用空间向量解决立体几何中的平行问题
空间向量在立体几何中的应用和习题(含答案)[1]
![空间向量在立体几何中的应用和习题(含答案)[1]](https://img.taocdn.com/s3/m/2fd760159b89680202d82545.png)
空间向量在立体几何中的应用:(1)直线的方向向量与平面的法向量: ①如图,l 为经过已知点A 且平行于已知非零向量a 的直线,对空间任意一点O ,点P 在直线l 上的充要条件是存在实数t ,使得a t OA OP +=,其中向量a 叫做直线的方向向量.由此可知,空间任意直线由空间一点及直线的方向向量惟一确定.②如果直线l ⊥平面α ,取直线l 的方向向量a ,则向量a 叫做平面α 的法向量.由此可知,给定一点A 及一个向量a ,那么经过点A 以向量a 为法向量的平面惟一确定. (2)用空间向量刻画空间中平行与垂直的位置关系:设直线l ,m 的方向向量分别是a ,b ,平面α ,β 的法向量分别是u ,v ,则 ①l ∥m ⇔a ∥b ⇔a =k b ,k ∈R ; ②l ⊥m ⇔a ⊥b ⇔a ·b =0; ③l ∥α ⇔a ⊥u ⇔a ·u =0; ④l ⊥α ⇔a ∥u ⇔a =k u ,k ∈R ; ⑤α ∥⇔u ∥v ⇔u =k v ,k ∈R ; ⑥α ⊥β ⇔u ⊥v ⇔u ·v =0.(3)用空间向量解决线线、线面、面面的夹角问题: ①异面直线所成的角:设a ,b 是两条异面直线,过空间任意一点O 作直线a ′∥a ,b ′∥b ,则a ′与b ′所夹的锐角或直角叫做异面直线a 与b 所成的角.设异面直线a 与b 的方向向量分别是v 1,v 2,a 与b 的夹角为θ ,显然],2π,0(∈θ则⋅=><⋅|||||||,cos |212121v v v v v v②直线和平面所成的角:直线和平面所成的角是指直线与它在这个平面内的射影所成的角.设直线a 的方向向量是u ,平面α 的法向量是v ,直线a 与平面α 的夹角为θ ,显然]2π,0[∈θ,则⋅=><⋅|||||||,cos |v u v u v u③二面角及其度量:从一条直线出发的两个半平面所组成的图形叫做二面角.记作α -l -β 在二面角的棱上任取一点O ,在两个半平面内分别作射线OA ⊥l ,OB ⊥l ,则∠AOB 叫做二面角α -l -β 的平面角.利用向量求二面角的平面角有两种方法: 方法一:如图,若AB ,CD 分别是二面角α -l -β 的两个面内与棱l 垂直的异面直线,则二面角α -l -β的大小就是向量CD AB 与的夹角的大小.方法二:如图,m 1,m 2分别是二面角的两个半平面α ,β 的法向量,则<m 1,m 2>与该二面角的大小相等或互补.(4)根据题目特点,同学们可以灵活选择运用向量方法与综合方法,从不同角度解决立体几何问题. 【例题分析】例1 如图,在长方体OAEB -O 1A 1E 1B 1中,OA =3,OB =4,OO 1=2,点P 在棱AA 1上,且AP =2P A 1,点S 在棱BB 1上,且B 1S =2SB ,点Q ,R 分别是O 1B 1,AE 的中点,求证:PQ ∥RS .【分析】建立空间直角坐标系,设法证明存在实数k ,使得.RS k PQ =解:如图建立空间直角坐标系,则O (0,0,0),A (3,0,0),B (0,4,0),O 1(0,0,2),A 1(3,0,2),B 1(0,4,2),E (3,4,0).∵AP =2P A 1, ∴),34,0,0()2,0,0(32321===AA AP ∴⋅)34,0,3(P同理可得:Q (0,2,2),R (3,2,0),⋅)32,4,0(S,)32,2,3(RS PQ =-=∴RS PQ //,又R ∉PQ ,∴PQ ∥RS .【评述】1、证明线线平行的步骤:(1)证明两向量共线;(2)证明其中一个向量所在直线上一点不在另一个向量所在的直线上即可.2、本体还可采用综合法证明,连接PR ,QS ,证明PQRS 是平行四边形即可,请完成这个证明. 例2 已知正方体ABCD -A 1B 1C 1D 1中,M ,N ,E ,F 分别是棱A 1D 1,A 1B 1,D 1C 1,B 1C 1的中点,求证:平面AMN ∥平面EFBD .【分析】要证明面面平行,可以通过线线平行来证明,也可以证明这两个平面的法向量平行. 解法一:设正方体的棱长为4,如图建立空间直角坐标系,则D (0,0,0),A (4,0,0),M (2,0,4),N (4,2,4),B (4,4,0),E (0,2,4),F (2,4,4).取MN 的中点K ,EF 的中点G ,BD 的中点O ,则O (2,2,0),K (3,1,4),G (1,3,4).MN =(2,2,0),EF =(2,2,0),AK =(-1,1,4),OG =(-1,1,4), ∴MN ∥EF ,OG AK =,∴MN//EF ,AK//OG ,∴MN ∥平面EFBD ,AK ∥平面EFBD , ∴平面AMN ∥平面EFBD .解法二:设平面AMN 的法向量是a =(a 1,a 2,a 3),平面EFBD 的法向量是 b =(b 1,b 2,b 3). 由,0,0==⋅⋅AN AM a a 得⎩⎨⎧=+=+-,042,0423231a a a a 取a 3=1,得a =(2,-2,1).由,0,0==⋅⋅BF DE b b得⎩⎨⎧=+-=+,042,0423132b b b b 取b 3=1,得b =(2,-2,1).∵a ∥b ,∴平面AMN ∥平面EFBD .注:本题还可以不建立空间直角坐标系,通过综合法加以证明,请试一试.例3 在正方体ABCD -A 1B 1C 1D 1中,M ,N 是棱A 1B 1,B 1B 的中点,求异面直线AM 和CN 所成角的余弦值.解法一:设正方体的棱长为2,如图建立空间直角坐标系,则D (0,0,0),A (2,0,0),M (2,1,2),C (0,2,0),N (2,2,1).∴),1,0,2(),2,1,0(==CN AM设AM 和CN 所成的角为θ ,则,52||||cos ==⋅CN AM CN AM θ ∴异面直线AM 和CN 所成角的余弦值是⋅52解法二:取AB 的中点P ,CC 1的中点Q ,连接B 1P ,B 1Q ,PQ ,PC . 易证明:B 1P ∥MA ,B 1Q ∥NC ,∴∠PB 1Q 是异面直线AM 和CN 所成的角. 设正方体的棱长为2,易知,6,52211=+===QC PC PQ Q B P B∴,522cos 11221211=-+=⋅Q B P B PQ Q B P B Q PB∴异面直线AM 和CN 所成角的余弦值是⋅52【评述】空间两条直线所成的角是不超过90°的角,因此按向量的夹角公式计算时,分子的数量积如果是负数,则应取其绝对值,使之成为正数,这样才能得到异面直线所成的角(锐角).例4 如图,正三棱柱ABC -A 1B 1C 1的底面边长为a ,侧棱长为a 2,求直线AC 1与平面ABB 1A 1所成角的大小.【分析】利用正三棱柱的性质,适当建立空间直角坐标系,写出有关点的坐标.求角时有两种思路:一是由定义找出线面角,再用向量方法计算;二是利用平面ABB 1A 1的法向量求解.解法一:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),),2,0,0(1a A⋅-)2,2,23(1a aa C 取A 1B 1的中点D ,则)2,2,0(a a D ,连接AD ,C 1D .则),2,0,0(),0,,0(),0,0,23(1a AA a AB aDC ==-= ,0,0111==⋅⋅AA DC AB DC∴DC 1⊥平面ABB 1A 1,∴∠C 1AD 是直线AC 1与平面ABB 1A 1所或的角.),2,2,0(),2,2,23(1a aAD a a a AC =-= 23||||cos 111==∴AD AC AD C , ∴直线AC 1与平面ABB 1A 1所成角的大小是30°.解法二:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),A 1(0,0,a 2),)2,2,23(1a aa C -,从而⋅-===)2,2,23(),2,0,0(),0,,0(11a aa AC a AA a AB 设平面ABB 1A 1的法向量是a =(p ,q ,r ), 由,0,01==⋅⋅AA AB a a得⎩⎨⎧==,02,0ar aq 取p =1,得a =(1,0,0). 设直线AC 1与平面ABB 1A 1所成的角为],2π,0[,∈θθ.30,21|||||||,cos |sin 111 ===〉〈=⋅θθa a a AC AC AC 【评述】充分利用几何体的特征建立适当的坐标系,再利用向量的知识求解线面角;解法二给出了一般的方法,即先求平面的法向量与斜线的夹角,再利用两角互余转换.例5 如图,三棱锥P -ABC 中,P A ⊥底面ABC ,AC ⊥BC ,P A =AC =1,2=BC ,求二面角A-PB -C 的平面角的余弦值.解法二图解法一:取PB 的中点D ,连接CD ,作AE ⊥PB 于E . ∵P A =AC =1,P A ⊥AC , ∴PC =BC =2,∴CD ⊥PB . ∵EA ⊥PB ,∴向量EA 和DC 夹角的大小就是二面角A -PB -C 的大小.如图建立空间直角坐标系,则C (0,0,0),A (1,0,0),B (0,2,0),P (1,0,1),由D 是PB 的中点,得D ⋅)21,22,21( 由,3122==AB AP EB PE 得E 是PD 的中点,从而⋅)43,42,43(E∴)21,22,21(),43,42,41(---=--=DC EA ∴⋅=>=<33||||,cos DC EA DC EA DC EA 即二面角A -PB -C 的平面角的余弦值是⋅33 解法二:如图建立空间直角坐标系,则A (0,0,0),)0,1,2(B ,C (0,1,0),P (0,0,1),).1,1,0(),0,0,2(),0,1,2(),1,0,0(-====CP CB AB AP设平面P AB 的法向量是a =(a 1,a 2,a 3),平面PBC 的法向量是b =(b 1,b 2,b 3). 由,0,0==⋅⋅AB AP a a得⎪⎩⎪⎨⎧=+=,02,0213a a a 取a 1=1,得).0,2,1(-=a 由0,0==⋅⋅CP CB b b 得⎪⎩⎪⎨⎧=+-=,0,02321b b b 取b 3=1,得b =(0,1,1).∴⋅-=>=<⋅33||||,cos b a b a b a∵二面角A -PB -C 为锐二面角, ∴二面角A -PB -C 的平面角的余弦值是⋅=-33|33| 【评述】1、求二面角的大小,可以在两个半平面内作出垂直于棱的两个向量,转化为这两个向量的夹角;应注意两个向量的始点应在二面角的棱上.2、当用法向量的方法求二面角时,有时不易判断两个平面法向量的夹角是二面角的平面角还是其补角,但我们可以借助观察图形而得到结论,这是因为二面角是锐二面角还是钝二面角一般是明显的.练习一、选择题: 1.在正方体ABCD -A 1B 1C 1D 1中,E 是BB 1的中点,则二面角E -A 1D 1-D 的平面角的正切值是( ) (A)2(B )2(C)5(D)222.正方体ABCD -A 1B 1C 1D 1中,直线AD 1与平面A 1ACC 1所成角的大小是( ) (A)30° (B)45° (C)60° (D)90°3.已知三棱柱ABC -A 1B 1C 1的侧棱与底面边长都相等,A 1在底面ABC 内的射影为△ABC 的中心,则AB 1与底面ABC 所成角的正弦值等于( ) (A)31 (B )32 (C)33 (D )32 4.如图,α ⊥β ,α ∩β =l ,A ∈α ,B ∈β ,A ,B 到l 的距离分别是a 和b ,AB 与α ,β 所成的角分别是θ 和ϕ,AB 在α ,β 内的射影分别是m 和n ,若a >b ,则下列结论正确的是( )(A)θ >ϕ,m >n (B )θ >ϕ,m <n (C)θ <ϕ,m <n(D )θ <ϕ,m >n二、填空题:5.在正方体ABCD -A 1B 1C 1D 1中,E ,F ,G ,H 分别为AA 1,AB ,BB 1,B 1C 1的中点,则异面直线EF 与GH 所成角的大小是______. 6.已知正四棱柱的对角线的长为6,且对角线与底面所成角的余弦值为33,则该正四棱柱的体积等于______.7.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则异面直线A 1B 与AD 1所成角的余弦值为______.4题图 7题图 9题图 8.四棱锥P -ABCD 的底面是直角梯形,∠BAD =90°,AD ∥BC ,==BC AB AD 21,P A ⊥底面ABCD ,PD 与底面ABCD 所成的角是30°.设AE 与CD 所成的角为θ ,则cos θ =______. 三、解答题:9.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB =4,点E 在CC 1上,且C 1E =3EC .(Ⅰ)证明:A 1C ⊥平面BED ;(Ⅱ)求二面角A 1-DE -B 平面角的余弦值. 10.如图,在四棱锥O -ABCD 中,底面ABCD 是边长为1的菱形,4π=∠ABC ,OA ⊥底面ABCD ,OA =2,M 为OA 的中点,N 为BC 的中点.(Ⅰ)证明:直线MN ∥平面OCD ;(Ⅱ)求异面直线AB 与MD 所成角的大小.11.如图,已知直二面角α -PQ -β ,A ∈PQ ,B ∈α ,C ∈β ,CA =CB ,∠BAP =45°,直线CA 和平面α 所成的角为30°.(Ⅰ)证明:BC ⊥PQ ;(Ⅱ)求二面角B -AC -P 平面角的余弦值.练习答案一、选择题:1.B 2.A 3.B 4.D 二、填空题:5.60° 6.2 7.548.42三、解答题:9题图 10题图 11题图 9.以D 为坐标原点,射线DA 为x 轴的正半轴,建立如图所示直角坐标系D -xyz .依题设,B (2,2,0),C (0,2,0),E (0,2,1),A 1(2,0,4).),0,2,2(),1,2,0(==DB DE ).4,0,2(),4,2,2(11=--=DA C A(Ⅰ)∵,0,011==⋅⋅DE C A DB C A ∴A 1C ⊥BD ,A 1C ⊥DE . 又DB ∩DE =D ,∴A 1C ⊥平面DBE .(Ⅱ)设向量n =(x ,y ,z )是平面DA 1E 的法向量,则.,1DA DE ⊥⊥n n ∴⎩⎨⎧=+=+.042,02z x z y 令y =1,得n =(4,1,-2).⋅==4214||||),cos(111C A C A C A n n ∴二面角A 1-DE -B 平面角的余弦值为⋅4214 10.作AP ⊥CD 于点P .如图,分别以AB ,AP ,AO 所在直线为x ,y ,z 轴建立坐标系.则A (0,0,0),B (1,0,0),)0,22,22(),0,22,0(-D P ,O (0,0,2),M (0,0,1),⋅-)0,42,421(N (Ⅰ)⋅--=-=--=)2,22,22(),2,22,0(),1,42,421(OD OP MN 设平面OCD 的法向量为n =(x ,y ,z ),则,0,0==⋅⋅OD OP n n即⎪⎪⎩⎪⎪⎨⎧=-+-=-.022222,0222z y x z y 取,2=z ,得).2,4,0(=n ∵,0=⋅n MN ∴MN ∥平面OCD . (Ⅱ)设AB 与MD 所成的角为θ ,,3π,21||||cos ),1,22,22(),0,0,1(=∴==∴--==⋅θθMD AB MD AB MD AB 即直线AB 与MD 所成角的大小为⋅3π11.(Ⅰ)证明:在平面β 内过点C 作CO ⊥PQ 于点O ,连结OB .∵α ⊥β ,α ∩β =PQ ,∴CO ⊥α . 又∵CA =CB ,∴OA =OB .∵∠BAO =45°,∴∠ABO =45°,∠AOB =90°,∴BO ⊥PQ ,又CO ⊥PQ , ∴PQ ⊥平面OBC ,∴PQ ⊥BC .(Ⅱ)由(Ⅰ)知,OC ⊥OA ,OC ⊥OB ,OA ⊥OB ,故以O 为原点,分别以直线OB ,OA ,OC 为x 轴,y 轴,z 轴建立空间直角坐标系(如图).∵CO ⊥α ,∴∠CAO 是CA 和平面α 所成的角,则∠CAO =30°.不妨设AC =2,则3=AO ,CO =1.在Rt △OAB 中,∠ABO =∠BAO =45°,∴.3==AO BO∴).1,0,0(),0,3,0(),0,0,3(),0,0,0(C A B O).1,3,0(),0,3,3(-=-=AC AB设n 1=(x ,y ,z )是平面ABC 的一个法向量,由⎪⎩⎪⎨⎧==⋅⋅,0,0AC AB n n 得⎪⎩⎪⎨⎧=+-=-,03,033z y y x 取x =1,得)3,1,1(1=n . 易知n 2=(1,0,0)是平面β 的一个法向量. 设二面角B -AC -P 的平面角为θ ,∴,55||||cos 2121==⋅⋅n n n n θ即二面角B -AC -P 平面角的余弦值是⋅55。
空间向量在立体几何中的应用sxz

一.平行问题
Db
(一)证明两直线平行
A ,B a;C ,D b,A BC D a∥
C
A
b
a
B
方法思路:在两分 直别 线取 上不同的
得到两向量,转明 化两 为向 证量平行
知 A ( x 1 B ,y 1 )C , ( x 2 D ,y 2 )则 ,x 1 y 2 x 有 2 y 1 a ∥ b
方 底法 线思 性路 表: 示证 (明 即方 内直 在向 存线 平向 在的 面量 一可 向用 量平 与组 相面 方基 等 的 向)一 向 e 1 e 2
则可得面内一直外线的与线面平 ,从行而证线面. 平行
(三)面面平行
1.不重合的两 与平 的面法向量 n
分别m是 和n, mn∥
方法思路:平 求面 出的 其法 中向 一法 量向 ,量 再与 证
的不共线的量 两积 向 ( 0 为 量 即的 都数 垂直两 )面 ,平 则
二.垂直问题
(一)证明两直线垂直
b
不 分重 别a合 为 和b的 , a和 直 则a直 线 有 bb线 的 0 方 a向 b 向b 量 a a
方法思路:找两直线 方的 向向量 (分别
| m|
方法思路:求出任 平一 面法 的向m(量 方程
组可求 ),在面内任取Q一与点点P得一向量
转化为 P Q在法向量的投影,的 套长 公度 式。
D
(二)求两异面直线的距离d
b
知a,b是两异面直线A,,Ba,C, Db,
B
aA
C
找一向量与两异面都 直垂 线直的向m量,
则两异面直线的距 d=离ACm
(二)证明线面垂直 l
用空间向量证(解)立体几何题之——证明线面平行ppt 人教课标版

( 1 , 1 , 1 ) 同理可得平面 CB1D 1的法向量为m
例4.在正方体ABCDA1B1C1D1中,E、F、 G、H分别是A1B1、 B1C1、C1D1、D1A1的 中点. 求证: 平面AEH∥平面BDGF
例3.在正方体ABCDA1B1C1D1中,求证: A 1 平面A1BD∥平面CB1D1
平行四边形A1BCD1 A1B∥D1C 平行四边形DBB1D1 B1D1∥BD
D1
B1
C1
D A B
C
于是平面A1BD∥平面CB1D1
证明:建立如图所示的 空间直角坐标系o-xyz 设正方形边长为1, A1 ( 1 ,0 , 1 ) 则向量 DA 1
C N B
再见
•
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
46.凡事不要说"我不会"或"不可能",因为你根本还没有去做! 47.成功不是靠梦想和希望,而是靠努力和实践. 48.只有在天空最暗的时候,才可以看到天上的星星. 49.上帝说:你要什么便取什么,但是要付出相当的代价. 50.现在站在什么地方不重要,重要的是你往什么方向移动。 51.宁可辛苦一阵子,不要苦一辈子. 52.为成功找方法,不为失败找借口. 53.不断反思自己的弱点,是让自己获得更好成功的优良习惯。 54.垃圾桶哲学:别人不要做的事,我拣来做! 55.不一定要做最大的,但要做最好的. 56.死的方式由上帝决定,活的方式由自己决定! 57.成功是动词,不是名词! 28、年轻是我们拼搏的筹码,不是供我们挥霍的资本。 59、世界上最不能等待的事情就是孝敬父母。 60、身体发肤,受之父母,不敢毁伤,孝之始也; 立身行道,扬名於后世,以显父母,孝之终也。——《孝经》 61、不积跬步,无以致千里;不积小流,无以成江海。——荀子《劝学篇》 62、孩子:请高看自己一眼,你是最棒的! 63、路虽远行则将至,事虽难做则必成! 64、活鱼会逆水而上,死鱼才会随波逐流。 65、怕苦的人苦一辈子,不怕苦的人苦一阵子。 66、有价值的人不是看你能摆平多少人,而是看你能帮助多少人。 67、不可能的事是想出来的,可能的事是做出来的。 68、找不到路不是没有路,路在脚下。 69、幸福源自积德,福报来自行善。 70、盲目的恋爱以微笑开始,以泪滴告终。 71、真正值钱的是分文不用的甜甜的微笑。 72、前面是堵墙,用微笑面对,就变成一座桥。 73、自尊,伟大的人格力量;自爱,维护名誉的金盾。 74、今天学习不努力,明天努力找工作。 75、懂得回报爱,是迈向成熟的第一步。 76、读懂责任,读懂使命,读懂感恩方为懂事。 77、不要只会吃奶,要学会吃干粮,尤其是粗茶淡饭。 78、技艺创造价值,本领改变命运。 79、凭本领潇洒就业,靠技艺稳拿高薪。 80、为寻找出路走进校门,为创造生活奔向社会。 81、我不是来龙飞享福的,但,我是为幸福而来龙飞的! 82、校兴我荣,校衰我耻。 83、今天我以学校为荣,明天学校以我为荣。 84、不想当老板的学生不是好学生。 85、志存高远虽励志,脚踏实地才是金。 86、时刻牢记父母的血汗钱来自不易,永远不忘父母的养育之恩需要报答。 87、讲孝道读经典培养好人,传知识授技艺打造能人。 88、知技并重,德行为先。 89、生活的理想,就是为了理想的生活。 —— 张闻天 90、贫不足羞,可羞是贫而无志。 —— 吕坤
用空间向量研究立体几何中的直线、平面的位置关系(课时教学设计)-高中数学人教A版2019选择性必修一

空间中直线、平面的平行、垂直教学设计(一)教学内容空间直线、平面间的平行、垂直关系的向量表示,证明直线、平面位置关系的判定定理.(二)教学目标通过用向量方法判断直线与直线、直线与平面、平面与平面的平行、垂直关系.发展用向量方法证明必修内容中有关直线、平面平行、垂直关系的判定定理的能力.提升学生的直观想象、逻辑推理、数学运算等素养.(三)教学重点及难点重点:用向量方法解决空间图形的平行、垂直问题.难点:建立空间图形基本要素与向量之间的关系,如何把立体几何问题转化为空间向量问题.(四)教学过程设计新课导入:因为空间向量可以表示空间中的点、直线、平面,所以自然地会联想到利用空间向量及其运算可以表示“直线与直线”“直线与平面”和“平面与平面”之间的平行、垂直等位置关系,解决此问题的关键是转化为研究直线的方向向量、平面的法向量之间的关系.教材对空间中直线、平面的平行和垂直两种位置关系分开研究,首先研究空间中直线、平面的平行.1.空间中直线、平面的平行问题1:由直线与直线、直线与平面或平面与平面的平行关系,可以得到直线的方向向量、平面的法向量间的什么关系?师生活动:学生思考,教师点拨.问题1.1由直线与直线平行,可以得到直线的方向向量间有什u1l1u2l2的方向向量分别为u,v ,则l 1//l 2u //v u =λv , λ∈R.问题1.2由直线与平面平行、平面与平面平行,可以得到直线与面平行.得出结论:直线与平面平行还可以用直线的方向向量与平面法向量垂直进行,平面平行可以转化为法向量共线,教师可以结合右图启发学生对此进行研究.设计意图: 实现将直线平行与直线的方向向量平行的互相转化,直线和平面的平行与直线的方向向量和平面法向量垂直的转化,平面平行与平面法向量共线的转化. 2.空间中直线、平面的平行例题例2. 已知:如图,a ⊄β,b ⊂β,a ⋂b =P , a //α,b //α. 求证:α//β.师生活动:学生读懂题意,尝试分析解答.老师引导分析.分析:设平面α的法向量为n ,直线a ,b 的方向向量分别为u ,v ,则由已知条件可得n·u =n·v =0,由此可以证明n 与平面β内的任意一个向量垂直,即n 也是β的法向量.学生完成证明, 教师示范解答. 证明:如图,取平面α的法向量n ,直线a ,b 的方向向量u ,v .αn 1βn 2a buvP αnβ因为a //α,b //α, 所以n·u =0,n·v =0.因为a ⊂β,b ⊂β,a ⋂b =P ,所以对任意点Q ∈β,存在x ,y ∈R,使得 PQ ⃗⃗⃗⃗⃗ =xu +yv . 从而n·PQ ⃗⃗⃗⃗⃗ =n·(xu +yv )=xn· u +yn· v =0. 所以,向量n 也是平面β的法向量.故α//β.设计意图:例2是用向量方法证明平面与平面平行的判定定理,设置例2的目的是使学生体会利用法向量证明两个平面平行的一般基本思路.例3.如图在长方体ABCD -A 1B 1C 1D 1中,AB=4,BC=3,CC 1=2. 线段BC 上是否存在点P ,使得A 1P//平面 ACD 1? 师生活动:学生读懂题意,尝试解答.老师引导分析.分析:根据条件建立适当的空间直角坐标系,那么问题中涉及的点、向量B 1C ⃗⃗⃗⃗⃗⃗⃗ ,A 1P ⃗⃗⃗⃗⃗⃗⃗⃗ ,以及平面ACD 1的法向量n 等都可以用坐标表示.如果点P 存在,那么就有n·A 1P ⃗⃗⃗⃗⃗⃗⃗⃗ =0,由此通过向量的坐标运算可得结果.学生完成求解,教师示范解答.解:以D 为原点,DA ,DC ,DD 1,所在直线分别为x轴、y 轴、z 轴,建立如图所示的空间直角坐标系.因为A,C,D 1的坐标分别为(3,0,0),(0,4,0),(0,0,2), 所以AC ⃗⃗⃗⃗⃗ =(-3,4,0),AD ⃗⃗⃗⃗⃗ =(-3,0,2). 设n =(x,y,z )是平面ACD 1的法向量, 则n·AC ⃗⃗⃗⃗⃗ =0,n·AD ⃗⃗⃗⃗⃗ =0,即{−3x +4y =0−3x +2z =0),所以x =23z ,y =12z .取z =6,则x =4,y =3, 所以n =(4,3,6)是平面ACD 1的一个法向量,由A,C,B 1的坐标分别为(3,0,2),(0,4,0),(3,4,2), 得A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(0,4,0),B 1C ⃗⃗⃗⃗⃗⃗⃗ =(-3,0,-2)DABC D 1A 1B 1C 1设点P 满足B 1P ⃗⃗⃗⃗⃗⃗⃗ =λB 1C ⃗⃗⃗⃗⃗⃗⃗ (0<λ≤1), 则B 1P ⃗⃗⃗⃗⃗⃗⃗ =(-3λ,0,-2λ),所以A 1P ⃗⃗⃗⃗⃗⃗⃗⃗ =A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ +B 1P ⃗⃗⃗⃗⃗⃗⃗ =(-3λ,4,-2λ).令n·A 1P ⃗⃗⃗⃗⃗⃗⃗⃗ =0,得-12λ+12-12λ=0,解得λ=12,这样的点P 存在 所以,当B 1P ⃗⃗⃗⃗⃗⃗⃗ =12B 1C ⃗⃗⃗⃗⃗⃗⃗ ,即P 为B 1C 的中点时,A 1P//平面ACD 1.设计意图:例3是用向量方法判断直线与平面平行的问题,设置例3的目的是使学生体会利用法向量和坐标法解决直线与平面平行问题的一般思路.本题也可以利用共面的充要条件求解. 3.空间中直线、平面的垂直问题2:在直线与直线、直线与平面、平面与平面的垂直关系中,直线的方向向量、平面的法向量之间有什么关系?师生活动:教师引导学生结合图形研究线与面垂直,两平面垂直.教师引导学生类比已经经历了研究空间中直线、平面平行的过程,对直线与直线、直线与平面、平面与平面垂直关系的研究可以类似地进行,让学生自主探究,将研究直线、平面间的垂直关系转化为研究直线的方向向量、平面的法向量之间的关系,然后借助图形分别给出直线与直线、直线与平面、平面与平面垂直的向量表达式.问题2.1 直线l 1,l 2的方向向量分别为v 1,v 2,直线l 1,l 2垂直时,方向向量v 1,v 2有什么关系?师生活动:让学生自主探究显现垂直时,直线方向向量v 1,v 2有什么关系,教师展示答案.问题 2.2:由直线与平面的垂直关系,可以得到直线的方向向量、平面的法向量间有什么关系呢?师生活动:让学生自主探究线面垂直时,直线的方向向量、平面的法向量间有什么关系,教师展示答案.问题2.3:由平面与平面的垂直关系,可以得到这两个平面的法向量间有什么关系呢?师生活动:让学生自主探究面面垂直时,两个平面的法向量间有什么关系,教师展示答案.设计意图:让学生自主探究,将研究直线、平面间的垂直关系转化为研究直线的方向向量、平面的法向量之间的关系.然后借助图形分别给出直线与直线、直线与平面、平面与平面垂直的向量表达式,进一步体会空间向量在研究直线、平面间位置关系中的作用. 4.空间中直线、平面的垂直例题例4 如图,在平行六面体ABCD A 1B 1C 1D 1中,AB =AD =AA 1=1, ∠A 1AB =∠A 1AD =∠BAD =60°,求证:直线A 1C ⊥平面BDD 1B 1.师生活动:学生读懂题意,尝试解答,老师引导分析.分析:根据条件建立适当的基底向量,通过向量运算证明直线A 1C ⊥平面BDD 1B 1.证明:设AB a =,AD b =,1AA c =,则{,,}a b c 为空间的一个基底且1AC a b c =+-,BD b a =-,1BB c =.因为AB =AD =AA 1=1, ∠A 1AB =∠A 1AD =∠BAD =60°, 所以2221ab c ===,12a b b c c a ⋅=⋅=⋅=. 在平面BDD 1B 1上,取BD 、1BB 为基向量,则对于面BDD 1B 1上任意一点P ,存在唯一的有序实数对(λ,μ),使得1BP BD BB λμ=+. 所以,1111()()()0AC BP AC BD AC BB a b c b a a b c c λμλμ⋅=⋅+⋅=+-⋅-++-⋅=. 所以1AC 是平面BDD 1B 1的法向量. 所以A 1C ⊥平面BDD 1B 1.设计意图:设置例 4 的目的是使学生体会“基底法”比“坐标法”更具有一般性.教学时要注意让学生体会空间向量基本定理在证明中的作用,体会用空间向量解决问题的一般方法.例 5 证明“平面与平面垂直的判定定理”:若一个平面过另一个平面的垂线,则这两个平面垂直.师生活动:学生读懂题意,尝试解答.老师引导分析,学生完成证明.已知:如图,l⊥α,1⊂β,求证:α⊥β.证明:取直线 l 的方向向量u⃗,平面β的法向量n⃗.因为l⊥α,所以u⃗是平面α的法向量.因为1⊂β,而n⃗是平面β的法向量,所以u⃗⊥n⃗.所以α⊥β.设计意图:设置例 5 的目的是使学生体会利用法向量证明平面与平面垂直的一般思路.教学时要注意突出直线的方向向量和平面的法向量的作用,即通过直线的方向向量和平面的法向量,把直线与直线、直线与平面、平面与平面的关系完全转化为两个向量之间的关系,通过向量的运算,得到空间图形的位置关系.5.课堂小结,反思感悟(1)知识总结:(2)学生反思:①通过这节课,你学到了什么知识?②回顾这节课的学习,空间中用向量法判断直线、平面平行与垂直用的具体方法?③在解决问题时,用到了哪些数学思想?设计意图:通过总结,让学生进一步巩固本节所学内容,提高概括能力,教给学生如何总结,提升学生的数学“学习力”. 6.课堂检测与评价1. 如图,在正方体 ABCD -A 1B 1C 1D 1中,E ,F 分别是面AB 1,面A 1C 1的中心. 求证:EF//平面ACD 1.证明:设正方体的棱长为2,以D 为坐标原点,BA ⃗⃗⃗⃗⃗ , DC ⃗⃗⃗⃗⃗ ,DD 1⃗⃗⃗⃗⃗⃗⃗⃗ ,的方向分别为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系D xyz , 则根据题意A(2,0,0),C( 0,2,0),D 1(0,0,2 ),E( 2,1,1 ), F( 1,1,2 ) 所以EF ⃗⃗⃗⃗⃗ =(−1,0,1),AC ⃗⃗⃗⃗⃗ =(−2,2,0),AD 1⃗⃗⃗⃗⃗⃗⃗ =(−2,0,2), 设n=( x , y ,z )是平面ACD 1的一个法向量,则n ⊥AC ⃗⃗⃗⃗⃗ ,n ⊥AD 1⃗⃗⃗⃗⃗⃗⃗ . 所以{n ⋅AC⃗⃗⃗⃗⃗ =−2x +2y =0n ⋅AD 1⃗⃗⃗⃗⃗⃗⃗ =−2x +2z =0),取x = 1,则y =1,z = 1,所以n = ( 1,1,1 ) 又EF ⃗⃗⃗⃗⃗ ⋅n =(−1,0,1)·(1,1,1)= − 1+1=0,所以EF ⃗⃗⃗⃗⃗ ⊥n , 所以EF 平面ACD 1.2.如图所示,在直三棱柱ABC A 1B 1C 1中,AB ⊥BC ,AB =BC =2,BB 1=1,E 为BB 1的中点,证明:平面AEC 1⊥平面AA 1C 1C .证明:由题意得AB ,BC ,B 1B 两两垂直.以B 为原点,BA ,BC ,BB 1分别为x ,y ,z 轴,建立如图所示的空间直角坐标系.A (2,0,0),A 1(2,0,1),C (0,2,0),C 1(0,2,1),E ⎝⎛⎭⎪⎫0,0,12,则AA 1→=(0,0,1),AC →=(-2,2,0),AC 1→=(-2,2,1),AE →=(-2,0,12). 设平面AA 1C 1C 的一个法向量为n 1=(x 1,y 1,z 1). 则⎩⎨⎧ n 1·AA1→=0,n 1·AC→=0⇒⎩⎪⎨⎪⎧z 1=0,-2x 1+2y 1=0.令x 1=1,得y 1=1.∴n 1=(1,1,0).设平面AEC 1的一个法向量为n 2=(x 2,y 2,z 2). 则⎩⎨⎧n 2·AC 1→=0,n 2·AE→=0⇒⎩⎪⎨⎪⎧-2x 2+2y 2+z 2=0,-2x 2+12z 2=0,令z 2=4,得x 2=1,y 2=-1.∴n 2=(1,-1,4). ∵n 1·n 2=1×1+1×(-1)+0×4=0. ∴n 1⊥n 2,∴平面AEC 1⊥平面AA 1C 1C .设计意图:第一题证明线面平行,第二题用向量法证明面面垂直,恰当建系向量表示后,只需经过向量运算就可得到要证明的结果,思路方法“公式化”,降低了思维难度,可以使学生巩固课上所学习的知识.7.作业布置完成教材:第31页练习第1,2题第33页练习第1,2,3题第41 页习题1.4 第5,8,11题(六)教学反思1.认识与运用向量及其运算中数与形的关联,体会转化思想.教学中应结合几何图形予以探讨,特别要重视平行六面体、长方体模型作用,引导学生借助图形理解它们,注意避免不联系几何意义的死记硬背;2.深化理解向量运算的作用,正是有了向量运算,向量才显示其重要性.要引导学生结合几何问题,关注向量运算在分析解决问题中的作用;3.重视综合方法、基底向量方法、建立坐标系方法各自特点的分析与归纳,综合方法以逻辑推理作为工具解决问题,基底向量方法利用向量的概念及其运算解决问题,坐标方法利用数及其运算来解决问题,坐标方法常与向量运算结合起来使用,根据它们的具体条件和特点选择合适的方法.总之新的教材,让学生经历向量由平面向空间的推广,重视了知识的发生、发展过程,使学生学会数学思考和推理.。
利用空间向量证明空间位置关系

利用空间向量证明立体几何中的平行与垂直问题[考纲要求]1.了解空间直角坐标系,会用空间直角坐标表示点的位置.会简单应用空间两点间的距离公式.2.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.3.掌握空间向量的线性运算及其坐标表示.掌握空间向量的数量积及其坐标表示.能用向量的数量积判断向量的共线和垂直.4.理解直线的方向向量及平面的法向量.能用向量语言表述线线、线面、面面的平行和垂直关系.5.能用向量方法证明立体几何中有关线面位置关系的一些简单定理(包括三垂线定理).知识点一:空间向量及其运算1.空间向量及其有关概念(1)空间向量的有关概念(2)2.(1)非零向量a,b的数量积a·b=|a||b|cos〈a,b〉.(2)空间向量数量积的运算律①结合律:(λa)·b=λ(a·b);②交换律:a·b=b·a;③分配律:a·(b+c)=a·b+a·c.3.空间向量的运算及其坐标表示设a=(a1,a2,a3),b=(b1,b2,b3).[基本能力]1.如图,已知空间四边形ABCD ,则13AB ―→+13BC ―→+13CD ―→等于________.答案:13AD ―→2.已知i ,j ,k 为标准正交基底,a =i +2j +3k ,则a 在i 方向上的投影为________. 答案:13.若空间三点A (1,5,-2),B (2,4,1),C (p,3,q +2)共线,则p =________,q =________. 答案:3 24.已知向量a =(-1,0,1),b =(1,2,3),k ∈R ,若k a -b 与b 垂直,则k =________. 答案:7考法一 空间向量的线性运算[例1] 已知四边形ABCD 为正方形,P 是ABCD 所在平面外一点,P 在平面ABCD 上的射影恰好是正方形的中心O .Q 是CD 的中点,求下列各题中x ,y 的值: (1)O Q ―→=P Q ―→+x PC ―→+y PA ―→; (2)PA ―→=x PO ―→+y P Q ―→+PD ―→.[解] (1)如图,∵O Q ―→=P Q ―→-PO ―→=P Q ―→-12(PA ―→+PC ―→)=P Q ―→-12PA ―→-12PC ―→,∴x =y =-12.(2)∵PA ―→+PC ―→=2PO ―→, ∴PA ―→=2PO ―→-PC ―→.又∵PC ―→+PD ―→=2P Q ―→,∴PC ―→=2P Q ―→-PD ―→.从而有PA ―→=2PO ―→-(2P Q ―→-PD ―→)=2PO ―→-2P Q ―→+PD ―→. ∴x =2,y =-2.考法二 共线、共面向量定理的应用[例2] 已知E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点,用向量方法求证:(1)E ,F ,G ,H 四点共面; (2)BD ∥平面EFGH .[证明] (1)如图,连接BG ,则EG ―→=EB ―→+BG ―→=EB ―→+12(BC ―→+BD ―→)=EB ―→+BF ―→+EH ―→=EF ―→+EH ―→,由共面向量定理知:E ,F ,G ,H 四点共面.(2)因为EH ―→=AH ―→-AE ―→=12AD ―→-12AB ―→=12(AD ―→-AB ―→)=12BD ―→,因为E ,H ,B ,D 四点不共线,所以EH ∥BD . 又EH ⊂平面EFGH ,BD ⊄平面EFGH , 所以BD ∥平面EFGH . [方法技巧]1.证明空间三点P ,A ,B 共线的方法 (1)PA ―→=λPB ―→(λ∈R );(2)对空间任一点O ,OP ―→=OA ―→+t AB ―→(t ∈R ); (3)对空间任一点O ,OP ―→=x OA ―→+y OB ―→(x +y =1). 2.证明空间四点P ,M ,A ,B 共面的方法 (1)MP ―→=xMA ―→+yMB ―→;(2)对空间任一点O ,OP ―→=OM ―→+xMA ―→+yMB ―→;(3)对空间任一点O ,OP ―→=xOM ―→+y OA ―→+z OB ―→(x +y +z =1); (4)PM ―→∥AB ―→ (或PA ―→∥MB ―→或PB ―→∥AM ―→).考法三 空间向量数量积的应用[例3] 如图,正方体ABCD -A1B 1C 1D 1中,E ,F 分别是C 1D 1,D 1D 的中点.若正方体的棱长为1.求cos 〈CE ―→,AF ―→〉. [解] ∵|CE ―→|=C 1E 2+CC 21=14+1=52=|AF ―→|, ∴CE ―→·AF ―→=|CE ―→||AF ―→|cos 〈CE ―→,AF ―→〉=54cos 〈CE ―→,AF ―→〉.又∵CE ―→=CC 1―→+C 1E ―→,AF ―→=AD ―→+DF ―→, ∴CE ―→·AF ―→=(CC 1―→+C 1E ―→)·(AD ―→+DF ―→)=CC 1―→·AD ―→+C 1E ―→·AD ―→+CC 1―→·DF ―→+C 1E ―→·DF ―→=|CC 1―→||DF ―→|=1×12=12.∴cos 〈CE ―→,AF ―→〉=25.[方法技巧] 空间向量数量积的3个应用[集训冲关]OA ―→=a ,OB ―→=b ,1.[考法一]已知三棱锥O -ABC ,点M ,N 分别为AB ,OC 的中点,且OC ―→=c ,用a ,b ,c 表示MN ―→,则MN ―→等于( ) A.12(b +c -a ) B.12(a +b +c ) C.12(a -b +c ) D.12(c -a -b ) 解析:选D MN ―→=MA ―→+AO ―→+ON ―→=12BA ―→+AO ―→+12OC ―→=12(OA ―→-OB ―→)+AO ―→+12OC ―→=-12OA ―→-12OB ―→+12OC ―→=12(c -a -b ).2.[考法二]O 为空间任意一点,若OP ―→=34OA ―→+18OB ―→+18OC ―→,则A ,B ,C ,P 四点( )A .一定不共面B .一定共面C .不一定共面D .无法判断解析:选B 因为OP ―→=34OA ―→+18OB ―→+18OC ―→,且34+18+18=1.所以P ,A ,B ,C 四点共面.∠AOC =π3,3.[考法三]如图所示,已知空间四边形OABC ,OB =OC ,且∠AOB =则cos 〈OA ―→,BC ―→〉的值为________. 解析:设OA ―→=a ,OB ―→=b ,OC ―→=c , 由已知条件,得〈a ,b 〉=〈a ,c 〉=π3,且|b |=|c |,OA ―→·BC ―→=a ·(c -b )=a ·c -a ·b =12|a ||c |-12|a ||b |=0, ∴OA ―→⊥BC ―→,∴cos 〈OA ―→,BC ―→〉=0. 答案:0知识点二: 利用空间向量证明平行与垂直1.两个重要向量2.空间中平行、垂直关系的向量表示设直线l ,m 的方向向量分别为a ,b ,平面α,β的法向量分别为n 1,n 2,则一、判断题(对的打“√”,错的打“×”) (1)直线的方向向量是唯一确定的.( )(2)已知AB ―→=(2,2,1),AC ―→=(4,5,3),则平面ABC 的单位法向量是n 0=±⎝⎛⎭⎫13,-23,23.( ) (3)两条不重合的直线l 1和l 2的方向向量分别为v 1=(1,0,-1),v 2=(-2,0,2),则l 1与l 2的位置关系是平行.( ) (4)若n 1,n 2分别是平面α,β的法向量,则n 1∥n 2⇔α∥β.( ) 答案:(1)× (2)√ (3)√ (4)× 二、填空题1.已知直线l 1的一个方向向量为(-7,3,4),直线l 2的一个方向向量为(x ,y,8),且l 1∥l 2,则x =________, y =________. 答案:-14 62.若平面α的一个法向量为n 1=(-3,y,2),平面β的一个法向量为n 2=(6,-2,z ),且α∥β,则y +z =________. 答案:-33.若直线l 的方向向量为a =(1,0,2),平面α的法向量为n =(-3,0,-6),则l 与α的位置关系是________. 答案:l ⊥α考法一 向量法证明平行与垂直关系[例1] 如图,在四棱锥P -ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD =DC ,E 是PC 的中点,作EF ⊥PB 于点F . (1)证明:PA ∥平面EDB ; (2)证明:PB ⊥平面EFD .证明:如图所示,建立空间直角坐标系,D 是坐标原点, 设DC =a .(1)连接AC 交BD 于G ,连接EG .依题意得A (a,0,0),P (0,0,a ),E ⎝⎛⎭⎫0,a 2,a2.∵底面ABCD 是正方形, ∴G 是此正方形的中心. 故点G 的坐标为⎝⎛⎭⎫a 2,a 2,0,且PA ―→=(a,0,-a ),EG ―→=⎝⎛⎭⎫a2,0,-a 2, ∴PA ―→=2EG ―→,∴PA ∥EG .又∵EG ⊂平面EDB 且PA ⊄平面EDB , ∴PA ∥平面EDB .(2)依题意得B (a ,a,0),PB ―→=(a ,a ,-a ),DE ―→=⎝⎛⎭⎫0,a 2,a 2, 故PB ―→·DE ―→=0+a 22-a 22=0,∴PB ⊥DE ,又∵EF ⊥PB ,且EF ∩DE =E , ∴PB ⊥平面EFD . [方法技巧]1.利用空间向量证明平行的方法2.[提醒]来证明线面平行时,仍需强调直线在平面外. [针对训练]已知正方体ABCD -A 1B 1C 1D 1的棱长为2,E ,F 分别是BB 1,DD 1的中点,求证: (1)FC 1∥平面ADE ; (2)平面ADE ∥平面B 1C 1F . 证明:建立空间直角坐标系如图,则有D (0,0,0),A (2,0,0),C (0,2,0),C 1(0,2,2),E (2,2,1),F (0,0,1),B 1(2,2,2),所以FC 1―→=(0,2,1),DA ―→=(2,0,0),AE ―→=(0,2,1). (1)设n 1=(x 1,y 1,z 1)是平面ADE 的法向量,则⎩⎪⎨⎪⎧ n 1⊥DA ―→,n 1⊥AE ―→,即⎩⎪⎨⎪⎧n 1·DA ―→=2x 1=0,n 1·AE ―→=2y 1+z 1=0,得⎩⎪⎨⎪⎧x 1=0,z 1=-2y 1,令z 1=2,则y 1=-1,所以n 1=(0,-1,2). 因为FC 1―→·n 1=-2+2=0,所以FC 1―→⊥n , 又因为FC 1⊄平面ADE ,所以FC 1∥平面ADE . (2)∵C 1B 1―→=(2,0,0),设n 2=(x 2,y 2,z 2)是平面B 1C 1F 的一个法向量,由⎩⎪⎨⎪⎧ n 2⊥FC 1―→,n 2⊥C 1B 1―→,得⎩⎪⎨⎪⎧n 2·FC 1―→=2y 2+z 2=0,n 2·C 1B 1―→=2x 2=0,得⎩⎪⎨⎪⎧x 2=0,z 2=-2y 2.令z 2=2,得y 2=-1,所以n 2=(0,-1,2),因为n 1=n 2, 所以平面ADE ∥平面B 1C 1F .考法二 向量法解决垂直、平行关系中的探索性问题[例2] 如图所示,在正方体ABCD -A 1B 1C 1D 1中,E 是棱DD 1的中点.在棱C 1D 1上是否存在一点F ,使B 1F ∥平面A 1BE ?证明你的结论. [解] 依题意,建立如图所示的空间直角坐标系, 设正方体ABCD -A 1B 1C 1D 1的棱长为1,则A 1(0,0,1),B (1,0,0),B 1(1,0,1),E ⎝⎛⎭⎫0,1,12,BA 1―→=(-1,0,1),BE ―→=⎝⎛⎭⎫-1,1,12. 设n =(x ,y ,z )是平面A 1BE 的一个法向量, 则由⎩⎪⎨⎪⎧ n ·BA 1―→=0,n ·BE ―→=0,得⎩⎪⎨⎪⎧-x +z =0,-x +y +12z =0. 所以x =z ,y =12z .取z =2,得n =(2,1,2).设棱C 1D 1上存在点F (t,1,1)(0≤t ≤1)满足条件,又因为B 1(1,0,1), 所以B 1F ―→=(t -1,1,0). 而B 1F ⊄平面A 1BE ,于是B 1F ∥平面A 1BE ⇔B 1F ―→·n =0⇔(t -1,1,0)·(2,1,2)=0⇔2(t -1)+1=0⇔t =12⇔F 为C 1D 1的中点.这说明在棱C 1D 1上存在点F (C 1D 1的中点),使B 1F ∥平面A 1BE . [方法技巧]向量法解决与垂直、平行有关的探索性问题的思路(1)根据题设条件中的垂直关系,建立适当的空间直角坐标系,将相关点、相关向量用坐标表示.(2)假设所求的点或参数存在,并用相关参数表示相关点的坐标,根据线、面满足的垂直、平行关系,构建方程(组)求解,若能求出参数的值且符合该限定的范围,则存在,否则不存在. [针对训练]在正方体ABCD -A 1B 1C 1D 1中,E 是棱BC 的中点,则在线段CC 1上是否存在一点P ,使得平面A 1B 1P ⊥平面C 1DE ?证明你的结论.解:存在点P ,当点P 为CC 1的中点时,平面A 1B 1P ⊥平面C 1DE .证明如下:如图,以D 点为原点,建立空间直角坐标系. 设正方体的棱长为1,P (0,1,a )(0≤a ≤1),则D (0,0,0),A 1(1,0,1),B 1(1,1,1),E ⎝⎛⎭⎫12,1,0,C 1(0,1,1), ∴A 1B 1―→=(0,1,0),A 1P ―→=(-1,1,a -1), DE ―→=⎝⎛⎭⎫12,1,0,DC 1―→=(0,1,1). 设平面A 1B 1P 的一个法向量n 1=(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧n 1·A 1B 1―→=0,n 1·A 1P ―→=0,∴⎩⎪⎨⎪⎧y 1=0,-x 1+y 1+(a -1)z 1=0,令z 1=1,则x 1=a -1, ∴n 1=(a -1,0,1).设平面C 1DE 的一个法向量n 2=(x 2,y 2,z 2), 则⎩⎪⎨⎪⎧ n 2·DE ―→=0,n 2·DC 1―→=0,∴⎩⎪⎨⎪⎧12x 2+y 2=0,y 2+z 2=0.令y 2=1,得x 2=-2,z 2=-1, ∴n 2=(-2,1,-1). 若平面A 1B 1P ⊥平面C 1DE ,则n 1·n 2=0,∴-2(a -1)-1=0,解得a =12.∴当P 为C 1C 的中点时,平面A 1B 1P ⊥平面C 1DE .[课时跟踪检测]1.在下列命题中:①若向量a ,b 共线,则向量a ,b 所在的直线平行;②若向量a ,b 所在的直线为异面直线,则向量a ,b 一定不共面; ③若三个向量a ,b ,c 两两共面,则向量a ,b ,c 共面;④已知空间的三个向量a ,b ,c ,则对于空间的任意一个向量p 总存在实数x ,y ,z 使得p =x a +y b +z c . 其中正确命题的个数是( ) A .0 B .1 C .2D .3解析:选A a 与b 共线,a ,b 所在直线也可能重合,故①不正确;根据自由向量的意义知,空间任意两向量a ,b 都共面,故②错误;三个向量a ,b ,c 中任意两个一定共面,但它们三个却不一定共面,故③不正确;只有当a ,b ,c 不共面时,空间任意一向量p 才能表示为p =x a +y b +z c ,故④不正确,综上可知四个命题中正确的个数为0,故选A.的交点.若AB ―→=a ,2.如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1AD ―→=b ,AA 1―→=c ,则下列向量中与BM ―→相等的向量是( ) A .-12a +12b +c B.12a +12b +cC .-12a -12b +c D.12a -12b +c解析:选A BM ―→=BB 1―→+B 1M ―→=AA 1―→+12(AD ―→-AB ―→)=c +12(b -a )=-12a +12b +c .3.已知空间任意一点O 和不共线的三点A ,B ,C ,若OP ―→=x OA ―→+y OB ―→+z OC ―→(x ,y ,z ∈R ),则“x =2,y =-3,z =2”是“P ,A ,B ,C 四点共面”的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件 D .既不充分也不必要条件解析:选B 当x =2,y =-3,z =2时,OP ―→=2OA ―→-3OB ―→+2OC ―→.则AP ―→-AO ―→=2OA ―→-3(AB ―→-AO ―→)+2(AC ―→-AO ―→),即AP ―→=-3AB ―→+2AC ―→,根据共面向量定理知,P ,A ,B ,C 四点共面;反之,当P ,A ,B ,C 四点共面时,根据共面向量定理,设AP ―→=m AB ―→+n AC ―→ (m ,n ∈R ),即OP ―→-OA ―→=m (OB ―→-OA ―→)+n (OC ―→-OA ―→),即OP ―→=(1-m -n )OA ―→+m OB ―→+n OC ―→,即x =1-m -n ,y =m ,z =n ,这组数显然不止2,-3,2.故“x =2,y =-3,z =2”是“P ,A ,B ,C 四点共面”的充分不必要条件.4.已知a =(2,1,-3),b =(-1,2,3),c =(7,6,λ),若a ,b ,c 三向量共面,则λ=( ) A .9 B .-9 C .-3D .3解析:选B 由题意设c =x a +y b ,则(7,6,λ)=x (2,1,-3)+y (-1,2,3), ∴⎩⎪⎨⎪⎧2x -y =7,x +2y =6,-3x +3y =λ,解得λ=-9.5.(2019·东营质检)已知A (1,0,0),B (0,-1,1),OA ―→+λOB ―→与OB ―→的夹角为120°,则λ的值为( ) A .±66B .66C .-66D .±6解析:选C OA ―→+λOB ―→=(1,-λ,λ),cos 120°=λ+λ1+2λ2·2=-12,得λ=±66.经检验λ=66不合题意,舍去,所以λ=-66. 6.在空间四边形ABCD 中,则AB ―→·CD ―→+AC ―→·DB ―→+AD ―→·BC ―→的值为( ) A .-1 B .0 C .1D .2解析:选B 法一:如图,令AB ―→=a ,AC ―→=b ,AD ―→=c ,则AB ―→·CD ―→+AC ―→·DB ―→+AD ―→·BC ―→=AB ―→·(AD ―→-AC ―→)+AC ―→·(AB ―→-AD ―→)+AD ―→·(AC ―→-AB ―→) =a ·(c -b )+b ·(a -c )+c ·(b -a ) =a ·c -a ·b +b ·a -b ·c +c ·b -c ·a =0.法二:在三棱锥A -BCD 中,不妨令其各棱长都相等,则正四面体的对棱互相垂直. 所以AB ―→·CD ―→=0,AC ―→·DB ―→=0,AD ―→·BC ―→=0. 所以AB ―→·CD ―→+AC ―→·DB ―→+AD ―→·BC ―→=0.7.△ABC 的顶点分别为A (1,-1,2),B (5,-6,2),C (1,3,-1),则AC 边上的高BD 等于________. 解析:设AD ―→=λAC ―→,D (x ,y ,z ), 则(x -1,y +1,z -2)=λ(0,4,-3), ∴x =1,y =4λ-1,z =2-3λ, ∴D (1,4λ-1,2-3λ), ∴BD ―→=(-4,4λ+5,-3λ), ∴4(4λ+5)-3(-3λ)=0,解得λ=-45,∴BD ―→=⎝⎛⎭⎫-4,95,125,∴|BD ―→|=(-4)2+⎝⎛⎭⎫952+⎝⎛⎭⎫1252=5.答案:5 8.已知点P 是平行四边形ABCD 所在的平面外一点,如果AB ―→=(2,-1,-4),AD ―→=(4,2,0),AP ―→=(-1,2,-1).对于结论:①AP ⊥AB ;②AP ⊥AD ;③AP ―→是平面ABCD 的法向量;④AP ―→∥BD ―→.其中正确的是________.解析:∵AP ―→·AB ―→=-2-2+4=0,∴AP ⊥AB ,故①正确;AP ―→·AD ―→=-4+4+0=0,∴AP ⊥AD ,故②正确;由①②知AP ⊥平面ABCD ,故③正确,④不正确.答案:①②③9.(2019·南昌调研)已知空间四边形OABC ,其对角线为OB ,AC ,M ,N 分别是OA ,BC 的中点,点G 在线段MN 上,且MG ―→=2GN ―→,现用基底{OA ―→,OB ―→,OC ―→}表示向量OG ―→,有OG ―→=x OA ―→+y OB ―→+z OC ―→,则x ,y ,z 的值分别为________.解析:∵OG ―→=OM ―→+MG ―→=12OA ―→+23MN ―→ =12OA ―→+23(ON ―→-OM ―→) =12OA ―→+23⎣⎡⎦⎤12(OB ―→+OC ―→)-12OA ―→ =16OA ―→+13OB ―→+13OC ―→, ∴x =16,y =13,z =13. 答案:16,13,1310.在长方体ABCD -A 1B 1C 1D 1中,AB =3,AD =4,AA 1=2.点M 在棱BB 1上,且BM =2MB 1,点S 在DD 1上,且SD 1=2SD ,点N ,R 分别为A 1D 1,BC 的中点.求证:MN ∥平面RSD .M ⎝⎛⎭⎫3,0,43,证明:法一:如图所示,建立空间直角坐标系,根据题意得N (0,2,2),R (3,2,0),S ⎝⎛⎭⎫0,4,23. ∴MN ―→=⎝⎛⎭⎫-3,2,23,RS ―→=⎝⎛⎭⎫-3,2,23,MN ―→=RS ―→. ∴MN ―→∥RS ―→.∵M ∉RS .∴MN ∥RS .又RS ⊂平面RSD ,MN ⊄平面RSD ,∴MN ∥平面RSD .法二:设AB ―→=a ,AD ―→=b ,AA 1―→=c ,则MN ―→=MB 1―→+B 1A 1―→+A 1N ―→=13c -a +12b , RS ―→=RC ―→+CD ―→+DS ―→=12b -a +13c , ∴MN ―→=RS ―→,∴MN ―→∥RS ―→,又∵R ∉MN ,∴MN ∥RS .又RS ⊂平面RSD ,MN ⊄平面RSD ,∴MN ∥平面RSD .11.三棱锥被平行于底面ABC 的平面所截得的几何体如图所示,截面为A 1B 1C 1,∠BAC=90°,A 1A ⊥平面ABC ,A 1A =3,AB =AC =2A 1C 1=2,D 为BC 中点. 求证:平面A 1AD ⊥平面BCC 1B 1.证明:如图,建立空间直角坐标系,则A (0,0,0),B (2,0,0),C (0,2,0),A1(0,0,3),C 1(0,1,3),∵D 为BC 的中点,∴D 点坐标为(1,1,0).∴AA 1―→=(0,0,3),AD ―→=(1,1,0),BC ―→=(-2,2,0),CC 1―→=(0,-1,3).设平面A 1AD 的法向量n 1=(x 1,y 1,z 1),平面BCC 1B 1的法向量为n 2=(x 2,y 2,z 2).由⎩⎪⎨⎪⎧n 1·AA 1―→=0,n 1·AD ―→=0,得⎩⎨⎧ 3z 1=0,x 1+y 1=0. 令y 1=-1,则x 1=1,z 1=0,∴n 1=(1,-1,0).由⎩⎪⎨⎪⎧ n 2·BC ―→=0,n 2·CC 1―→=0,得⎩⎨⎧-2x 2+2y 2=0,-y 2+3z 2=0. 令y 2=1,则x 2=1,z 2=33, ∴n 2=⎝⎛⎭⎫1,1,33. ∵n 1·n 2=1-1+0=0,∴n 1⊥n 2.∴平面A 1AD ⊥平面BCC 1B 1.面边长的2倍,12.如图所示,四棱锥S -ABCD 的底面是正方形,每条侧棱的长都是底点P 为侧棱SD 上的点.(1)求证:AC ⊥SD ;(2)若SD ⊥平面PAC ,则侧棱SC 上是否存在一点E ,使得BE ∥平面PAC .若存在,求SE ∶EC 的值;若不存在,试说明理由.解:(1)证明:连接BD ,设AC 交BD 于点O ,则AC ⊥BD .连接SO ,由题意知SO ⊥平面ABCD .以O 为坐标原点,OB ―→,OC ―→,OS ―→所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,如图.设底面边长为a ,则高SO =62a , 于是S ⎝⎛⎭⎫0,0,62a ,D ⎝⎛⎭⎫-22a ,0,0,B ⎝⎛⎭⎫22a ,0,0,C ⎝⎛⎭⎫0,22a ,0, OC ―→=⎝⎛⎭⎫0,22a ,0,SD ―→=⎝⎛⎭⎫-22a ,0,-62a , 则OC ―→·SD ―→=0.故OC ⊥SD .从而AC ⊥SD .(2)棱SC 上存在一点E ,使BE ∥平面PAC .理由如下:由已知条件知DS ―→是平面PAC 的一个法向量,且DS ―→=⎝⎛⎭⎫22a ,0,62a ,CS ―→=⎝⎛⎭⎫0,-22a ,62a ,BC ―→=⎝⎛⎭⎫-22a ,22a ,0. 设CE ―→=t CS ―→,则BE ―→=BC ―→+CE ―→=BC ―→+t CS ―→=⎝⎛⎭⎫-22a ,22a (1-t ),62at , 而BE ―→·DS ―→=0⇒t =13. 即当SE ∶EC =2∶1时,BE ―→⊥DS ―→.而BE ⊄平面PAC ,故BE ∥平面PAC .。
立体几何中的向量方法解决平行问题

设a (a1, a2, a3),b (b1,b2,b3)则
a b (a 1b1,a2 b2 ,a3 b3 ) ; a b (a1b1,a2 b2 ,a3 b3 ) ;
a (a1,a2,a3),( R) ; a b a1b1 a2b2 a3b3 ;
B1C1的中点,求证:MN∥平面A1BD
法2:
∵ MN
C1 N
C1M
1 2
C1B1
1 2
C1C
1
1
2 (D1 A1 D1D) 2 DA1,
D! A!
C! N B! M
∴MN ∥ DA1,∴MN ∥平面A 1B D
法3:∵ MN
C1 N
C1M
1 2
D1 A1
1 2
D1 D
D A
C B
1
1
2 (DB BA) 2 (D1 A1 A1D)
分析:证明线面问题,可利用三 种方法:一是证明 MN与平面 A1BD的法向量垂直;二是在平 面A1BD内找一向量与 MN
平行;三是证明 MN可以用平面 A1BD中的两不共线向量线性 表示.
D! A!
D A
C! N B! M
C B
例1 如图,在正方形ABCD-A1B1C1D1中,M,N分别是C1C、
C y
B
则
n
DA1
0且n
DB
0,
得
x x
z y
0 0
取x=1,得y=-1,z=-1, ∴n (1, 1, 1)
又 MN n ( 1 , 0, 1 ) (1, 1, 1) 0,∴ MN ⊥ n 22
∴ MN ∥ 平面A1BD
例1 如图,在正方形ABCD-A1B1C1D1中,M,N分别是C1C、
高中数学论文:利用空间向量证明线面平行问题

利用空间向量证明线面平行问题向量是高中数学的新增内容,是一个具有代数与几何双重属性的量,为我们用代数方法研究几何问题提供了强有力的工具。
线面平行是立体几何的一个重要内容,是面面平行等内容的基础,也是学生学习的一个难点和重点,若我们能充分应用好向量这个工具的特点,发挥它的双重属性,能起到事半功倍的效果。
一、应用空间共线向量定理:由平面外的一条直线和平面内一条直线共线,得到线面平行。
例1 、(2004年天津)在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD 底面ABCD,PD=DC,E是PC的中点。
证明:PA//平面EDB。
证明:如图所示建立空间直角坐标系D为坐标原点,设DC=a,连结AC,AC交BD于G,连结EG 。
依题意得A (a ,0,0),P (0,0,a ),E (0,2a ,2a )。
底面ABCD 是正方形,G 是此正方形的中心,则点G 的坐标为(2a ,2a ,0),∴PA =(a ,0,-a ),EG =(2a ,0,-2a )∴=2EG , P ∉EG ,∴PA//EG ,而EG ⊂平面EDB ,PA ⊄平面EDB ,∴PA//平面EDB 。
二、应用向量平行于平面和空间向量共面定理,我们可得到如下的性质:如图,已知直线L 不在平面α内,取直线L 上的任一非零向量,平面α中存在两个不共线向量,,若存在唯一的实数对λ1,λ2,使得=λ1+λ2,则L//α。
证明:由n =λ1a +λ2b 知n ,a 与b 共面,因此n //α,由直线L 不在平面α内得到L//α。
例2 、已知平行四边形ABCD ,P 为平行四边形ABCD 所在平面外一点,M ,N 分别为PC ,PB 的中点;求证:MN//面PAB 。
D证明:构造向量MN ,AP ,AB ,PC 和CB 。
=21(+)=21(—+)=21(—) ∴ MN//面PAB例3、 已知四边形ABCD 是正方形,S 是平面ABCD 外一点,且SA=SB=SC=SD ,SP:PD=1:2,SN: NA=2:1,SM:MC=2:1。
用空间向量解立体几何问题方法归纳

用空间向量解立体几何问题方法归纳(总16页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--用空间向量解立体几何题型与方法平行垂直问题基础知识直线l 的方向向量为a =(a 1,b 1,c 1).平面α,β的法向量u =(a 3,b 3,c 3),v =(a 4,b 4,c 4) (1)线面平行:l ∥α⇔a ⊥u ⇔a ·u =0⇔a 1a 3+b 1b 3+c 1c 3=0 (2)线面垂直:l ⊥α⇔a ∥u ⇔a =k u ⇔a 1=ka 3,b 1=kb 3,c 1=kc 3 (3)面面平行:α∥β⇔u ∥v ⇔u =k v ⇔a 3=ka 4,b 3=kb 4,c 3=kc 4 (4)面面垂直:α⊥β⇔u ⊥v ⇔u ·v =0⇔a 3a 4+b 3b 4+c 3c 4=0例1、如图所示,在底面是矩形的四棱锥P -ABCD 中,PA ⊥底面ABCD ,E ,F 分别是PC ,PD 的中点,PA =AB =1,BC =2.(1)求证:EF ∥平面PAB ; (2)求证:平面PAD ⊥平面PDC .[证明] 以A 为原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系如图所示,则A (0,0,0),B (1,0,0),C (1,2,0),D (0,2,0),P (0,0,1),所以E ⎝ ⎛⎭⎪⎫12,1,12,F ⎝ ⎛⎭⎪⎫0,1,12,EF =⎝ ⎛⎭⎪⎫-12,0,0,PB =(1,0,-1),PD =(0,2,-1),AP =(0,0,1),AD =(0,2,0),DC =(1,0,0),AB =(1,0,0).(1)因为EF =-12AB ,所以EF ∥AB ,即EF ∥AB . 又AB ⊂平面PAB ,EF ⊄平面PAB ,所以EF ∥平面PAB .(2)因为AP ·DC =(0,0,1)·(1,0,0)=0,AD ·DC =(0,2,0)·(1,0,0)=0, 所以AP ⊥DC ,AD ⊥DC ,即AP ⊥DC ,AD ⊥DC .又AP ∩AD =A ,AP ⊂平面PAD ,AD ⊂平面PAD ,所以DC ⊥平面PAD .因为DC ⊂平面PDC , 所以平面P AD ⊥平面PDC .使用空间向量方法证明线面平行时,既可以证明直线的方向向量和平面内一条直线的方向向量平行,然后根据线面平行的判定定理得到线面平行,也可以证明直线的方向向量与平面的法向量垂直;证明面面垂直既可以证明线线垂直,然后使用判定定理进行判定,也可以证明两个平面的法向量垂直.例2、在直三棱柱ABC -A 1B 1C 1中,∠ABC =90°,BC =2,CC 1=4,点E 在线段BB 1上,且EB 1=1,D ,F ,G 分别为CC 1,C 1B 1,C 1A 1的中点.求证:(1)B 1D ⊥平面ABD ; (2)平面EGF ∥平面ABD .证明:(1)以B 为坐标原点,BA 、BC 、BB 1所在的直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,如图所示,则B (0,0,0),D (0,2,2),B 1(0,0,4),设BA =a ,则A (a,0,0),所以BA =(a,0,0),BD =(0,2,2),1B D =(0,2,-2),1B D ·BA =0,1B D ·BD =0+4-4=0,即B 1D ⊥BA ,B 1D ⊥BD . 又BA ∩BD =B ,因此B 1D ⊥平面ABD .(2)由(1)知,E (0,0,3),G ⎝ ⎛⎭⎪⎫a 2,1,4,F (0,1,4),则EG =⎝ ⎛⎭⎪⎫a 2,1,1,EF =(0,1,1),1B D ·EG =0+2-2=0,1B D ·EF =0+2-2=0,即B 1D ⊥EG ,B 1D ⊥EF . 又EG ∩EF =E ,因此B 1D ⊥平面EGF . 结合(1)可知平面EGF ∥平面ABD . 利用空间向量求空间角基础知识(1)向量法求异面直线所成的角:若异面直线a ,b 的方向向量分别为a ,b ,异面直线所成的角为θ,则cos θ=|cos 〈a ,b 〉|=|a·b ||a ||b |.(2)向量法求线面所成的角:求出平面的法向量n ,直线的方向向量a ,设线面所成的角为θ,则sin θ=|cos 〈n ,a 〉|=|n·a ||n ||a |.(3)向量法求二面角:求出二面角α-l -β的两个半平面α与β的法向量n 1,n 2,若二面角α-l -β所成的角θ为锐角,则cos θ=|cos 〈n 1,n 2〉|=|n 1·n 2||n 1||n 2|;若二面角α-l -β所成的角θ为钝角,则cos θ=-|cos 〈n 1,n 2〉|=-|n 1·n 2||n 1||n 2|.例1、如图,在直三棱柱A 1B 1C 1-ABC 中,AB ⊥AC ,AB =AC =2,A 1A =4,点D 是BC 的中点.(1)求异面直线A 1B 与C 1D 所成角的余弦值; (2)求平面ADC 1与平面ABA 1所成二面角的正弦值.[解] (1)以A 为坐标原点,建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0),B (2,0,0),C (0,2,0),D (1,1,0),A 1(0,0,4),C 1(0,2,4),所以1A B =(2,0,-4),1C D =(1,-1,-4).因为cos 〈1A B ,1C D 〉=1A B ·1C D| 1A B ||1C D |=1820×18=31010,所以异面直线A 1B 与C 1D 所成角的余弦值为31010.(2)设平面ADC 1的法向量为n 1=(x ,y ,z ),因为AD =(1,1,0),1AC =(0,2,4),所以n 1·AD =0,n 1·1AC =0,即x +y =0且y +2z =0,取z =1,得x =2,y =-2,所以,n 1=(2,-2,1)是平面ADC 1的一个法向量.取平面ABA 1的一个法向量为n 2=(0,1,0).设平面ADC 1与平面ABA 1所成二面角的大小为θ.由|cos θ|=⎪⎪⎪⎪⎪⎪n 1·n 2|n 1||n 2|=29×1=23,得sin θ=53.因此,平面ADC 1与平面ABA 1所成二面角的正弦值为53.例2、如图,三棱柱ABC -A 1B 1C 1中,CA =CB ,AB =AA 1,∠BAA 1=60°. (1)证明:AB ⊥A 1C ;(2)若平面ABC ⊥平面AA 1B 1B ,AB =CB ,求直线A 1C 与平面BB 1C 1C 所成角的正弦值. [解] (1)证明:取AB 的中点O ,连接OC ,OA 1,A 1B . 因为CA =CB ,所以OC ⊥AB .由于AB =AA 1,∠BAA 1=60°,故△AA 1B 为等边三角形,所以OA 1⊥AB . 因为OC ∩OA 1=O ,所以AB ⊥平面OA 1C . 又A 1C ⊂平面OA 1C ,故AB ⊥A 1C .(2)由(1)知OC ⊥AB ,OA 1⊥AB .又平面ABC ⊥平面AA 1B 1B ,交线为AB , 所以OC ⊥平面AA 1B 1B ,故OA ,OA 1,OC 两两相互垂直.以O 为坐标原点,OA 的方向为x 轴的正方向,|OA |为单位长,建立如图所示的空间直角坐标系O -xyz . 由题设知A (1,0,0),A 1(0,3,0),C (0,0,3),B (-1,0,0).则BC =(1,0,3),1BB =1AA =(-1,3,0),1A C =(0,-3,3).设n =(x ,y ,z )是平面BB 1C 1C 的法向量, 则⎩⎪⎨⎪⎧n ·BC =0,n ·1BB =0.即⎩⎪⎨⎪⎧x +3z =0,-x +3y =0. 可取n =(3,1,-1).故cosn ,1A C=n ·1A C|n ||1A C |=-105.所以A 1C 与平面BB 1C 1C 所成角的正弦值为105.(1)运用空间向量坐标运算求空间角的一般步骤:①建立恰当的空间直角坐标系;②求出相关点的坐标;③写出向量坐标;④结合公式进行论证、计算;⑤转化为几何结论. (2)求空间角应注意:①两条异面直线所成的角α不一定是直线的方向向量的夹角β,即cos α=|cos β|. ②两平面的法向量的夹角不一定是所求的二面角,有可能两法向量夹角的补角为所求. 例3、如图,在四棱锥S -ABCD 中,AB ⊥AD ,AB ∥CD ,CD =3AB =3,平面SAD ⊥平面ABCD ,E 是线段AD 上一点,AE =ED =3,SE ⊥AD . (1)证明:平面SBE ⊥平面SEC ;(2)若SE =1,求直线CE 与平面SBC 所成角的正弦值.解:(1)证明:∵平面SAD ⊥平面ABCD ,平面SAD ∩平面ABCD =AD ,SE ⊂平面SAD ,SE ⊥AD ,∴SE ⊥平面ABCD . ∵BE ⊂平面ABCD ,∴SE ⊥BE . ∵AB ⊥AD ,AB ∥CD , CD =3AB =3,AE =ED =3,∴∠AEB =30°,∠CED =60°. ∴∠BEC =90°, 即BE ⊥CE . 又SE ∩CE =E ,∴BE ⊥平面SEC . ∵BE ⊂平面SBE , ∴平面SBE ⊥平面SEC .(2)由(1)知,直线ES ,EB ,EC 两两垂直.如图,以E 为原点,EB 为x 轴,EC 为y 轴,ES 为z 轴,建立空间直角坐标系.则E (0,0,0),C (0,23,0),S (0,0,1),B (2,0,0),所以CE =(0,-23,0),CB =(2,-23,0),CS =(0,-23,1).设平面SBC 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ n ·CB =0,n ·CS =0.即⎩⎪⎨⎪⎧2x -23y =0,-23y +z =0.令y =1,得x =3,z =23, 则平面SBC 的一个法向量为n =(3,1,23). 设直线CE 与平面SBC 所成角的大小为θ,则sin θ=|n ·CE |n |·|CE ||=14,故直线CE 与平面SBC 所成角的正弦值为14. 例4、如图是多面体ABC -A 1B 1C 1和它的三视图.(1)线段CC 1上是否存在一点E ,使BE ⊥平面A 1CC 1若不存在,请说明理由,若存在,请找出并证明;(2)求平面C 1A 1C 与平面A 1CA 夹角的余弦值.解:(1)由题意知AA 1,AB ,AC 两两垂直,建立如图所示的空间直角坐标系,则A (0,0,0),A 1(0,0,2),B (-2,0,0),C (0,-2,0),C 1(-1,-1,2),则1CC =(-1,1,2),11A C =(-1,-1,0),1A C =(0,-2,-2).设E (x ,y ,z ),则CE =(x ,y +2,z ),1EC =(-1-x ,-1-y,2-z ).设CE =λ1EC (λ>0), 则⎩⎪⎨⎪⎧x =-λ-λx ,y +2=-λ-λy ,z =2λ-λz ,则E ⎝⎛⎭⎪⎪⎫-λ1+λ,-2-λ1+λ,2λ1+λ, BE =⎝ ⎛⎭⎪⎪⎫2+λ1+λ,-2-λ1+λ,2λ1+λ.由⎩⎪⎨⎪⎧BE ·11A C =0, BE ·1A C =0,得⎩⎪⎨⎪⎧-2+λ1+λ+2+λ1+λ=0,-2-λ1+λ+2λ1+λ=0,解得λ=2,所以线段CC 1上存在一点E ,CE =21EC ,使BE ⊥平面A 1CC 1.(2)设平面C 1A 1C 的法向量为m =(x ,y ,z ),则由⎩⎪⎨⎪⎧ m ·11A C =0,m ·1A C =0,得⎩⎪⎨⎪⎧-x -y =0,-2y -2z =0,取x =1,则y =-1,z =1.故m =(1,-1,1),而平面A 1CA 的一个法向量为n =(1,0,0), 则cos 〈m ,n 〉=m ·n |m ||n |=13=33,故平面C 1A 1C 与平面A 1CA 夹角的余弦值为33.利用空间向量解决探索性问题例1、如图1,正△ABC 的边长为4,CD 是AB 边上的高,E ,F 分别是AC 和BC 边的中点,现将△ABC 沿CD 翻折成直二面角A -DC -B (如图2).(1)试判断直线AB 与平面DEF 的位置关系,并说明理由; (2)求二面角E -DF -C 的余弦值;(3)在线段BC 上是否存在一点P ,使AP ⊥DE 如果存在,求出BPBC 的值;如果不存在,请说明理由.[解] (1)在△ABC 中,由E ,F 分别是AC ,BC 中点,得EF ∥AB .又AB ⊄平面DEF ,EF ⊂平面DEF ,∴AB ∥平面DEF .(2)以点D 为坐标原点,以直线DB ,DC ,DA 分别为x 轴、y 轴、z 轴,建立空间直角坐标系,则A (0,0,2),B (2,0,0),C (0,23,0),E (0,3,1),F (1,3,0),DF =(1,3,0),DE =(0,3,1),DA =(0,0,2).平面CDF 的法向量为DA =(0,0,2).设平面EDF 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ DF ·n =0, DE ·n =0,即⎩⎪⎨⎪⎧x +3y =0,3y +z =0,取n =(3,-3,3), cos 〈DA ,n 〉=DA ·n | DA ||n |=217,所以二面角E -DF -C 的余弦值为217.(3)存在.设P (s ,t,0),有AP =(s ,t ,-2),则AP ·DE =3t -2=0,∴t =233, 又BP =(s -2,t,0),PC =(-s,23-t,0),∵BP ∥PC ,∴(s -2)(23-t )=-st , ∴3s +t =2 3. 把t =233代入上式得s =43,∴BP =13BC , ∴在线段BC 上存在点P ,使AP ⊥DE . 此时,BP BC =13.(1)空间向量法最适合于解决立体几何中的探索性问题,它无需进行复杂的作图、论证、推理,只需通过坐标运算进行判断.(2)解题时,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等,所以为使问题的解决更简单、有效,应善于运用这一方法.例2、.如图所示,在直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,AA 1=BC =2AC =2.(1)若D 为AA 1中点,求证:平面B 1CD ⊥平面B 1C 1D ;(2)在AA 1上是否存在一点D ,使得二面角B 1-CD -C 1的大小为60°?解:(1)证明:如图所示,以点C 为原点,CA ,CB ,CC 1所在直线分别为x ,y ,z 轴建立空间直角坐标系.则C (0,0,0),A (1,0,0),B 1(0,2,2),C 1(0,0,2),D (1,0,1), 即11C B =(0,2,0),1DC =(-1,0,1),CD =(1,0,1).由11C B ·CD =(0,2,0)·(1,0,1)=0+0+0=0,得11C B ⊥CD ,即C 1B 1⊥CD . 由1DC ·CD =(-1,0,1)·(1,0,1)=-1+0+1=0,得1DC ⊥CD ,即DC 1⊥CD .又DC 1∩C 1B 1=C 1,∴CD ⊥平面B 1C 1D .又CD ⊂平面B 1CD ,∴平面B 1CD ⊥平面B 1C 1D .(2)存在.当AD =22AA 1时,二面角B 1-CD -C 1的大小为60°.理由如下:设AD =a ,则D 点坐标为(1,0,a ),CD =(1,0,a ),1CB =(0,2,2), 设平面B 1CD 的法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧ m ·1CB =0m ·CD =0⇒⎩⎪⎨⎪⎧2y +2z =0,x +az =0,令z =-1,得m =(a,1,-1).又∵CB =(0,2,0)为平面C 1CD 的一个法向量,则cos 60°=|m ·CB ||m |·|CB |=1a 2+2=12, 解得a =2(负值舍去),故AD =2=22AA 1.∴在AA 1上存在一点D 满足题意. 空间直角坐标系建立的创新问题空间向量在处理空间问题时具有很大的优越性,能把“非运算”问题“运算”化,即通过直线的方向向量和平面的法向量解决立体几何问题.解决的关键环节之一就是建立空间直角坐标系,因而建立空间直角坐标系问题成为近几年试题新的命题点.一、经典例题领悟好例1、如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,BC =CD =2,AC =4, ∠ACB =∠ACD =π3,F 为PC 的中点,AF ⊥PB . (1)求P A 的长;(2)求二面角B -AF -D 的正弦值. (1)学审题——审条件之审视图形由条件知AC ⊥BD ――→建系DB ,AC 分别为x ,y 轴―→写出A ,B ,C ,D 坐标――――――――→P A ⊥面ABCD 设P 坐标――→PF =CF 可得F 坐标――→AF ⊥PBAF ·PB =0―→得P 坐标并求P A 长. (2)学审题由(1)―→AD,AF ,AB 的坐标―――――――――――――――――――→向量n 1,n 2分别为平面F AD 、平面F AB 的法向量n 1·AD =0且n 1·AF =0―→求得n 1·n 2―→求得夹角余弦.[解] (1)如图,连接BD 交AC 于O ,因为BC =CD ,即△BCD 为等腰三角形,又AC 平分∠BCD ,故AC ⊥BD .以O 为坐标原点,OB ,OC ,AP 的方向分别为x 轴,y轴,z 轴的正方向,建立空间直角坐标系O -xyz ,则OC =CD cos π3=1.而AC =4,得AO =AC -OC =3.又OD =CD sin π3=3,故A (0,-3,0),B (3,0,0),C (0,1,0),D (-3,0,0).因P A ⊥底面ABCD ,可设P (0,-3,z ).由F 为PC 边中点,知F ⎝ ⎛⎭⎪⎫0,-1,z 2.又AF =⎝ ⎛⎭⎪⎫0,2,z 2,PB =(3,3,-z ),AF ⊥PB ,故AF ·PB =0,即6-z 22=0,z =23(舍去-23),所以|PA |=2 3.(2)由(1)知AD =(-3,3,0),AB =(3,3,0),AF =(0,2,3).设平面F AD 的法向量为n 1=(x 1,y 1,z 1),平面F AB 的法向量为n 2=(x 2,y 2,z 2),由n 1·AD =0,n 1·AF =0,得⎩⎪⎨⎪⎧-3x 1+3y 1=0,2y 1+3z 1=0,因此可取n 1=(3,3,-2).由n 2·AB =0,n 2·AF =0,得⎩⎪⎨⎪⎧3x 2+3y 2=0,2y 2+3z 2=0,故可取n 2=(3,-3,2).从而法向量n 1,n 2的夹角的余弦值为cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=18.故二面角B -AF -D 的正弦值为378.建立空间直角坐标系的基本思想是寻找其中的线线垂直关系(本题利用AC ⊥BD ),若图中存在交于一点的三条直线两两垂直,则以该点为原点建立空间直角坐标系.在没有明显的垂直关系时,要通过其他已知条件得到垂直关系,在此基础上选择一个合理的位置建立空间直角坐标系,注意建立的空间直角坐标系是右手系,正确确定坐标轴的名称.例2、如图,在空间几何体中,平面ACD ⊥平面ABC ,AB =BC =CA =DA =DC =BE =与平面ABC 所成的角为60°,且点E 在平面ABC 内的射影落在∠ABC 的平分线上.(1)求证:DE ∥平面ABC ; (2)求二面角E -BC -A 的余弦值.解:证明:(1)易知△ABC ,△ACD 都是边长为2的等边三角形,取AC 的中点O ,连接BO ,DO ,则BO ⊥AC ,DO ⊥AC . ∵平面ACD ⊥平面ABC ,∴DO ⊥平面ABC . 作EF ⊥平面ABC ,则EF ∥DO . 根据题意,点F 落在BO 上, ∴∠EBF =60°, 易求得EF =DO =3,∴四边形DEFO 是平行四边形,DE ∥OF . ∵DE ⊄平面ABC ,OF ⊂平面ABC ,∴DE ∥平面ABC .(2)建立如图所示的空间直角坐标系O -xyz ,可求得平面ABC 的一个法向量为n 1=(0,0,1). 可得C (-1,0,0),B (0,3,0),E (0,3-1,3),则CB =(1,3,0),BE =(0,-1,3).设平面BCE 的法向量为n 2=(x ,y ,z ),则可得n 2·CB =0,n 2·BE =0, 即(x ,y ,z )·(1,3,0)=0,(x ,y ,z )·(0,-1,3)=0,可取n 2=(-3,3,1). 故cos 〈n 1,n 2〉=n 1·n 1|n 1|·|n 2|=1313. 又由图知,所求二面角的平面角是锐角,故二面角E -BC -A 的余弦值为1313.专题训练1.如图所示,在多面体ABCD -A 1B 1C 1D 1中,上、下两个底面A 1B 1C 1D 1和ABCD 互相平行,且都是正方形,DD 1⊥底面ABCD ,AB ∥A 1B 1,AB =2A 1B 1=2DD 1=2a .(1)求异面直线AB 1与DD 1所成角的余弦值; (2)已知F 是AD 的中点,求证:FB 1⊥平面BCC 1B 1.解:以D 为原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则A (2a,0,0),B (2a,2a,0),C (0,2a,0),D 1(0,0,a ),F (a,0,0),B 1(a ,a ,a ),C 1(0,a ,a ).(1)∵1AB =(-a ,a ,a ),1DD =(0,0,a ),∴cos 〈1AB ,1DD 〉=1AB ·1DD |1AB |·|1DD |=33,所以异面直线AB 1与DD 1所成角的余弦值为33.(2)证明:∵1BB =(-a ,-a ,a ),BC =(-2a,0,0),1FB =(0,a ,a ),∴⎩⎪⎨⎪⎧1FB ·1BB =0, 1FB ·BC =0.∴FB 1⊥BB 1,FB 1⊥BC . ∵BB 1∩BC =B ,∴FB 1⊥平面BCC 1B 1.2.如图,在三棱柱ABC -A 1B 1C 1中,AA 1C 1C 是边长为4的正方形,平面ABC ⊥平面AA 1C 1C ,AB =3,BC =5.(1)求证:AA 1⊥平面ABC ; (2)求二面角A 1-BC 1-B 1的余弦值;(3)证明:在线段BC 1上存在点D ,使得AD ⊥A 1B ,并求 BDBC 1的值.解:(1)证明:因为四边形AA 1C 1C 为正方形,所以AA 1⊥AC .因为平面ABC ⊥平面AA 1C 1C ,且AA 1垂直于这两个平面的交线AC ,所以AA 1⊥平面ABC . (2)由(1)知AA 1⊥AC ,AA 1⊥AB . 由题知AB =3,BC =5,AC =4,所以AB ⊥AC . 如图,以A 为原点建立空间直角坐标系A -xyz ,则B (0,3,0),A 1(0,0,4),B 1(0,3,4),C 1(4,0,4),1A B =(0,3,-4),11A C =(4,0,0).设平面A 1BC 1的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧ n ·1A B =0,n ·11A C =0.即⎩⎪⎨⎪⎧3y -4z =0,4x =0.令z =3,则x =0,y =4,所以n =(0,4,3).同理可得,平面B 1BC 1的一个法向量为m =(3,4,0).所以cos 〈 n ,m 〉=n ·m |n ||m |=1625. 由题知二面角A 1-BC 1-B 1为锐角,所以二面角A 1-BC 1-B 1的余弦值为1625. (3)证明:设D (x ,y ,z )是直线BC 1上一点,且BD =λ1BC . 所以(x ,y -3,z )=λ(4,-3,4).解得x =4λ,y =3-3λ,z =4λ.所以AD =(4λ,3-3λ,4λ).由AD ·1A B =0,即9-25λ=0,解得λ=925. 因为925∈[0,1],所以在线段BC 1上存在点D ,使得AD ⊥A 1B .此时,BD BC 1=λ=925.3.如图(1),四边形ABCD 中,E 是BC 的中点,DB =2,DC =1,BC =5,AB =AD = 2.将图(1)沿直线BD 折起,使得二面角A -BD -C 为60°,如图(2).(1)求证:AE ⊥平面BDC ;(2)求直线AC 与平面ABD 所成角的余弦值.解:(1)证明:取BD 的中点F ,连接EF ,AF ,则AF =1,EF =12,∠AFE =60°. 由余弦定理知AE =12+⎝ ⎛⎭⎪⎫122-2×1×12cos 60°=32.∵AE 2+EF 2=AF 2,∴AE ⊥EF .∵AB =AD ,F 为BD 中点.∴BD ⊥AF . 又BD =2,DC =1,BC =5,∴BD 2+DC 2=BC 2, 即BD ⊥CD .又E 为BC 中点,EF ∥CD ,∴BD ⊥EF .又EF ∩AF =F , ∴BD ⊥平面AEF .又BD ⊥AE ,∵BD ∩EF =F ,∴AE ⊥平面BDC . (2)以E 为原点建立如图所示的空间直角坐标系,则A ⎝ ⎛⎭⎪⎫0,0,32,C ⎝ ⎛⎭⎪⎫-1,12,0,B ⎝ ⎛⎭⎪⎫1,-12,0, D ⎝ ⎛⎭⎪⎫-1,-12,0,DB =(2,0,0),DA =⎝ ⎛⎭⎪⎫1,12,32,AC =⎝ ⎛⎭⎪⎫-1,12,-32. 设平面ABD 的法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·DB =0n ·DA =0得⎩⎨⎧2x =0,x +12y +32z =0,取z =3,则y =-3,又∵n =(0,-3,3).∴cos 〈n ,AC 〉=n ·AC |n ||AC |=-64.故直线AC 与平面ABD 所成角的余弦值为104.4.如图所示,在矩形ABCD 中,AB =35,AD =6,BD 是对角线,过点A 作AE ⊥BD ,垂足为O ,交CD 于E ,以AE 为折痕将△ADE 向上折起,使点D 到点P 的位置,且PB =41.(1)求证:PO ⊥平面ABCE ; (2)求二面角E -AP -B 的余弦值.解:(1)证明:由已知得AB =35,AD =6,∴BD =9. 在矩形ABCD 中,∵AE ⊥BD , ∴Rt △AOD ∽Rt △BAD ,∴DO AD =ADBD ,∴DO =4,∴BO =5. 在△POB 中,PB =41,PO =4,BO =5,∴PO 2+BO 2=PB 2, ∴PO ⊥OB .又PO ⊥AE ,AE ∩OB =O ,∴PO ⊥平面ABCE . (2)∵BO =5,∴AO =AB 2-OB 2=2 5.以O 为原点,建立如图所示的空间直角坐标系,则P (0,0,4),A (25,0,0),B (0,5,0),PA =(25,0,-4),PB =(0,5,-4).设n 1=(x ,y ,z )为平面APB 的法向量.则⎩⎪⎨⎪⎧ n 1·PA =0,n 1·PB =0,即⎩⎪⎨⎪⎧25x -4z =0,5y -4z =0.取x =25得n 1=(25,4,5).又n 2=(0,1,0)为平面AEP 的一个法向量, ∴cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=461×1=46161, 故二面角E -AP -B 的余弦值为46161.5.如图,在四棱锥P -ABCD 中,侧面P AD ⊥底面ABCD ,侧棱P A =PD =2,P A ⊥PD ,底面ABCD 为直角梯形,其中BC ∥AD ,AB ⊥AD ,AB =BC =1,O 为AD 中点.(1)求直线PB 与平面POC 所成角的余弦值; (2)求B 点到平面PCD 的距离;(3)线段PD 上是否存在一点Q ,使得二面角Q -AC -D 的余弦值为63若存在,求出PQQD 的值;若不存在,请说明理由.解:(1)在△P AD 中,P A =PD ,O 为AD 中点,所以PO ⊥AD .又侧面P AD ⊥底面ABCD ,平面P AD ∩平面ABCD =AD ,PO ⊂平面P AD ,所以PO ⊥平面ABCD .又在直角梯形ABCD 中,连接OC ,易得OC ⊥AD ,所以以O 为坐标原点,OC ,OD ,OP 所在直线分别为x ,y ,z 轴建立空间直角坐标系,则P (0,0,1),A (0,-1,0),B (1,-1,0),C (1,0,0),D (0,1,0),∴PB =(1,-1,-1),易证OA ⊥平面POC ,∴OA =(0,-1,0)是平面POC 的法向量, cos 〈PB ,OA 〉=PB ·OA | PB ||OA |=33. ∴直线PB 与平面POC 所成角的余弦值为63.(2) PD =(0,1,-1),CP =(-1,0,1).设平面PDC 的一个法向量为u =(x ,y ,z ), 则⎩⎪⎨⎪⎧u ·CP =-x +z =0,u ·PD =y -z =0,取z =1,得u =(1,1,1).∴B 点到平面PCD 的距离为d =|BP ·u ||u |=33. (3)假设存在一点Q ,则设PQ =λPD (0<λ<1).∵PD =(0,1,-1), ∴PQ =(0,λ,-λ)=OQ -OP ,∴OQ =(0,λ,1-λ),∴Q (0,λ,1-λ). 设平面CAQ 的一个法向量为m =(x ,y ,z ),又AC =(1,1,0),AQ =(0,λ+1,1-λ), 则⎩⎪⎨⎪⎧m ·AC =x +y =0,m ·AQ =(λ+1)y +(1-λ)z =0.取z =λ+1,得m =(1-λ,λ-1,λ+1), 又平面CAD 的一个法向量为n =(0,0,1),二面角Q -AC -D 的余弦值为63,所以|cos 〈m ,n 〉|=|m ·n ||m ||n |=63,得3λ2-10λ+3=0,解得λ=13或λ=3(舍), 所以存在点Q ,且PQ QD =12.6.如图,在四棱锥S -ABCD 中,底面ABCD 是直角梯形,侧棱SA ⊥底面ABCD ,AB 垂直于AD 和BC ,SA =AB =BC =2,AD =是棱SB 的中点.(1)求证:AM ∥平面SCD ;(2)求平面SCD 与平面SAB 所成二面角的余弦值;(3)设点N 是直线CD 上的动点,MN 与平面SAB 所成的角为θ,求sin θ的最大值. 解:(1)以点A 为原点建立如图所示的空间直角坐标系,则A (0,0,0),B (0,2,0),C (2,2,0),D (1,0,0),S (0,0,2),M (0,1,1).所以AM =(0,1,1),SD =(1,0,-2),CD =(-1,-2,0). 设平面SCD 的法向量是n =(x ,y ,z ),则⎩⎪⎨⎪⎧ SD ·n =0,CD ·n =0,即⎩⎪⎨⎪⎧x -2z =0,-x -2y =0.令z =1,则x =2,y =-1, 于是n =(2,-1,1).∵AM ·n =0,∴AM ⊥n .又AM ⊄平面SCD , ∴AM ∥平面SCD .(2)易知平面SAB 的一个法向量为n 1=(1,0,0).设平面SCD 与平面SAB 所成的二面角为φ, 则|cos φ|=⎪⎪⎪⎪⎪⎪n 1·n |n 1|·|n |=⎪⎪⎪⎪⎪⎪(1,0,0)·(2,-1,1)1·6=⎪⎪⎪⎪⎪⎪21·6=63,即cos φ=63.∴平面SCD 与平面SAB 所成二面角的余弦值为63. (3)设N (x,2x -2,0)(x ∈[1,2]),则MN =(x,2x -3,-1). 又平面SAB 的一个法向量为n 1=(1,0,0), ∴sin θ=⎪⎪⎪⎪⎪⎪⎪⎪(x ,2x -3,-1)·(1,0,0)x 2+(2x -3)2+(-1)2·1=⎪⎪⎪⎪⎪⎪x5x 2-12x +10=⎪⎪⎪⎪⎪⎪⎪⎪15-12·1x +10·1x 2=110⎝ ⎛⎭⎪⎫1x 2-12⎝ ⎛⎭⎪⎫1x +5=110⎝ ⎛⎭⎪⎫1x -352+75 .当1x =35,即x =53时,(sin θ)max =357.7、如图,四边形ABEF 和四边形ABCD 均是直角梯形,∠F AB =∠DAB =90°,AF =AB =BC =2,AD =1,F A ⊥CD .(1)证明:在平面BCE 上,一定存在过点C 的直线l 与直线DF 平行; (2)求二面角F -CD -A 的余弦值.解:(1)证明:由已知得,BE ∥AF ,BC ∥AD ,BE ∩BC =B ,AD ∩AF =A , ∴平面BCE ∥平面ADF . 设平面DFC ∩平面BCE =l ,则l 过点C . ∵平面BCE ∥平面ADF ,平面DFC ∩平面BCE =l , 平面DFC ∩平面ADF =DF .∴DF ∥l ,即在平面BCE 上一定存在过点C 的直线l ,使得DF ∥l . (2)∵F A ⊥AB ,F A ⊥CD ,AB 与CD 相交,∴F A ⊥平面ABCD .故以A 为原点,AD ,AB ,AF 分别为x 轴,y 轴,z 轴建立空间直角坐标系,如图.由已知得,D (1,0,0),C (2,2,0),F (0,0,2),∴DF =(-1,0,2),DC =(1,2,0).设平面DFC 的一个法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧ n ·DF =0,n ·DC =0⇒⎩⎪⎨⎪⎧x =2z ,x =-2y ,不妨设z =1. 则n =(2,-1,1),不妨设平面ABCD 的一个法向量为m =(0,0,1). ∴cos 〈m ,n 〉=m ·n |m ||n |=16=66,由于二面角F -CD -A 为锐角,∴二面角F -CD -A 的余弦值为66.8、.如图,在四棱锥P -ABCD 中,PD ⊥平面ABCD ,四边形ABCD 是菱形,AC =2,BD =23,E 是PB 上任意一点. (1)求证:AC ⊥DE ;(2)已知二面角A -PB -D 的余弦值为155,若E 为PB 的中点,求EC 与平面P AB 所成角的正弦值.解:(1)证明:∵PD ⊥平面ABCD ,AC ⊂平面ABCD ,∴PD ⊥AC , ∵四边形ABCD 是菱形,∴BD ⊥AC ,又BD ∩PD =D ,∴AC ⊥平面PBD , ∵DE ⊂平面PBD ,∴AC ⊥DE .(2)在△PDB 中,EO ∥PD ,∴EO ⊥平面ABCD ,分别以OA ,OB ,OE 所在直线为x 轴,y轴,z 轴建立空间直角坐标系,设PD =t ,则A (1,0,0),B (0,3,0),C (-1,0,0),E ⎝ ⎛⎭⎪⎫0,0,t 2,P (0,-3,t ),AB =(-1,3,0),AP =(-1,-3,t ). 由(1)知,平面PBD 的一个法向量为n 1=(1,0,0),设平面P AB 的法向量为n 2=(x ,y ,z ),则根据⎩⎪⎨⎪⎧ n 2·AB =0,n 2·AP =0得⎩⎪⎨⎪⎧-x +3y =0,-x -3y +tz =0,令y =1,得n 2=⎝ ⎛⎭⎪⎫3,1,23t . ∵二面角A -PB -D 的余弦值为155,则|cos 〈n 1,n 2〉|=155,即 34+12t 2=155,解得t =23或t =-23(舍去),∴P (0,-3,23). 设EC 与平面P AB 所成的角为θ,∵EC =(-1,0,-3),n 2=(3,1,1),则sin θ=|cos 〈EC ,n 2〉|=232×5=155,∴EC 与平面P AB 所成角的正弦值为155.9、如图1,A ,D 分别是矩形A 1BCD 1上的点,AB =2AA 1=2AD =2,DC =2DD 1,把四边形A 1ADD 1沿AD 折叠,使其与平面ABCD 垂直,如图2所示,连接A 1B ,D 1C 得几何体ABA 1-DCD 1.(1)当点E 在棱AB 上移动时,证明:D 1E ⊥A 1D ;(2)在棱AB 上是否存在点E ,使二面角D 1-EC -D 的平面角为π6若存在,求出AE 的长;若不存在,请说明理由.解:(1)证明,如图,以点D 为坐标原点,DA ,DC ,DD 1所在直线为x 轴,y 轴,z 轴建立空间直角坐标系D -xyz ,则D (0,0,0),A (1,0,0),C (0,2,0),A 1(1,0,1),D 1(0,0,1).设E (1,t,0),则1D E =(1,t ,-1),1A D =(-1,0,-1),∴1D E ·1A D =1×(-1)+t ×0+(-1)×(-1)=0, ∴D 1E ⊥A 1D .(2)假设存在符合条件的点E .设平面D 1EC 的法向量为n =(x ,y ,z ),由(1)知EC =(-1,2-t,0),则⎩⎪⎨⎪⎧ n ·EC =0,n ·1D E =0得⎩⎪⎨⎪⎧-x +(2-t )y =0,x +ty -z =0,令y =12,则x =1-12t ,z =1,∴n =⎝ ⎛⎭⎪⎫1-12t ,12,1是平面D 1EC 的一个法向量,显然平面ECD 的一个法向量为1DD =(0,0,1), 则cos 〈n ,1DD 〉=|n ·1DD ||n ||1DD |=1⎝ ⎛⎭⎪⎫1-12t 2+14+1=cos π6,解得t =2-33(0≤t ≤2).故存在点E ,当AE =2-33时,二面角D 1-EC -D 的平面角为π6.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§3.2 立体几何中的向量方法第1课时 用空间向量解决立体几何中的平行问题学习目标 1.了解空间点、线、面的向量表示.2.理解直线的方向向量与平面的法向量的意义,并会求平面的法向量.3.能用向量法证明直线与直线、直线与平面、平面与平面的平行问题.知识点一 直线的方向向量与平面的法向量 (1)用向量表示直线的位置(2)用向量表示平面的位置①通过平面α上的一个定点O 和两个向量a 和b 来确定:②通过平面α上的一个定点A 和法向量来确定:(3)直线的方向向量和平面的法向量知识点二 平面的法向量及其求法在空间直角坐标系下,求平面的法向量的一般步骤: (1)设平面的法向量为n =(x ,y ,z );(2)找出(求出)平面内的两个不共线的向量a =(a 1,b 1,c 1),b =(a 2,b 2,c 2);(3)根据法向量的定义建立关于x ,y ,z 的方程组⎩⎪⎨⎪⎧n ·a =0,n ·b =0;(4)解方程组,取其中的一组解,即得平面的一个法向量. 知识点三 用空间向量处理平行关系设直线l ,m 的方向向量分别为a ,b ,平面α,β的法向量分别为μ,v ,则.(1)若两条直线平行,则它们的方向向量的方向相同或相反.(√)(2)两直线的方向向量平行,则两直线平行;两直线的方向向量垂直,则两直线垂直.(×) (3)若向量n 1,n 2为平面的法向量,则以这两个向量为方向向量的直线一定平行.(×) (4)若平面外的一条直线的方向向量与平面的法向量垂直,则该直线与平面平行.(√) (5)若直线l 1,l 2的方向向量分别为a =(1,2,-2),b =(-2,3,2),则l 1⊥l 2.(√)类型一 求平面的法向量例1 已知△ABC 的三个顶点的坐标分别为A (2,1,0),B (0,2,3),C (1,1,3),试求出平面ABC 的一个法向量.考点 直线的方向向量与平面的法向量 题点 求平面的法向量解 设平面ABC 的法向量为n =(x ,y ,z ). ∵A (2,1,0),B (0,2,3),C (1,1,3), ∴AB →=(-2,1,3),BC →=(1,-1,0).则有⎩⎪⎨⎪⎧n ·AB →=0,n ·BC →=0,即⎩⎪⎨⎪⎧-2x +y +3z =0,x -y =0,解得⎩⎪⎨⎪⎧x =3z ,x =y .令z =1,则x =y =3.故平面ABC 的一个法向量为n =(3,3,1).反思与感悟 利用方程的思想求解平面的法向量,注意一个平面的法向量不是唯一的,它有无数个,它们是共线的.跟踪训练1 如图所示,在四棱锥S -ABCD 中,底面是直角梯形,AD ∥BC ,∠ABC =90°,SA ⊥底面ABCD ,且SA =AB =BC =1,AD =12,建立适当的空间直角坐标系,求平面SCD 与平面SBA 的一个法向量. 考点 直线的方向向量与平面的法向量 题点 求平面的法向量解 以A 为坐标原点,AD ,AB ,AS 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系Axyz , 则A (0,0,0),D ⎝⎛⎭⎫12,0,0,C (1,1,0),S (0,0,1), 则DC →=⎝⎛⎭⎫12,1,0,DS →=⎝⎛⎭⎫-12,0,1. 向量AD →=⎝⎛⎭⎫12,0,0是平面SAB 的一个法向量. 设n =(x ,y ,z )为平面SDC 的一个法向量,则⎩⎨⎧n ·DC →=12x +y =0,n ·DS →=-12x +z =0,即⎩⎨⎧y =-12x ,z =12x .取x =2,得y =-1,z =1,故平面SDC 的一个法向量为(2,-1,1).类型二 利用空间向量证明平行问题例2 已知正方体ABCD -A 1B 1C 1D 1的棱长为2,E ,F 分别是BB 1,DD 1的中点,求证: (1)FC 1∥平面ADE ; (2)平面ADE ∥平面B 1C 1F .考点 直线的方向向量与平面的法向量 题点 求平面的法向量证明 (1)以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示空间直角坐标系Dxyz ,则有D (0,0,0),A (2,0,0),C (0,2,0),C 1(0,2,2),E (2,2,1),F (0,0,1),B 1(2,2,2), 所以FC 1-→=(0,2,1),DA →=(2,0,0),AE →=(0,2,1). 设n 1=(x 1,y 1,z 1)是平面ADE 的法向量, 则n 1⊥DA →,n 1⊥AE →,即⎩⎪⎨⎪⎧n 1·DA →=2x 1=0,n 1·AE →=2y 1+z 1=0,得⎩⎪⎨⎪⎧x 1=0,z 1=-2y 1,令z 1=2,则y 1=-1, 所以n 1=(0,-1,2). 因为FC 1-→·n 1=-2+2=0, 所以FC 1-→⊥n 1.又因为FC 1⊄平面ADE , 所以FC 1∥平面ADE .(2)因为C 1B 1-→=(2,0,0),设n 2=(x 2,y 2,z 2)是平面B 1C 1F 的一个法向量.由n 2⊥FC 1-→,n 2⊥C 1B 1-→, 得⎩⎪⎨⎪⎧n 2·FC 1-→=2y 2+z 2=0,n 2·C 1B 1-→=2x 2=0,得⎩⎪⎨⎪⎧x 2=0,z 2=-2y 2.令z 2=2,得y 2=-1, 所以n 2=(0,-1,2),因为n 1=n 2,所以平面ADE ∥平面B 1C 1F .反思与感悟 利用向量证明平行问题,可以先建立空间直角坐标系,求出直线的方向向量和平面的法向量,然后根据向量之间的关系证明平行问题.跟踪训练2 如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,PB 与底面所成的角为45°,底面ABCD 为直角梯形,∠ABC =∠BAD =90°,P A =BC =12AD =1,问在棱PD 上是否存在一点E ,使CE ∥平面P AB ?若存在,求出E 点的位置;若不存在,请说明理由. 考点 直线的方向向量与平面的法向量 题点 求平面的法向量解 存在点E 使CE ∥平面P AB .以A 为坐标原点,分别以AB ,AD ,AP 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系Axyz , ∴P (0,0,1),C (1,1,0),D (0,2,0), 设E (0,y ,z ),则PE →=(0,y ,z -1), PD →=(0,2,-1),∵PE →∥PD →,∴y (-1)-2(z -1)=0,① ∵AD →=(0,2,0)是平面P AB 的法向量, 又CE →=(-1,y -1,z ),CE ∥平面P AB , ∴CE →⊥AD →,∴(-1,y -1,z )·(0,2,0)=0. ∴y =1,代入①得z =12,∴E 是PD 的中点,∴存在E 点,当点E 为PD 中点时,CE ∥平面P AB .1.已知l 1的方向向量为v 1=(1,2,3),l 2的方向向量为v 2=(λ,4,6),若l 1∥l 2,则λ等于( ) A .1 B .2 C .3 D .4考点 直线的方向向量与平面的法向量 题点 求直线的方向向量 答案 B解析 由l 1∥l 2,得v 1∥v 2,得1λ=24=36,故λ=2.2.已知直线l 1,l 2的方向向量分别为a ,b ,且a =(λ+1,0,2),b =(6,2μ-1,2λ),若l 1∥l 2,则λ与μ的值可以分别是( )A .2,12B .-13,12 C .-3,2 D .2,2考点 直线的方向向量与平面的法向量 题点 求直线的方向向量答案 A解析 由题意知⎩⎨⎧λ+16=22λ,2μ-1=0,解得⎩⎪⎨⎪⎧ λ=2,μ=12或⎩⎪⎨⎪⎧λ=-3,μ=12.3.若A (-1,0,1),B (1,4,7)在直线l 上,则直线l 的一个方向向量为( ) A .(1,2,3) B .(1,3,2) C .(2,1,3)D .(3,2,1)考点 直线的方向向量与平面的法向量 题点 求直线的方向向量 答案 A解析 因为AB →=(2,4,6),所以与AB →共线的非零向量都可以作为直线l 的方向向量. 4.若直线l ∥α,且l 的方向向量为(2,m,1),平面α的法向量为⎝⎛⎭⎫1,12,2,则m 为( ) A .-4 B .-6 C .-8 D .8 考点 直线的方向向量与平面的法向量 题点 求直线的方向向量 答案 C解析 ∵l ∥α,平面α的法向量为⎝⎛⎭⎫1,12,2, ∴(2,m,1)·⎝⎛⎭⎫1,12,2=0, ∴2+12m +2=0,∴m =-8.5.在正方体ABCD -A 1B 1C 1D 1中,平面ACD 1的一个法向量为________. 考点 直线的方向向量与平面的法向量 题点 求平面的法向量 答案 (1,1,1)(答案不唯一)解析 不妨设正方体的棱长为1,以点D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系Dxyz ,则A (1,0,0),C (0,1,0),D 1(0,0,1),设平面ACD 1的一个法向量a =(x ,y ,z ), 则a ·AC →=0, a ·AD 1-→=0.因为AC →=(-1,1,0),AD 1-→=(-1,0,1),所以 ⎩⎪⎨⎪⎧(-1)·x +1·y +0·z =0,(-1)·x +0·y +1·z =0,所以⎩⎪⎨⎪⎧x -y =0,x -z =0,所以⎩⎪⎨⎪⎧x =y ,x =z ,不妨取x =1,则a =(1,1,1).(注:答案不唯一,只要与所给答案共线都对)1.应用向量法证明线面平行问题的方法 (1)证明直线的方向向量与平面的法向量垂直.(2)证明直线的方向向量与平面内的某一直线的方向向量共线.(3)证明直线的方向向量可用平面内的任两个不共线的向量表示.即用平面向量基本定理证明线面平行.2.证明面面平行的方法设平面α的法向量为n 1=(a 1,b 1,c 1),平面β的法向量为n 2=(a 2,b 2,c 2),则α∥β⇔n 1∥n 2⇔(a 1,b 1,c 1)=k (a 2,b 2,c 2)(k ∈R ).一、选择题1.若直线l 的方向向量为a ,平面α的法向量为μ,则能使l ∥α的是( ) A .a =(1,0,0),μ=(-2,0,0) B .a =(1,3,5),μ=(1,0,1) C .a =(0,2,1),μ=(-1,0,1) D .a =(1,-1,3),μ=(0,3,1)考点 直线的方向向量与平面的法向量 题点 求直线的方向向量 答案 D解析 由l ∥α,故a ⊥μ,即a ·μ=0,故选D.2.已知直线l 1的方向向量a =(2,-3,5),直线l 2的方向向量b =(-4,x ,y ),若两直线l 1∥l 2,则x ,y 的值分别是( ) A .6和-10 B .-6和10 C .-6和-10D .6和10考点 直线的方向向量与平面的法向量 题点 求直线的方向向量 答案 A解析 由两直线l 1∥l 2,得两向量a ,b 平行,即2-4=-3x =5y ,所以x ,y 的值分别是6和-10.3.直线l 的方向向量s =(-1,1,1),平面α的一个法向量为n =(2,x 2+x ,-x ),若直线l ∥α,则x 的值为( )A .-2B .- 2 C. 2 D .±2 考点 直线的方向向量与平面的法向量 题点 求平面的法向量 答案 D解析 依题意得,-1×2+1×(x 2+x )+1×(-x )=0, 解得x =±2.4.已知A (1,0,0),B (0,1,0),C (0,0,1),则平面ABC 的一个单位法向量是( ) A.⎝⎛⎭⎫33,33,-33 B.⎝⎛⎭⎫33,-33,33 C.⎝⎛⎭⎫-33,33,33 D.⎝⎛⎭⎫-33,-33,-33 考点 直线的方向向量与平面的法向量 题点 求平面的法向量 答案 D解析 AB →=(-1,1,0),AC →=(-1,0,1). 设平面ABC 的一个法向量为n =(x ,y ,z ).∵⎩⎪⎨⎪⎧AB →·n =0,AC →·n =0, ∴⎩⎪⎨⎪⎧-x +y =0,-x +z =0.令x =1,则y =1,z =1,∴n =(1,1,1), 单位法向量为⎝⎛⎭⎫33,33,33或⎝⎛⎭⎫-33,-33,-33. 5.设直线l 的方向向量为a ,平面α的法向量为b ,若a ·b =0,则( ) A .l ∥α B .l ⊂α C .l ⊥αD .l ⊂α或l ∥α考点 直线的方向向量与平面的法向量 题点 求直线的方向向量 答案 D解析 当a ·b =0时,l ⊂α或l ∥α.6.已知平面α的法向量是(2,3,-1),平面β的法向量是(4,λ,-2),若α∥β,则λ的值是( )A .-103B .6C .-6 D.103考点 直线的方向向量与平面的法向量 题点 求平面的法向量 答案 B解析 ∵α∥β,∴α的法向量与β的法向量也互相平行. ∴24=3λ=-1-2,∴λ=6. 7.已知平面α内两向量a =(1,1,1),b =(0,2,-1)且c =m a +n b +(4,-4,1).若c 为平面α的法向量,则m ,n 的值分别为( ) A .-1,2 B .1,-2 C .1,2D .-1,-2考点 直线的方向向量与平面的法向量 题点 求平面的法向量 答案 A解析 c =m a +n b +(4,-4,1)=(m ,m ,m )+(0,2n ,-n )+(4,-4,1)=(m +4,m +2n -4,m -n +1),由c 为平面α的法向量,得⎩⎪⎨⎪⎧ c ·a =0,c ·b =0,即⎩⎪⎨⎪⎧ 3m +n +1=0,m +5n -9=0, 解得⎩⎪⎨⎪⎧m =-1,n =2. 二、填空题8.若A ⎝⎛⎭⎫0,2,198,B ⎝⎛⎭⎫1,-1,58,C ⎝⎛⎭⎫-2,1,58是平面α内三点,设平面α的法向量为a =(x ,y ,z ),则x ∶y ∶z =________.考点 直线的方向向量与平面的法向量题点 求平面的法向量答案 2∶3∶(-4)解析 由已知得,AB →=⎝⎛⎭⎫1,-3,-74, AC →=⎝⎛⎭⎫-2,-1,-74, ∵a 是平面α的一个法向量,∴a ·AB →=0,a ·AC →=0, 即⎩⎨⎧ x -3y -74z =0,-2x -y -74z =0,解得⎩⎨⎧ x =23y ,z =-43y ,∴x ∶y ∶z =23y ∶y ∶⎝⎛⎭⎫-43y =2∶3∶(-4). 9.已知l ∥α,且l 的方向向量为m =(2,-8,1),平面α的法向量为n =(1,y,2),则y =________. 考点 直线的方向向量与平面的法向量题点 求平面的法向量答案 12解析 ∵l ∥α,∴l 的方向向量m =(2,-8,1)与平面α的法向量n =(1,y,2)垂直,∴2×1-8×y+2=0,∴y =12. 10.设平面α的法向量为m =(1,2,-2),平面β的法向量为n =(-2,-4,k ),若α∥β,则k =________.考点 直线的方向向量与平面的法向量题点 求平面的法向量答案 4解析 由α∥β得1-2=2-4=-2k,解得k =4. 三、解答题11.已知平面α经过点A (1,2,3),B (2,0,-1),C (3,-2,0),试求平面α的一个法向量. 考点 直线的方向向量与平面的法向量题点 求平面的法向量解 ∵A (1,2,3),B (2,0,-1),C (3,-2,0),∴AB →=(1,-2,-4),AC →=(2,-4,-3).设平面α的法向量是n =(x ,y ,z ),依题意有⎩⎪⎨⎪⎧n ·AC →=0,n ·AB →=0,即⎩⎪⎨⎪⎧ 2x -4y -3z =0,x -2y -4z =0,解得⎩⎪⎨⎪⎧ z =0,x =2y ,令y =1,则x =2, ∴平面α的一个法向量是n =(2,1,0).12.如图,四棱锥P -ABCD 中,底面ABCD 为矩形,P A ⊥平面ABCD ,E 为PD 的中点.AB =AP =1,AD =3,试建立恰当的空间直角坐标系,求平面ACE 的一个法向量.考点 直线的方向向量与平面的法向量题点 求平面的法向量解 因为P A ⊥平面ABCD ,底面ABCD 为矩形,所以AB ,AD ,AP 两两垂直.如图,以A 为坐标原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z轴,建立空间直角坐标系Axyz ,则D (0,3,0),E ⎝⎛⎭⎫0,32,12,B (1,0,0), C (1,3,0),于是AE →=⎝⎛⎭⎫0,32,12,AC →=(1,3,0). 设n =(x ,y ,z )为平面ACE 的法向量,则⎩⎪⎨⎪⎧ n ·AC →=0,n ·AE →=0,即⎩⎪⎨⎪⎧ x +3y =0,32y +12z =0,所以⎩⎪⎨⎪⎧x =-3y ,z =-3y ,令y =-1,则x =z = 3.所以平面ACE 的一个法向量为n =(3,-1,3).13.已知空间四边形ABCD ,P ,Q 分别是△ABC 和△BCD 的重心,求证:PQ ∥平面ACD . 考点 直线的方向向量与平面的法向量题点 求平面的法向量证明 如图,连接AP 并延长交BC 于点E ,连接ED ,易知Q 在线段ED 上,∵P ,Q 分别是△ABC 和△BCD 的重心, ∴PQ →=EQ →-EP →=13ED →-13EA →=13(ED →-EA →)=13AD →, ∴PQ →∥AD →,即PQ ∥AD ,又AD ⊂平面ACD ,PQ ⊄平面ACD ,∴PQ ∥平面ACD .四、探究与拓展14.已知直线l 过点P (1,0,-1)且平行于向量a =(2,1,1),平面α过直线l 与点M (1,2,3),则平面α的法向量不可能是( )A .(1,-4,2)B.⎝⎛⎭⎫14,-1,12C.⎝⎛⎭⎫-14,1,-12 D .(0,-1,1)考点 直线的方向向量与平面的法向量题点 求平面的法向量答案 D解析 因为PM →=(0,2,4),直线l 平行于向量a ,若n 是平面α的一个法向量,则必须满足⎩⎪⎨⎪⎧n ·a =0,n ·PM →=0,把选项代入验证,只有选项D 不满足,故选D. 15.如图,在长方体ABCD -A 1B 1C 1D 1中,AB =3,AA 1=4,AD =5.求证:平面A 1BD ∥平面B 1D 1C .考点 直线的方向向量与平面的法向量题点 求平面的法向量证明 如图,以D 为坐标原点,分别以DA ,DC ,DD 1所在直线为x轴,y 轴,z 轴,建立空间直角坐标系Dxyz ,则D (0,0,0),A 1(5,0,4),B (5,3,0),D 1(0,0,4),B 1(5,3,4),C (0,3,0),∴A 1D -→=(-5,0,-4),A 1B -→=(0,3,-4),D 1C -→=(0,3,-4),B 1C -→=(-5,0,-4).设平面A 1BD 的一个法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧ m ⊥A 1D -→,m ⊥A 1B -→,即⎩⎪⎨⎪⎧ m ·A 1D -→=-5x -4z =0,m ·A 1B -→=3y -4z =0. 取z =1,得x =-45,y =43,则m =⎝⎛⎭⎫-45,43,1. 设平面B 1D 1C 的一个法向量为n =(a ,b ,c ),则⎩⎪⎨⎪⎧ n ·D 1C -→=0,n ·B 1C -→=0,得n =⎝⎛⎭⎫-45,43,1. ∵m =n ,即m ∥n ,∴平面A 1BD ∥平面B 1D 1C .。