(完整版)正方形知识点复习总结
正方形初步知识点总结归纳

正方形初步知识点总结归纳
正方形是一个具有特殊性质的平面图形,下面是一些关于正方形的初步知识点总结和归纳。
定义
正方形是一种具有四个相等边长和四个直角的四边形。
它是一种特殊的矩形,也是一个特殊的菱形。
性质
1. 边长:正方形的四条边长度相等,记为a。
2. 角度:正方形的四个角都是直角,即90度。
3. 对角线:正方形的两条对角线相等,且垂直且相交于中点。
4. 对称性:正方形具有4个轴对称线,即可以通过折叠或翻转重合在一起。
5. 面积:正方形的面积可以通过边长的平方来计算,即A = a^2。
6. 周长:正方形的周长可以通过四条边长的和来计算,即P = 4a。
判断
判断一个四边形是否为正方形可以依据以下条件:
1. 四边相等:四条边的长度必须相等。
2. 直角:四个角必须都是直角。
3. 平行边:临边必须平行。
应用
正方形具有很多应用,例如:
1. 建筑设计:正方形的几何形状常用于建筑设计中的平面布局和结构设计。
2. 绘画和艺术:正方形的几何形状常被艺术家用来表达平衡和稳定感。
3. 数学和几何学:正方形是几何学中的基础形状,用于研究和研究几何性质和定理。
以上是对正方形初步知识点的总结和归纳。
通过深入了解正方
形的定义、性质和应用,我们可以更好地理解和利用正方形的特点。
生活中正方形的知识点总结

生活中正方形的知识点总结正方形是一种具有特殊性质的几何图形,在我们日常生活中经常能够见到。
它具有独特的特征和性质,因此我们有必要对正方形的知识点进行总结和学习,以便更好地理解和应用它们。
在这篇文章中,我将对正方形的定义、特征、性质、应用等方面进行详细的总结,希望能给大家带来一些启发和帮助。
正方形的定义:正方形是一种具有四条边和四个角的几何图形,其特点是四条边长度相等,四个角度均为直角。
正方形也可以看做是一种特殊的矩形,因为它具有矩形的所有属性,但是矩形不一定是正方形。
同时,正方形也是一种特殊的菱形,因为它具有菱形的所有属性,但是菱形不一定是正方形。
正方形的特征:1. 四条边长度相等: 正方形的四条边长度相等,这是它和其他几何图形的一个显著区别。
这也是正方形最基本的特征之一。
2. 四个角度均为直角: 正方形的四个角度均为90度,这也是它和其他几何图形的一个显著区别。
这也是正方形最基本的特征之一。
3. 对角线相等且垂直平分: 正方形的对角线相等且互相垂直平分。
这也是它和其他几何图形的一个显著区别。
正方形的对角线相等是它的一个重要特征之一,同时对角线垂直平分也是它的一个重要特征之一。
正方形的性质:1. 正方形的对角线相等且垂直平分: 正方形的对角线相等且互相垂直平分,这是正方形的一个非常重要的性质。
对角线垂直平分能够将正方形分成两个全等的直角三角形,并且对角线的长度等于正方形的边长。
2. 正方形的所有角度均为直角: 正方形的所有角度均为90度,这是它的一个非常重要的性质。
这也意味着正方形的两条相邻边互相垂直,这一性质是正方形在建筑、绘画等领域的应用中发挥着很大的作用。
3. 正方形的对角线长度: 正方形的对角线长度可以用勾股定理来计算,对角线的长度等于正方形的边长乘以根号2,即d = a*√2,其中d为对角线的长度,a为正方形的边长。
4. 正方形的面积和周长: 正方形的面积可以用边长的平方来计算,即A = a^2,其中A为正方形的面积,a为正方形的边长。
中考数学考点28正方形总复习(解析版)

正方形【命题趋势】在中考中.正方形主要在选择题.填空题.解答题考查为主.并结合相似.锐角三角函数结合考查.;其中正方形常考4种模型是中考中的重难点。
【中考考查重点】一、正方形的性质及判定二、正方形常考模型考点:正方形性质及判定一、正方形的概念和性质1.概念:有一组邻边相等.并且有一个角是直角的平行四边形是正方形.2.性质:(1)具有平行四边形、矩形、菱形的一切性质(2)正方形的四个角都是直角.四条边都相等(3)正方形的两条对角线相等.并且互相垂直平分.每一条对角线平分一组对角(4)正方形是轴对称图形.有4条对称轴(5)正方形的一条对角线把正方形分成两个全等的等腰直角三角形.两条对角线把正方形分成四个全等的小等腰直角三角形(6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等。
二、正方形的判定判定方法:(1)有一个角是直角的菱形是正方形;(2)对角线相等的菱形是正方形;(3)对角线互相垂直的矩形是正方形。
注意:判定一个四边形为正方形的一般顺序如下:先证明它是平行四边形.再证明它是菱形(或矩形).最后证明它是矩形(或菱形)。
1.(2020秋•法库县期末)平行四边形、矩形、菱形、正方形共有的性质是()A.对角线互相平分B.对角线相等C.对角线互相垂直D.对角线互相垂直平分【答案】A【解答】解:A、平行四边形、矩形、菱形、正方形的对角线都互相平分.故本选项正确;B、只有矩形.正方形的对角线相等.故本选项错误;C、只有菱形.正方形的对角线互相垂直.故本选项错误;D、只有菱形.正方形的对角线互相垂直平分.故本选项错误.故选:A.2.(2020秋•武功县期末)如图.在正方形ABCD中.AB=2.P是AD边上的动点.PE⊥AC于点E.PF⊥BD于点F.则PE+PF的值为()A.4B.2C.D.2【答案】C【解答】解:在正方形ABCD中.OA⊥OB.∠OAD=45°.∵PE⊥AC.PF⊥BD.∴四边形OEPF为矩形.△AEP是等腰直角三角形.∴PF=OE.PE=AE.∴PE+PF=AE+OE=OA.∵正方形ABCD的边长为2.∴OA=AC==.故选:C.3.(2010秋•金口河区期末)如图.在正方形ABCD中.E是DC上一点.F为BC延长线上一点.∠BEC=70°.且△BCE≌△DCF.连接EF.则∠EFD的度数是()A.10°B.15°C.20°D.25°【答案】D【解答】解:∵四边形ABCD是正方形.∴∠BCE=∠DCF=90°;由旋转的性质知:CE=CF.∠BEC=∠DFC=70°;则△ECF是等腰直角三角形.得∠EFC=45°.∴∠EFD=∠DFC﹣∠EFC=25°.故选:D.4.(2020春•沙坪坝区期末)如图.正方形ABCD中.AB=.点E是对角线AC上一点.EF⊥AB于点F.连接DE.当∠ADE=22.5°时.EF的长是()A.1B.2﹣2C.﹣1D.【答案】C【解答】解:∵四边形ABCD是正方形.∴AB=CD=BC=.∠B=∠ADC=90°.∠BAC=∠CAD=45°.∴AC=AB=2.∵∠ADE=22.5°.∴∠CDE=90°﹣22.5°=67.5°.∵∠CED=∠CAD+∠ADE=45°+22.5°=67.5°.∴∠CDE=∠CED.∴CD=CE=.∴AE=2﹣.∵EF⊥AB.∴∠AFE=90°.∴△AFE是等腰直角三角形.∴EF==﹣1.故选:C.5.(2021•罗湖区校级模拟)如图.在平面直角坐标系xOy中.正方形ABCD的顶点D在y轴上且A(﹣3.0).B(2.b).则正方形ABCD的面积是()A.20B.16C.34D.25【答案】C【解答】解:作BM⊥x轴于M.∵四边形ABCD是正方形.∴AD=AB.∠DAB=90°.∴∠DAO+∠BAM=90°.∠BAM+∠ABM=90°.∴∠DAO=∠ABM.∵∠AOD=∠AMB=90°.∴在△DAO和△ABM中.∴△DAO≌△ABM(AAS).∴OA=BM.AM=OD.∵A(﹣3.0).B(2.b).∴OA=3.OM=2.∴OD=AM=5.∴AD==.∴正方形ABCD的面积=34.故选:C.6.(2020春•老城区校级月考)如图.点P是正方形ABCD的对角线BD上一点.PE⊥BC于点E.PF⊥CD于点F.连接EF给出下列四个结论:①AP=EF;②AP⊥EF;③△APD一定是等腰三角形;④∠PFE=∠BAP.其中正确结论个数是()A.1B.2C.3D.4【答案】C【解答】解:如图.连接PC.延长AP交EF于H.延长FP交AB于G.在正方形ABCD中.∠ABP=∠CBP=45°.AB=CB.∵在△ABP和△CBP中..∴△ABP≌△CBP(SAS).∴AP=PC.∠BAP=∠BCP.又∵PE⊥BC.PF⊥CD.∴四边形PECF是矩形.∴PC=EF.∠BCP=∠PFE.∴AP=EF.∠PFE=∠BAP.故①④正确;只有点P为BD的中点或PD=AD时.△APD是等腰三角形.故③错误;∵PF∥BC.∴∠AGF=∠ABC=90°.∵∠BAP=∠PFE.∠APG=∠FPH.∴∠AGP=∠AHF=90°.∴AP⊥EF.故②正确.故选:C.7.(2021秋•南海区月考)如图.点B在MN上.过AB的中点O作MN的平行线.分别交∠ABM的平分线和∠ABN的平分线于点C、D.(1)试判断四边形ACBD的形状.并证明你的结论.(2)当△CBD满足什么条件时.四边形ACBD是正方形?并给出证明.【答案】(1)四边形ACBD是矩形(2)△CBD满足CB=BD时.四边形ACBD是正方形【解答】解:(1)四边形ACBD是矩形.证明:∵CD平行MN.∴∠OCB=∠CBM.∵BC平分∠ABM.∴∠OBC=∠CBM.∴∠OCB=∠OBC.∴OC=OB.同理可证:OB=OD.∴OA=OB=OC=OD.∵CD=OC+OD.AB=OA+OB.∴AB=CD.∴四边形ACBD是矩形;(2)△CBD满足CB=BD时.四边形ACBD是正方形.证明:由(1)得四边形ACBD是矩形.∵CB=BD.∴四边形ACBD是正方形.1.(2021秋•武侯区期末)下列说法中.是正方形具有而矩形不具有的性质是()A.两组对边分别平行B.对角线互相垂直C.四个角都为直角D.对角线互相平分【答案】B【解答】解:因为正方形的对角相等.对角线相等、垂直、且互相平分.矩形的对角相等.对角线相等.互相平分.所以正方形具有而矩形不具有的性质是对角线互相垂直.故选:B.2.(2017春•柳州期末)边长为4的正方形ABCD中.P是边AD上的动点.PE⊥AC于点E.PF⊥BD于点F.则PE+PF的值为()A.2B.4C.2D.6【答案】A【解答】解:如图.∵四边形ABCD为正方形.∴∠CAD=∠BDA=45°.∵PE⊥AC于点E.PF⊥BD于点F.∴△APE和△PDF为等腰直角三角形.∴PE=AP.PF=PD.∴PE+PF=(AP+PD)=×4=2.故选:A.3.(2021秋•普宁市期末)下列说法中正确的是()A.矩形的对角线平分每组对角B.菱形的对角线相等且互相垂直C.有一组邻边相等的矩形是正方形D.对角线互相垂直的四边形是菱形【答案】C【解答】解:A、矩形的对角线平分每组对角.说法错误.故本选项不符合题意;B、菱形的对角线互相垂直.故本选项不符合题意;C、有一组邻边相等的矩形是正方形.正确.故本选项符合题意;D、对角线互相垂直的四边形不一定是菱形.故本选项不符合题意.故选:C.4.(2020•眉山)下列说法正确的是()A.一组对边平行另一组对边相等的四边形是平行四边形B.对角线互相垂直平分的四边形是菱形C.对角线相等的四边形是矩形D.对角线互相垂直且相等的四边形是正方形【答案】B【解答】解:A、一组对边平行另一组对边相等的四边形可以是等腰梯形.可以是平行四边形.故选项A不合题意;B、对角线互相垂直平分的四边形是菱形.故选项B符合题意;C、对角线相等的平行四边形是矩形.故选项C不合题意;D、对角线互相垂直平分且相等的四边形是正方形.故选项D不合题意;故选:B.5.(2021秋•海州区期末)如图.在正方形ABCD中.点E在对角线AC上.EF⊥AB于点F.EG⊥BC于点G.连接DE.若AB=10.AE=3.则ED的长度为()A.7B.2C.D.【答案】C【解答】解:如图.连接BE.∵四边形ABCD是正方形.∴∠BAC=∠DAC=45°.AB=AD.∵AE=AE.∴△ABE≌△ADE(SAS).∴BE=DE.∵EF⊥AB于点F.AE=3.∴AF=EF=3.∵AB=10.∴BF=7.∴BE==.∴ED=.故选:C.6.(2021秋•铁锋区期末)如图.已知在正方形ABCD中.AB=BC=CD=AD=10厘米.∠A=∠B=∠C=∠D=90°.点E在边AB上.且AE=4厘米.如果点P在线段BC上以2厘米/秒的速度由B点向C点运动.同时.点Q在线段CD上由C点向D点运动.设运动时间为t秒.当△BPE与△CQP全等时.t的值为()A.2B.2或1.5C.2.5D.2.5或2【答案】D【解答】解:当点Q的运动速度与点P的运动速度都是2厘米/秒.若△BPE≌△CQP.则BP=CQ.BE=CP.∵AB=BC=10厘米.AE=4厘米.∴BE=CP=6厘米.∴BP=10﹣6=4厘米.∴运动时间=4÷2=2(秒);当点Q的运动速度与点P的运动速度不相等.∴BP≠CQ.∵∠B=∠C=90°.∴要使△BPE与△OQP全等.只要BP=PC=5厘米.CQ=BE=6厘米.即可.∴点P.Q运动的时间t==(秒).故选:D.7.(2021春•海淀区校级期末)如图.点E是正方形ABCD对角线AC上一点.EF⊥AB.EG ⊥BC.垂足分别为F.G.若正方形ABCD的周长是40cm.(1)求证:四边形BFEG是矩形;(2)求四边形EFBG的周长;(3)当AF的长为多少时.四边形BFEG是正方形?【答案】(1)略(2)20cm (3)AF=5cm【解答】解:(1)证明:∵四边形ABCD为正方形.∴AB⊥BC.∠B=90°.∵EF⊥AB.EG⊥BC.∴∠BFE=90°.∠BGE=90°.又∵∠B=90°.∴四边形BFEG是矩形;(2)∵正方形ABCD的周长是40cm.∴AB=40÷4=10cm.∵四边形ABCD为正方形.∴△AEF为等腰直角三角形.∴AF=EF.∴四边形EFBG的周长C=2(EF+BF)=2(AF+BF)=20cm.(3)若要四边形BFEG是正方形.只需EF=BF.∵AF=EF.AB=10cm.∴当AF=5cm时.四边形BFEG是正方形.1.(2021•玉林)一个四边形顺次添加下列条件中的三个条件便得到正方形:a.两组对边分别相等b.一组对边平行且相等c.一组邻边相等d.一个角是直角顺次添加的条件:①a→c→d②b→d→c③a→b→c则正确的是()A.仅①B.仅③C.①②D.②③【答案】C【解答】解:①由a得到两组对边分别相等的四边形是平行四边形.添加c即一组邻边相等的平行四边形是菱形.再添加d即一个角是直角的菱形是正方形.故①正确;②由b得到一组对边平行且相等的四边形是平行四边形.添加d即有一个角是直角的平行四边形是矩形.再添加c即一组邻边相等的矩形是正方形.故②正确;③由a得到两组对边分别相等的四边形是平行四边形.添加b得到一组对边平行且相等的平行四边形仍是平行四边形.再添加c即一组邻边相等的平行四边形是菱形.不能得到四边形是正方形.故③不正确;故选:C.2.(2019•毕节市)如图.点E在正方形ABCD的边AB上.若EB=1.EC=2.那么正方形ABCD的面积为()A.B.3C.D.5【答案】B【解答】解:∵四边形ABCD是正方形.∴∠B=90°.∴BC2=EC2﹣EB2=22﹣12=3.∴正方形ABCD的面积=BC2=3.故选:B.3.(2021•重庆)如图.正方形ABCD的对角线AC.BD交于点O.M是边AD上一点.连接OM.过点O作ON⊥OM.交CD于点N.若四边形MOND的面积是1.则AB的长为()A.1B.C.2D.2【答案】C【解答】解:∵四边形ABCD是正方形.∴∠MDO=∠NCO=45°.OD=OC.∠DOC=90°.∴∠DON+∠CON=90°.∵ON⊥OM.∴∠MON=90°.∴∠DON+∠DOM=90°.∴∠DOM=∠CON.在△DOM和△CON中..∴△DOM≌△CON(ASA).∵四边形MOND的面积是1.四边形MOND的面积=△DOM的面积+△DON的面积.∴四边形MOND的面积=△CON的面积+△DON的面积=△DOC的面积.∴△DOC的面积是1.∴正方形ABCD的面积是4.∴AB2=4.∴AB=2.故选:C.4.(2021•湖北)如图.在正方形ABCD中.AB=4.E为对角线AC上与A.C不重合的一个动点.过点E作EF⊥AB于点F.EG⊥BC于点G.连接DE.FG.下列结论:①DE=FG;②DE⊥FG;③∠BFG=∠ADE;④FG的最小值为3.其中正确结论的个数有()A.1个B.2个C.3个D.4个【答案】C【解答】解:①连接BE.交FG于点O.如图.∵EF⊥AB.EG⊥BC.∴∠EFB=∠EGB=90°.∵∠ABC=90°.∴四边形EFBG为矩形.∴FG=BE.OB=OF=OE=OG.∵四边形ABCD为正方形.∴AB=AD.∠BAC=∠DAC=45°.在△ABE和△ADE中..∴△ABE≌△ADE(SAS).∴BE=DE.∴DE=FG.∴①正确;②延长DE.交FG于M.交FB于点H.∵△ABE≌△ADE.∴∠ABE=∠ADE.由①知:OB=OF.∴∠OFB=∠ABE.∴∠OFB=∠ADE.∵∠BAD=90°.∴∠ADE+∠AHD=90°.∴∠OFB+∠AHD=90°.即:∠FMH=90°.∴DE⊥FG.∴②正确;③由②知:∠OFB=∠ADE.即:∠BFG=∠ADE.∴③正确;④∵点E为AC上一动点.∴根据垂线段最短.当DE⊥AC时.DE最小.∵AD=CD=4.∠ADC=90°.∴AC=.∴DE=AC=2.由①知:FG=DE.∴FG的最小值为2.∴④错误.综上.正确的结论为:①②③.故选:C.5.(2020•陕西)如图.在矩形ABCD中.AB=4.BC=8.延长BA至E.使AE=AB.以AE为边向右侧作正方形AEFG.O为正方形AEFG的中心.若过点O的一条直线平分该组合图形的面积.并分别交EF、BC于点M、N.则线段MN的长为.【答案】4【解答】解:如图.连接AC.BD交于点H.过点O和点H的直线MN平分该组合图形的面积.交AD于S.取AE中点P.取AB中点Q.连接OP.HQ.过点O作OT⊥QH于T.∵四边形ABCD是矩形.∴AH=HC.又∵Q是AB中点.∴QH=BC=4.QH∥BC.AQ=BQ=2.同理可求PO=AG=2.PO∥AG.EP=AP=2.∴PO∥AD∥BC∥EF∥QH.EP=AP=AQ=BQ.∴MO=OS=SH=NH.∠OPQ=∠PQH=90°.∵OT⊥QH.∴四边形POTQ是矩形.∴PO=QT=2.OT=PQ=4.∴TH=2.∴OH===2.∴MN=2OH=4.故答案为:4.6.(2021•邵阳)如图.在正方形ABCD中.对角线AC.BD相交于点O.点E.F是对角线AC上的两点.且AE=CF.连接DE.DF.BE.BF.(1)证明:△ADE≌△CBF.(2)若AB=4.AE=2.求四边形BEDF的周长.【答案】(1)略(2)8【解答】(1)证明:由正方形对角线平分每一组对角可知:∠DAE=∠BCF=45°.在△ADE和△CBF中..∴△ADE≌△CBF(SAS).(2)解:∵AB=AD=.∴BD===8.由正方形对角线相等且互相垂直平分可得:AC=BD=8.DO=BO=4.OA=OC=4.又AE=CF=2.∴OA﹣AE=OC﹣CF.即OE=OF=4﹣2=2.故四边形BEDF为菱形.∵∠DOE=90°.∴DE===2.∴4DE=.故四边形BEDF的周长为8.1.(2021•云岩区模拟)数学老师用四根长度相等的木条首尾顺次相接制成一个图1所示的菱形教具.此时测得∠D=60°.对角线AC长为16cm.改变教具的形状成为图2所示的正方形.则正方形的边长为()A.8cm B.4cm C.16cm D.16cm【答案】C【解答】解:如图1.图2中.连接AC.图1中.∵四边形ABCD是菱形.∴AD=DC.∵∠D=60°.∴△ADC是等边三角形.∴AD=DC=AC=16cm.∴正方形ABCD的边长为16cm.故选:C.2.(2021•石家庄一模)将图1中两个三角形按图2所示的方式摆放.其中四边形ABCD 为矩形.连接PQ.MN.甲、乙两人有如下结论:甲:若四边形ABCD为正方形.则四边形PQMN必是正方形;乙:若四边形PQMN为正方形.则四边形ABCD必是正方形.下列判断正确的是()A.甲正确.乙不正确B.甲不正确.乙正确C.甲、乙都不正确D.甲、乙都正确【答案】B【解答】解:若ABCD是正方形.可设AB=BC=CD=AD=x.∴AQ=4﹣x.AP=3+x.∴PQ2=AQ2+AP2.即PQ===.x取值不同则PQ的长度不同.∴甲不正确.若四边形PQMN为正方形.则PQ=PN=MN=MQ=5.且∠QMD+∠MQD=∠QAP=∠AQP+∠QP A=90°.在△QMD和△PQA中..∴△QMD≌△PQA(ASA).∴QD=AP.同理QD=AP=MC=BN.又∵BP=MD=AQ.∴QD﹣AD=P A﹣AB.∴AB=AD.同理AB=CD=AD=BC.即四边形ABCD为菱形.∵∠DAB=180°﹣∠QAP=90°.则四边形ABCD为正方形.∴乙正确.故选:B.3.(2021•临沂模拟)如图.AD是△ABC的角平分线.DE.DF分别是△ABD和△ACD的高.得到下列四个结论:①OA=OD;②AD⊥EF;③当∠A=90°时.四边形AEDF是正方形;④AE+DF=AF+DE.其中正确的是()A.②③B.②④C.①③④D.②③④【答案】D【解答】解:如果OA=OD.则四边形AEDF是矩形.没有说∠A=90°.不符合题意.故①错误;∵AD是△ABC的角平分线.∴∠EAD=∠F AD.在△AED和△AFD中..∴△AED≌△AFD(AAS).∴AE=AF.DE=DF.∴AE+DF=AF+DE.故④正确;∵在△AEO和△AFO中..∴△AEO≌△AFO(SAS).∴EO=FO.又∵AE=AF.∴AO是EF的中垂线.∴AD⊥EF.故②正确;∵当∠A=90°时.四边形AEDF的四个角都是直角.∴四边形AEDF是矩形.又∵DE=DF.∴四边形AEDF是正方形.故③正确.综上可得:正确的是:②③④.故选:D.4.(2020•宁津县一模)下列说法正确的是()A.对角线相等且相互平分的四边形是矩形B.对角线相等且相互垂直的四边形是菱形C.四条边相等的四边形是正方形D.对角线相互垂直的四边形是平行四边形【答案】A【解答】解:A、对角线相等且相互平分的四边形是矩形.故该选项正确;B、对角线相等且相互垂直的四边形不一定是菱形.故该选项错误;C、四条边相等的四边形是菱形.不是正方形.故该选项错误;D、对角线相互垂直的四边形不是平行四边形.故该选项错误.故选:A.5.(2021•南浔区模拟)如图.E.F是正方形ABCD的边BC上两个动点.BE=CF.连接AE.BD交于点G.连接CG.DF交于点M.若正方形的边长为1.则线段BM的最小值是()A.B.C.D.【答案】D【解答】解:如图.在正方形ABCD中.AB=AD=CB.∠EBA=∠FCD.∠ABG=∠CBG.在△ABE和△DCF中..∴△ABE≌△DCF(SAS).∴∠BAE=∠CDF.在△ABG和△CBG中..∴△ABG≌△CBG(SAS).∴∠BAG=∠BCG.∴∠CDF=∠BCG.∵∠DCM+∠BCG=∠FCD=90°.∴∠CDF+∠DCM=90°.∴∠DMC=180°﹣90°=90°.取CD的中点O.连接OB、OF.则OF=CO=CD=.在Rt△BOC中.OB===.根据三角形的三边关系.OM+BM>OB.∴当O、M、B三点共线时.BM的长度最小.∴BM的最小值=OB﹣OF==.故选:D.6.(2021•平凉模拟)如图.在矩形ABCD中.M、N分别是边AD、BC的中点.E、F分别是线段BM、CM的中点.(1)求证:BM=CM.(2)当AB:AD的值为多少时.四边形MENF是正方形?请说明理由.【答案】(1)略(2)当AB:AD=1:2时.四边形MENF是正方形【解答】(1)证明:∵四边形ABCD是矩形.∴AB=DC.∠A=∠D=90°.∵M为AD中点.∴AM=DM.在△ABM和△DCM中..∴△ABM≌△DCM(SAS).∴BM=CM;(2)解:当AB:AD=1:2时.四边形MENF是正方形.理由如下:∵N、E、F分别是BC、BM、CM的中点.∴NE∥CM.NE=CM.∵MF=CM.∴NE=FM.∵NE∥FM.∴四边形MENF是平行四边形.由(1)知△ABM≌△DCM.∴BM=CM.∵E、F分别是BM、CM的中点.∴ME=MF.∴平行四边形MENF是菱形;∵M为AD中点.∴AD=2AM.∵AB:AD=1:2.∴AD=2AB.∴AM=AB.∵∠A=90°.∴∠ABM=∠AMB=45°.同理∠DMC=45°.∴∠EMF=180°﹣45°﹣45°=90°.∵四边形MENF是菱形.∴菱形MENF是正方形.7.(2021•沂水县二模)如图.四边形ABCD是正方形.△ABE是等边三角形.M为对角线BD(不含B点)上的点.(1)当点M是CE与BD的交点时.如图1.求∠DMC的度数;(2)若点M是BD上任意一点时.将BM绕点B逆时针旋转60°得到BN.连接EN.CM.求证:EN=CM;(3)当点M在何处时.BM+2CM的值最小.说明理由.【答案】(1)60°(2)略(3)当M点位于BD.CE交点时.BM+2CM的值最小【解答】(1)解:∵△AEB是等边三角形.∴EB=AB=AE.∠EBA=60°.∵四边形ABCD是正方形.∴AB=BC.∠ABC=90°.∴EB=CB.∠EBC=∠EBA+∠ABC=60°+90°=150°.∴∠BCE=(180°﹣∠EBC)=×(180°﹣150°)=15°.∵BD是正方形ABCD的对角线.∴∠DBC=45°.∵∠DMC是△BMC的外角.∴∠DMC=∠DBC+∠BCE=45°+15°=60°;(2)证明:由旋转可知.BM=BN.∠MBN=60°.∵∠MBA=45°.∴∠ABN=∠MBN﹣∠MBA=15°.∵∠ABE=60°.∴∠NBE=∠ABE﹣∠ABN=45°.在△BMC和△BNE中..∴△BMC≌△BNE(SAS).∴CM=EN;(3)当M点位于BD.CE交点时.BM+2CM的值最小.理由如下:在△ADM和△CDM中..∴△ADM≌△CDM(SAS).∴AM=CM.将BM绕点B旋转60°.得到BN.∵∠EBN+∠NBA=60°.∠NBA+∠ABM=60°.∴∠EBN=∠ABM.在△ENB和△AMB中..∴△ENB≌△AMB(SAS).∴AM=EN.∵BM=BN.∠NBM=60°.∴△BMN是等边三角形.∴BM=NM.∴BM+2CM=BM+AM+CM=MN+EN+CM=EN+MN+CM.即E.N.M.C四点共线时.有最小值.8.(2022•南昌模拟)已知正方形ABCD与正方形AEFG.正方形AEFG绕点A旋转一周.(1)如图1.连接BG、CF.①求的值;②求∠BHC的度数.(2)当正方形AEFG旋转至图2位置时.连接CF、BE.分别取CF、BE的中点M、N.连接MN.猜想MN与BE的数量关系与位置关系.并说明理由.【答案】(1)①=②45°(2)BE=2MN.MN⊥BE【解答】解:(1)①如图1.连接AF.AC.∵四边形ABCD和四边形AEFG都是正方形.∴AC=AB.AF=AG.∠CAB=∠GAF=45°.∠BAD=90°.∴∠CAF=∠BAG..∴△CAF∽△BAG.∴=;②∵AC是正方形BCD的对角线.∴∠ABC=90°.∠ACB=45°.在△BCH中.∠BHC=180°﹣(∠HBC+∠HCB)=180°﹣(∠HBC+∠ACB+∠ACF)=180°﹣(∠HBC+∠ACB+∠ABG)=180°﹣(∠ABC+∠ACB)=45°;(2)BE=2MN.MN⊥BE.理由如下:如图2.连接ME.过点C作CQ∥EF.交直线ME于Q.连接BH.设CF与AD 交点为P.CF与AG交点为R.∵CQ∥EF.∴∠FCQ=∠CFE.∵点M是CF的中点.∴CM=MF.又∵∠CMQ=∠FME.∴△CMQ≌△FME(ASA).∴CQ=EF.ME=QM.∴AE=CQ.∵CQ∥EF.AG∥EF.∴CQ∥AG.∴∠QCF=∠CRA.∵AD∥BC.∴∠BCF=∠APR.∴∠BCQ=∠BCF+∠QCF=∠APR+∠ARC.∵∠DAG+∠APR+∠ARC=180°.∠BAE+∠DAG=180°.∴∠BAE=∠BCQ.又∵BC=AB.CQ=AE.∴△BCQ≌△BAE(SAS).∴BQ=BE.∠CBQ=∠ABE.∴∠QBE=∠CBA=90°.∵MQ=ME.点N是BE中点.∴BQ=2MN.MN∥BQ.∴BE=2MN.MN⊥BE.。
正方形中的数学知识点总结

正方形中的数学知识点总结1. 正方形的定义正方形是一个四边相等且四个角均为直角的四边形。
换句话说,正方形是一种特殊的矩形,具有边长相等的特点。
正方形的对角线相等且互相平分,对角线垂直且互相垂直平分。
2. 正方形的性质(1) 边长:正方形的四条边长均相等。
(2) 对角线:正方形的对角线相等。
(3) 对角线相交:正方形的对角线互相垂直且互相平分。
(4) 内角:正方形的四个内角均为直角。
(5) 周长:正方形的周长等于四条边长之和。
(6) 面积:正方形的面积等于边长的平方。
3. 正方形的面积和周长计算正方形的面积计算公式为:S=a²,其中a表示正方形的边长。
周长计算公式为:C=4a,即正方形的四条边长之和。
4. 正方形的重要定理(1) 正方形的对角线垂直平分定理:正方形的对角线相互垂直且相互平分。
(2) 正方形的对角线相等定理:正方形的对角线相等。
(3) 正方形的四边相等定理:正方形的四条边相等。
5. 正方形的应用(1) 基本建筑设计中经常采用正方形的形状,如房屋的平面设计、花园的规划等。
(2) 研究正方形的性质和定理有助于培养学生的逻辑思维和数学推理能力。
6. 正方形与其他几何图形的关系(1) 正方形是一种特殊的矩形,具有边长相等的特点。
(2) 正方形是一种特殊的菱形,具有四个内角均为直角的特点。
(3) 正方形是一种特殊的平行四边形,具有四边相等的特点。
7. 正方形的扩展(1) 三维几何:正方形可以扩展到三维空间中,形成长方体。
(2) 应用领域:正方形的应用可以扩展到不同的领域,如工程设计、艺术设计、数学研究等。
总的来说,正方形是数学中一个重要的基本图形,具有许多重要的性质和定理。
通过研究正方形的性质和应用,可以帮助学生更好地理解几何学知识,提高数学推理能力和应用能力。
同时,正方形在现实生活中有着广泛的应用,可以帮助人们更好地应用数学知识解决实际问题。
希望本文的介绍可以帮助读者更好地了解正方形的数学知识点。
正方形及特殊正方形知识点(经典完整版)

正方形及特殊正方形知识点(经典完整版)
正方形是一种具有特殊性质的几何形状,它的四边长度相等且四个角都是直角。
以下是关于正方形及其特殊类型的一些基本知识点。
正方形的性质
- 正方形的四条边长度相等,记作a。
- 正方形的四个角都是直角,每个角为90度。
- 正方形的对角线长度相等,记作d,满足d = a * √2。
- 正方形的内角和为360度,每个内角为90度。
- 正方形的面积为A = a * a,其中a为边长。
- 正方形的周长为P = 4 * a,其中a为边长。
特殊正方形类型
边长为整数的正方形
除了一般的正方形,还可以根据边长的特定性质来划分特殊类型的正方形。
1. 完全平方数正方形:当正方形的边长为整数且为完全平方数时,可以得到完全平方数正方形。
例如,边长为1、4、9等都是完全平方数的正方形。
具有特定角度关系的正方形
2. 黄金角正方形:黄金角正方形是指正方形的一条对角线与边长之比等于黄金比例(约为1.)的正方形。
3. 铂金角正方形:铂金角正方形是指正方形的一条对角线与边长之比等于铂金比例(约为1.)的正方形。
具有特定长度关系的正方形
4. 对角线倍数正方形:对于正方形的一条对角线长度,可以找到倍数关系的正方形。
例如,当正方形的对角线长度为d时,可以找到边长为d/√2的正方形。
这些是关于正方形及其特殊类型的一些知识点。
通过理解正方形的性质和不同类型,我们可以更好地应用它们在几何问题和实际生活中的应用。
> 注意:以上内容仅供参考,如有需要,请参考正规的教材或咨询相关专业人士。
正方形的知识总结(两篇)

引言概述:正方形是一种几何形状,具有许多独特的属性和特征。
本文将深入探讨正方形的知识总结,从正方形的定义和性质,到相关的数学公式和应用,并给出一些实际生活中与正方形相关的例子。
通过本文的阐述,读者将能更深入地理解和运用正方形的概念。
正文内容:1.正方形的定义和性质1.1正方形的定义:介绍正方形是一种四边相等、四个角都是直角的特殊四边形。
1.2正方形的性质:阐述正方形具有对称性、对角线相等、对角线垂直等性质,并给出证明。
2.正方形的周长和面积公式2.1周长公式的推导:详细介绍如何推导正方形的周长公式。
2.2面积公式的推导:详细介绍如何推导正方形的面积公式。
2.3周长和面积公式的比较:比较周长和面积公式之间的关系和特点,解释为什么周长公式是面积公式的一半。
3.正方形的应用3.1图形的分类:介绍几何图形的分类,重点讲述正方形在图形分类中的作用。
3.2建筑和设计中的应用:介绍正方形在建筑和设计中的应用,比如正方形的房间布局,正方形的花园设计等。
3.3数学问题的解决:解释如何使用正方形的性质和公式来解决一些数学问题,例如寻找最大正方形的面积等。
4.正方形的实际应用举例4.1城市规划:举例说明正方形在城市规划中的应用,如正方形的街区设计,正方形的公园规划等。
4.2网格和排版设计:介绍正方形在网格和排版设计中的应用,如正方形的网格布局,正方形的页面排版等。
4.3绘画和艺术:探讨正方形在绘画和艺术中的应用,如正方形的画框设计,正方形的艺术装饰等。
4.4数字图像处理:介绍正方形在数字图像处理中的应用,如正方形的像素处理,正方形的图像编码等。
4.5生活中的实际应用:举例说明正方形在日常生活中的实际应用,如正方形的餐桌布置,正方形的画框选择等。
5.结论通过本文的详细阐述,我们可以总结出正方形的定义和性质,掌握正方形的周长和面积公式,并了解了正方形在实际应用中的重要性。
正方形作为一种几何形状,在数学、建筑、设计、绘画等领域都具有广泛的应用,为我们的生活带来了便利和美感。
初一数学正方形知识点总结

初一数学正方形知识点总结一、正方形的定义正方形是一种特殊的四边形,它有以下两个特点:1. 四条边长度相等。
即AB=BC=CD=AD。
2. 四个角均为90度的直角。
即∠ABC=∠BCD=∠CDA=∠DAB=90°。
二、正方形的性质1. 对角线相等。
正方形的对角线互相垂直且相等,即AC=BD。
2. 对角线平分。
正方形的对角线互相平分,即AB=BC=CD=AD=AC=BD。
3. 对角线相交于垂心。
正方形的对角线相交于垂心,且垂直互相平分。
4. 对角线长方形。
一个正方形可以看做是两个对角线垂直且相等的长方形。
5. 正方形的面积。
正方形的面积公式为S=a²,其中a为正方形的边长。
三、正方形的性质应用1. 计算正方形的面积正方形的面积公式为S=a²,其中a为正方形的边长。
例如,若一正方形的边长为5cm,则它的面积为5²=25平方厘米。
2. 计算正方形的周长由于正方形的四条边长度相等,所以它的周长为4a,其中a为正方形的边长。
例如,若一正方形的边长为5cm,则它的周长为4×5=20厘米。
四、解题技巧1. 计算正方形的面积与周长计算正方形的面积只需要将边长平方即可,计算周长只需要将边长乘以4即可。
2. 使用对角线求解面积当正方形只给出对角线的长,可以先求出边长,再计算面积。
五、练习题1.一块正方形的边长是8m,那它的周长是多少?它的面积是多少?答:周长=4×8=32米,面积=8²=64平方米。
2. 一块正方形的对角线长是10cm,那它的周长是多少?它的面积是多少?答:设正方形的边长为a,则有a²+¬a²=10²→2a²=10²→a²=50,∴周长=4√50cm,面积=50平方厘米。
总结:正方形是一种基本的几何图形,它的特点是四条边相等且四个角均为直角。
掌握正方形的性质和求解方法对于初一数学学习非常有帮助,可以通过练习题加深对正方形的认识和应用,希望同学们能够多加练习,提高自己的数学水平。
数学正方形知识点归纳讲解

数学正方形知识点归纳讲解
初中数学正方形知识点归纳讲解
以下是对正方形知识点的内容知识,希望们很好的掌握下面的知识。
正方形
1、正方形定义:有一组邻边相等且有一个角是直角的平行四边形叫做正方形。
警示:⑴ 正方形既是有一组邻边相等的矩形,又是有一个角是直角的菱形;
⑵ 既是矩形又是菱形的四边形是正方形;
⑶ 正方形不仅是特殊的平行四边形,而且是特殊的矩形,还是特殊的菱形。
2、正方形的性质:
正方形具有四边形、平行四边形、矩形、菱形的一切性质。
⑴ 边——四条边都相等,邻边垂直、对边平行;
⑵ 角——四个角都是直角;
⑶ 对角线——对角线相等且互相垂直平分,每条对角线平分一组对角;
⑷ 对称性——是轴对称图形,有四条对称轴。
⑸ 特殊性质——正方形的一条对角线把正方形分成两个全等的等腰直角三角形,对角线与边的夹角是45°;
正方形的两条对角线把正方形分成四个全等的等腰直角三角形
3、正方形的判定:判定一个四边形为正方形的主要依据是定义,途径有两条:
⑴ 先证它是矩形,再证它有一组邻边相等;
⑵ 先证它是菱形,再证它有一个角是直角。
通过上面对正方形知识点的总结学习,同学们对上面的知识都能很好的掌握了吧,相信同学们会做的很好的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(完整版)正方形知识点复习总结正方形知识点复总结
1. 正方形的定义
正方形是一种特殊的四边形,具有以下特点:
- 四条边的长度相等。
- 四个内角都是90度。
- 对角线相等且垂直平分。
2. 正方形的性质
2.1 逆向性质
正方形的逆向性质可以由其定义推导得出:
- 如果一个四边形的四条边都相等且四个内角都是90度,则它是正方形。
2.2 边长和对角线的关系
在一个正方形中,边长和对角线之间存在以下关系:
- 对角线的长度等于边长的根号2倍。
- 边长等于对角线长度的根号2的一半。
2.3 面积和周长
正方形的面积和周长计算公式如下:
- 面积:边长的平方。
- 周长:边长的四倍。
2.4 正方形与其他几何图形的关系
正方形与其他几何图形的关系如下:
- 正方形是一个长方形,其中长和宽相等。
- 正方形也是一个菱形,其中每个角都是90度。
3. 判断正方形的方法
在解决问题时,我们有时需要判断一个四边形是否是正方形。
以下是几种判断的方法:
- 判断边长:检查四条边是否长度相等。
- 判断角度:检查四个内角是否都是90度。
- 判断对角线:检查对角线长度是否相等且垂直平分。
4. 示例题目
下面是一些关于正方形的示例题目,帮助巩固对正方形知识的
理解:
1. 若一个四边形的边长为4cm,是不是正方形?
2. 如果一个四边形的边长为6cm,内角都是90度,那它一定
是正方形吗?
3. 一个四边形的对角线长度为5cm,是不是正方形?
5. 结论
正方形是一种具有特殊性质的四边形,有着特定的定义和性质。
了解正方形的定义、性质以及判断方法可以帮助我们更好地理解和
应用正方形相关的问题。