1.4x +1.5. 当x =5时,y ^=8.5.故可预测该员工第五年的年薪为8.5万元.。

11、变量间的相关关系、统计案例(有答案)解读

学科教师辅导教案学员编号: 年 级:高一 课时数:3课时 学员姓名: 辅导科目:数学 学科教师:授课类型 T 同步知识梳理 C 相关专题训练T 能力提高教学目标星级★★★授课日期及时段 2016.教学内容 :变量间的相关关系、统计案例一、同步知识梳理 1. 变量间的相关关系2. 散点图以一个变量的取值为横坐标,另一个变量的相应取值为纵坐标,在直角坐标系中描点,这样的图形叫做散点图. 3. 回归直线方程与回归分析(1)直线方程y ^=a +bx ,叫做Y 对x 的回归直线方程,b 叫做回归系数.要确定回归直线方程,只要确定a 与回归系数b .(2)用最小二乘法求回归直线方程中的a ,b 有下列公式b ^=∑ni =1x i y i -n x y ∑ni =1x 2i -n x 2,a ^ =y -b ^ x ,其中的a ^ ,b ^表示是求得的a ,b 的估计值.(3)相关性检验①计算相关系数r ,r 有以下性质:|r |≤1,并且|r |越接近1,线性相关程度越强;|r |越接近0,线性相关程度越弱;②|r|>r0.05,表明有95%的把握认为变量x与Y直线之间具有线性相关关系,回归直线方程有意义;否则寻找回归直线方程毫无意义.二、题型解答题型一相关关系的判断思维点播判断变量之间有无相关关系,一种简便可行的方法就是绘制散点图,根据散点图很容易看出两个变量之间是否具有相关性,是不是存在线性相关关系,是正相关还是负相关,相关关系是强还是弱.例15个学生的数学和物理成绩如下表:学生A B C D E学科数学8075706560物理7066686462画出散点图,并判断它们是否具有相关关系.解以x轴表示数学成绩,y轴表示物理成绩,可得到相应的散点图如图所示.由散点图可知,各组数据对应点大致在一条直线附近,所以两者之间具有相关关系,且为正相关.巩固(1)对变量x,y有观测数据(x i,y i)(i=1,2,…,10),得散点图①;对变量u,v有观测数据(u i,v i)(i=1,2,…,10),得散点图②,由这两个散点图可以判断()A.变量x与y正相关,u与v正相关B.变量x与y正相关,u与v负相关C.变量x与y负相关,u与v正相关D.变量x与y负相关,u与v负相关答案 C(2)(2012·课标全国)在一组样本数据(x1,y1),(x2,y2),…,(x n,y n)(n≥2,x1,x2,…,x n不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =12x +1上,则这组样本数据的样本相关系数为( )A .-1B .0 C.12 D .1答案 D解析 利用相关系数的意义直接作出判断.样本点都在直线上时,其数据的估计值与真实值是相等的,即y i =y i ^,代入相关系数公式r =1-∑i =1n(y i -y i ^)2∑i =1n(y i -y )2=1.题型二 线性回归分析思维点播 (1)回归直线方程y ^=b ^x +a ^必过样本点的中心(x ,y ).(2)在分析两个变量的相关关系时,可根据样本数据作出散点图来确定两个变量之间是否具有相关关系,若具有线性相关关系,则可通过回归直线方程估计和预测变量的值.例2 某车间为了制定工时定额,需要确定加工零件所花费的时间,为此做了四次试验,得到的数据如下:零件的个数x (个) 2 3 4 5 加工的时间y (小时)2.5344.5(1)在给定的坐标系中画出表中数据的散点图;(2)求出y 关于x 的回归直线方程y ^=b ^x +a ^,并在坐标系中画出回归直线; (3)试预测加工10个零件需要多少小时?(注:b^=∑i=1nx i y i-n x y∑i=1nx2i-n x2,a^=y-b^x)思维启迪求回归直线方程的系数b^时,为防止出错,应分别求出公式中的几个量,再代入公式.解(1)散点图如图.(2)由表中数据得:∑i=14x i y i=52.5,x=3.5,y=3.5,∑i=14x2i=54,∴b^=0.7,∴a^=1.05,∴y^=0.7x+1.05,回归直线如图所示.(3)将x=10代入回归直线方程,得y^=0.7×10+1.05=8.05,故预测加工10个零件约需要8.05小时.巩固1为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球时间x(单位:小时)与当天投篮命中率y之间的关系:时间x 1234 5命中率y 0.40.50.60.60.4小李这5天的平均投篮命中率为________;用线性回归分析的方法,预测小李该月6号打6小时篮球的投篮命中率为________.答案0.50.53解析小李这5天的平均投篮命中率y=0.4+0.5+0.6+0.6+0.45=0.5,可求得小李这5天的平均打篮球时间x=3.根据表中数据可求得b^=0.01,a^=0.47,故回归直线方程为y^=0.47+0.01x,将x=6代入得6号打6小时篮球的投篮命中率约为0.53.巩 固2 (2013·大连模拟)某产品的广告费用x 与销售额y 的统计数据如下表:广告费用x (万元) 4 2 3 5 销售额y (万元)49263954根据上表可得回归直线方程y ^=b ^x +a ^中的b ^为9.4,据此模型预报广告费用为6万元时销售额为( )A .63.6万元B .65.5万元C .67.7万元D .72.0万元答案 B解析 ∵x =4+2+3+54=72,y =49+26+39+544=42,又y ^ =b ^ x +a ^ 必过(x ,y ),∴42=72×9.4+a ^ ,∴a ^ =9.1.∴回归直线方程为y ^ =9.4x +9.1.∴当x =6时,y ^=9.4×6+9.1=65.5(万元).家庭作业1. 某地区调查了2~9岁的儿童的身高,由此建立的身高y (cm)与年龄x (岁)的回归模型为y ^=8.25x +60.13,下列叙述正确的是( )A .该地区一个10岁儿童的身高为142.63 cmB .该地区2~9岁的儿童每年身高约增加8.25 cmC .该地区9岁儿童的平均身高是134.38 cmD .利用这个模型可以准确地预算该地区每个2~9岁儿童的身高 答案 B2. 设(x 1,y 1),(x 2,y 2),…,(x n ,y n )是变量x 和y 的n 个样本点,直线l 是由这些样本点通过最小二乘法得到的线性回归直线(如图), 以下结论中正确的是 ( )A .直线l 过点(x ,y )B .x 和y 的相关系数为直线l 的斜率C .x 和y 的相关系数在0到1之间D .当n 为偶数时,分布在l 两侧的样本点的个数一定相同 答案 A解析 因为相关系数是表示两个变量是否具有线性相关关系的一个值,它的绝对值越接近1,两个变量的线性相关程度越强,所以B 、C 错误.D 中n 为偶数时,分布在l 两侧的样本点的个数可以不相同,所以D 错误.根据线性回归直线一定经过样本点中心可知A 正确.3. (2012·湖南)设某大学的女生体重y (单位:kg)与身高x (单位:cm)具有线性相关关系,根据一组样本数据(x i ,y i )(i =1,2,…,n ),用最小二乘法建立的回归方程为y ^=0.85x -85.71,则下列结论中不正确...的是( )A .y 与x 具有正的线性相关关系B .回归直线过样本点的中心(x ,y )C .若该大学某女生身高增加1 cm ,则其体重约增加0.85 kgD .若该大学某女生身高为170 cm ,则可断定其体重必为58.79 kg 答案 D解析 由于回归直线方程中x 的系数为0.85, 因此y 与x 具有正的线性相关关系,故A 正确.又回归直线方程必过样本点中心(x ,y ),因此B 正确.由回归直线方程中系数的意义知,x 每增加1 cm ,其体重约增加0.85 kg ,故C 正确. 当某女生的身高为170 cm 时,其体重估计值是58.79 kg ,而不是具体值,因此D 不正确.4. 某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验.根据收集到的数据(如下表),由最小二乘法求得回归方程y ^=0.67x +54.9.零件数x (个) 10 2030 40 50 加工时间y (min)62758189现发现表中有一个数据看不清,请你推断出该数据的值为________. 答案 68解析 由已知可计算求出x =30,而回归直线必过点(x ,y ), 则y =0.67×30+54.9=75,设模糊数字为a ,则 a +62+75+81+895=75,计算得a =68.5.某产品的广告费用x 与销售额y 的统计数据如下表:广告费用x (万元) 4 2 3 5 销售额y (万元)49263954根据上表可得回归方程y ^=b ^x +a ^中的b ^为9.4,据此模型预报广告费用为6万元时销售额为( ) A.63.6万元 B.65.5万元 C.67.7万元D.72.0万元解析:由题意可知x =3.5,y =42,则42=9.4×3.5+a ^,a ^=9.1,y ^=9.4×6+9.1=65.5,答案应选B. 答案:A6.下列各图中所示两个变量具有相关关系的是( )A .①②B .①③C .②④D .②③答案:D7.已知x ,y 的取值如下表所示:x 0 1 3 4 y2.24.34.86.7从散点图分析,y 与x 线性相关,且y ^=0.95x +a ^,则a ^=__________.答案:2.6。

2018版高考数学(人教A版理)一轮复习教师用书 第9章 第4节 变量间的相关关系与统计案例 Word版含解析

第四节 变量间的相关关系与统计案例[考纲传真] .会做两个有关联变量的数据的散点图,并利用散点图认识变量间的相关关系.了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程(线性回归系数公式不要求记忆).了解回归分析的基本思想、方法及其简单应用.了解独立性检验(只要求×列联表)的思想、方法及其初步应用..回归分析回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法;判;统计量有相关系数与相关指数.散点图断相关性的常用统计图是的区域,对于两个变量的这种右上角到左下角()在散点图中,点散布在从相关关系,我们将它称为正相关.的区域,两个变量的这种相关右下角到左上角()在散点图中,点散布在从关系称为负相关. 附近,称两个变量具一条直线()如果散点图中点的分布从整体上看大致在有线性相关关系. .线性回归方程 最小的方法距离的平方和回归直线的()最小二乘法:使得样本数据的点到叫做最小二乘法.()回归方程:两个具有线性相关关系的变量的一组数据:(,),(,),…,(,),其回归方程为=+,则=,斜率是回归方程的.其中,-=,,\(=))-\(),\(=))-)=是在轴上的截距. .残差分析 ()残差:对于样本点(,),(,),…,(,),它们的随机误差为=--,=,…,,其估计值为=-=--,=,…,,-)相关指数:=( 残差.为相应于点(,)的称的方法称为独”有关系两个分类变量“)利用随机变量来判断( 独立性检验. .立性检验..残差分析()残差:对于样本点(,),(,),…,(,),它们的随机误差为=--,=,…,,其估计值为=-=--,=,…,,称为相应于点(,)的残差.-()相关指数:=..独立性检验的方法称为独立性检验.”有关系两个分类变量“()利用随机变量来判断()列联表:列出的两个分类变量的频数表,称为列联表.假设有两个分类变量和,它们的可能取值分别为{,}和{,},其样本频数列联表(×列联表)为.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) ()“名师出高徒”可以解释为教师的教学水平与学生的水平成正相关关系.( )()某同学研究卖出的热饮杯数与气温(℃)之间的关系,得回归方程=-+,则气温为℃时,一定可卖出杯热饮.( )()因为由任何一组观测值都可以求得一个线性回归方程,所以没有必要进行相关性检验.( )()若事件,关系越密切,则由观测数据计算得到的的观测值越小.( )[答案]()√ ()× ()× ()×.(教材改编)已知变量与正相关,且由观测数据算得样本平均数=,=,则由该观测数据算得的线性回归方程可能是( )=+=- =-+=-+。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

配餐作业(六十四)变量间的相关关系与统计案例
(时间:40分钟)
一、选择题
1.(2016·湖北七市联考)已知变量x 与y 负相关,且由观测数据算得样本平均数x -
=3,y -
=2.7,则由该观测数据算得的线性回归方程可能是( )
A.y ^
=-0.2x +3.3 B.y ^
=0.4x +1.5 C.y ^
=2x -3.2
D.y ^
=-2x +8.6
解析 因为x 与y 负相关,所以排除选项B ,C ;又线性回归方程过样本点的中心,即线性回归方程过点(3,2.7),将点(3,2.7)代入选项A ,D 的方程中,只有选项A 符合,故选A 。

答案 A
2.(2016·长沙一模)某研究型学习小组调查研究学生使用智能手机对学习的影响。

部分统计数据如下表:
附表:
A .有99.5%的把握认为使用智能手机对学习有影响
B .有99.5%的把握认为使用智能手机对学习无影响
C .有99.9%的把握认为使用智能手机对学习有影响
D .有99.9%的把握认为使用智能手机对学习无影响
解析 依题意,注意到7.879<K 2
<10.828,因此有99.5%的把握认为使用智能手机对学习有影响,故选A 。

答案 A
3.对具有线性相关关系的变量x ,y 有一组观测数据(x i ,y i )(i =1,2,…,8),其回归直线方程是y ^=13x +a ^,且x 1+x 2+x 3+…+x 8=2(y 1+y 2+y 3+…+y 8)=6,则实数a ^
的值是
( )
A.
116 B.18 C.14 D.12
解析 依题意可知样本中心点为⎝ ⎛⎭
⎪⎫34,38,
则38=13×34+a ^,解得a ^=1
8,故选B 。

答案 B
4.在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =1
2x +1上,则这组样本数
据的样本相关系数为( )
A .-1
B .0 C.12
D .1
解析 由题设可知这组样本中的数据完全正相关,又都在直线y =1
2x +1上,故相关系
数为1,故选D 。

答案 D
5.(2016·大连双基考试)对于下列表格所示五个散点,已知求得的线性回归方程为y ^
=0.8x -155,则实数m 的值为( )
A.8 C .8.4
D .8.5
解析 x =196+197+200+203+2045
=200,
y =
1+3+6+7+m 5=17+m
5

样本中心点为⎝
⎛⎭⎪⎫200,17+m 5,
将样本中心点⎝ ⎛⎭⎪⎫200,17+m 5代入y ^=0.8x -155, 可得m =8,故选A 。

答案 A
6.(2017·泉州模拟)已知某产品连续4个月的广告费x 1(千元)与销售额y 1(万元),经过对这些数据的处理,得到如下数据信息:
①∑i =1
4x i =18,∑i =1
4
y i =14;
②广告费用x 和销售额y 之间具有较强的线性相关关系; ③回归直线方程为y ^=b ^x +a ^中的b ^
=0.8(用最小二乘法求得)。

那么广告费用为6千元时,可预测销售额约为( ) A .3.5万元 B .4.7万元 C .4.9万元
D .6.5万元
解析 因为∑i =1
4
x i =18,∑i =1
4
y i =14,
所以x =92,y =7
2

因为回归直线方程为y ^=b ^x +a ^中的b ^
=0.8, 所以72=0.8×92
+a ^,
所以a ^=-110,所以y ^
=0.8x -110。

x =6时,可预测销售额约为4.7万元,故选B 。

答案 B 二、填空题
7.(2017·广西二市模拟)已知某四个家庭2015年上半年总收入x (单位:万元)与总投资y (单位:万元)的对照数据如表所示。

根据上表提供的数据,若用最小二乘法求出y 关于x 的线性回归方程为y ^
=0.7x +0.35,则m 的值为________。

解析 x -=3+4+5+64=92=4.5,y -=2.5+3+m +4.54=10+m 4,因为样本点的中心(x -,
y -
)一定在回归直线上,所以10+m 4
=0.7×4.5+0.35,解得m =4。

答案 4
8.(2016·赣州摸底)在一组样本数据(x 1,y 1),(x 2,y 2),…,(x 6,y 6)的散点图中,
若所有样本点(x i ,y i )(i =1,2,…,6)都在曲线y =bx 2
-1
3附近波动。

经计算∑i =16x i =11,∑i =1
6
y
i
=13,∑i =1
6
x 2
i =21,则实数b 的值为________。

解析 令t =x 2
,则曲线的回归方程变为线性的回归方程,即y =bt -13,此时t -
=∑i =1
6
x 2
i 6

72,y -=∑i =1
6
y i
6=136,代入y =bt -13,得136=b ×72-13,解得b =5
7。

答案 5
7
9.某工厂为了调查工人文化程度与月收入之间的关系,随机调查了部分工人,得到如下表所示的2×2列联表(单位:人):
由2×2系”。

附:K 2
=n ad -bc 2
a +
b
c +
d a +c b +
d
解析 由表中的数据可得K 2
=55×50×30×75≈6.109,由于6.109>5.024,
所以我们有97.5%以上的把握认为“文化程度与月收入有关系”。

答案 97.5% 三、解答题
10.(2016·河北三市二联)下表是高三某位文科生连续5次月考的历史、政治的成绩,结果统计如下:
(1)求该生5。

相关文档
最新文档