中考数学考点28正方形总复习(解析版)

合集下载

2020年中考数学复习第28讲 《命题与证明》(含答案)

2020年中考数学复习第28讲 《命题与证明》(含答案)

2020年数学中考复习每日一练第二十八讲《命题与证明》一.选择题1.下列说法正确的是()A.所有命题都是定理B.三角形的一个外角大于它的任一内角C.三角形的外角和等于180°D.公理和定理都是真命题2.①实数和数轴上的点一﹣﹣对应.②不带根号的数一定是有理数.③一个数的立方根是它本身,这样的数有两个.④的算术平方根是9.其中真命题有()A.1个B.2个C.3个D.4个3.下列哪个是假命题()A.相等的角是对顶角B.在三角形中等角对等边C.全等三角形的对应边相等D.两点之间,线段最短4.如图,在ABCD中,∠DAB=60°,AB=8,AD=6.⊙O分别切边AB,AD于点E,F,且圆心O好落在DE上.现将⊙O沿AB方向滚动到与BC边相切(点O在ABCD的内部),则圆心O移动的路径长为()A.2 B.4 C.5﹣D.8﹣25.如图,⊙O的半径为5,将长为8的线段PQ的两端放在圆周上同时滑动,如果点P从点A出发按逆时针方向滑动一周回到点A,在这个过程中,线段PQ扫过区域的面积为()A.9πB.16πC.25πD.64π6.“命题”的英文单词为proposition,在该单词中字母o出现的频数是()A.0.3 B.2 C.3 D.7.对于命题“两锐角之和一定是钝角”,能说明它是一个假命题的反例是()A.∠1=41°,∠2=50°B.∠1=41°,∠2=51°C.∠1=51°,∠2=49°D.∠1=41°,∠2=49°8.已知命题:①两边和第三边上的中线对应相等的两个三角形全等;②腰长和面积对应相等的两个等腰三角形全等,则下列判断正确的是()A.①,②都是真命题B.①是真命题,②是假命题C.①是假命题,②是真命题D.①,②都是假命题9.如图,将命题“在同圆中,相等的圆心角所对的弧相等,所对的弦也相等”改写成“已知……求证……”的形式,下列正确的是()A.已知:在⊙O中,∠AOB=∠COD,弧AB=弧CD.求证:AB=CDB.已知:在⊙O中,∠AOB=∠COD,弧AB=弧BC.求证:AD=BCC.已知:在⊙O中,∠AOB=∠COD.求证:弧AD=弧BC,AD=BCD.已知:在⊙O中,∠AOB=∠COD.求证:弧AB=弧CD,AB=CD10.如图,在矩形ABCD中,BC=AB,∠ADC的平分线交边BC于点E,AH⊥DE于点H,连接CH并延长交边AB于点F,连接AE交CF于点O,给出下列命题,其中正确命题的个数是()(1)∠AEB=∠AEH(2)EH+DH=AB(3)OH=AE(4)BC﹣BF=2EHA.1 B.2 C.3 D.4二.填空题11.写出命题“如果mn=1,那么m、n互为倒数”的逆命题:.12.下列命题:①试验次数越多频率就越接近概率;②汽车是轴对称图形;③直径是圆中最长的弦;④反比例函数y=(x>0)的图象是中心对称图形.正确的序号是.13.如图,已知⊙O的半径为2,弦AB=2,点P为优弧上动点,点为△PAB的内心,当点P从点A向点B运动时,点I移动的路径长为.14.已知边长为6的等边△ABC中,E是高AD所在直线上的一个动点,连接BE,将线段BE 绕点B逆时针旋转60°得到BF,连接DF,则在点E运动的过程中,当线段DF长度的最小值时,DE的长度为.15.如图,在Rt△ABC中,AC=4,BC=2,点M为AC的中点.将△ABC绕点M逆时针旋转90°得到△DEF,其中点B的运动路径为,则图中阴影部分的面积为.16.在Rt△ABC纸片中,∠ACB=90°,AC=2,BC=4.如图,直角顶点C在原点,点B在x轴负半轴上,当点C在y轴上向上移动时,点B也随之在x轴上向右移动,当点B到达原点时,点C停止移动.在移动过程中,点A到原点的最大距离是.17.如图,在平面直角坐标系中,等边三角形ABC的一边BC在x轴上,顶点A的坐标为(0,3),E是直线AO上的一个动点,连接BE,线段BF与线段BE关于直线BA对称,连接OF,在点E运动的过程中,当OF的长取得最小值时,AE的长等于.18.如图,抛物线y=﹣x﹣的图象与坐标轴交于A、B、D,顶点为E,以AB为直径画半圆交y轴的正半轴于点C,圆心为M,P是半圆AB上的一动点,连接EP,N是PE的中点,当P沿半圆从点A运动至点B时,点N运动的路径长是.三.解答题19.如图,在△ABC和△DEF中,B、E、C、F在同一直线上,下面有四个条件:①AB=DE;②AC=DF;③AB∥DE;④BE=CF.请你从中选三个作为题设,余下的一个作为结论,写出一个真命题,并加以证明.解:我写的真命题是:已知:;求证:.(注:不能只填序号)证明如下:20.探究问题:已知∠ABC,画一个角∠DEF,使DE∥AB,EF∥BC,且DE交BC于点P.∠ABC 与∠DEF有怎样的数量关系?(1)我们发现∠ABC与∠DEF有两种位置关系:如图1与图2所示.①图1中∠ABC与∠DEF数量关系为;图2中∠ABC与∠DEF数量关系为;请选择其中一种情况说明理由.②由①得出一个真命题(用文字叙述):.(2)应用②中的真命题,解决以下问题:若两个角的两边互相平行,且一个角比另一个角的2倍少30°,请直接写出这两个角的度数.21.正方形ABCD和正方形AEFG,AB=12,AE=6.设∠BAE=α(0°≤α≤45°,点E 在正方形ABCD内部),BE的延长线交直线DG于点Q.(1)求证:△ADG≌△ABE;(2)试求出当α由0°变化到45°过程中,点Q运动的路线长,并画出点Q的运动路径;直接写出当α等于多少度时,点G恰好在点Q运动的路径上.22.在直角坐标系xOy 中,点A (0,2),在x 轴上任取一点M (x ,0),连接AM , (1)过M 点作x 轴的垂线l 1,在垂线l 1上找到点P (x ,y )使PA =PM (尺规作图,并保留作图痕迹);(2)若多次改变点M 的位置得到相应的P 点,求P 点所形成的曲线L 的解析式.23.如图,在长方形ABCD 中,AB 的长为a ,AD 的长为b ,动点P 、Q 分别从A 、C 同时出发,点P 的运动路线是A →B →C →D ,点Q 的运动路线是C →D →A ,点P 的速度是4cm /s ,点Q 的速度是2cm /s .(1)如果AB =26cm ,AD =11cm ,经过一段时间后(此时点P 还没有到达点B ),把P 、Q 两点连结起来,得到的四边形PBCQ 是长方形,求经过的时间是多少? (2)在点Q 到达点D 前,点P 能追上点Q 吗?说明理由.24.如图,已知正方形ABCD的边长为4cm,点E从点A出发,以1cm/s的速度沿着折线A →B→C运动,到达点C时停止运动;点F从点B出发,也以1cm/s的速度沿着折线B→C →D运动,到达点D时停止运动.点E、F分别从点A、B同时出发,设运动时间为t(s).(1)当t为何值时,E、F两点间的距离为2cm;(2)连接DE、AF交于点M,①在整个运动过程中,CM的最小值为cm;②当CM=4cm时,此时t的值为.参考答案一.选择题1.解:A、命题不一定都是定理,故此选项错误;B、三角形的一个外角大于它不相邻的内角,故此选项错误;C、三角形的外角和等于360°,故此选项错误;D、公理和定理都是真命题,正确.故选:D.2.解:①实数和数轴上的点一一对应,故是真命题;②不带根号的数不一定是有理数,例如π,故原命题是假命题;③一个数的立方根是它本身,这样的数有3个,故原命题是假命题;④的算术平方根是3.故原命题是假命题.故选:A.3.解:A、相等的角是对顶角,故原命题是假命题,符合题意;B、在三角形中等角对等边,是真命题,不符合题意;C、全等三角形的对应边相等,故原命题是真命题,不合题意;D、两点之间,线段最短,故原命题是真命题,不合题意;故选:A.4.解:连接OE,OA、BO.∵AB,AD分别与⊙O相切于点E、F,∴OE⊥AB,OF⊥AD,∴∠OAE=∠OAD=30°,在Rt△ADE中,AD=6,∠ADE=30°,∴AE=AD=3,∴OE=AE=,∵AD∥BC,∠DAB=60°,∴∠ABC=120°.设当运动停止时,⊙O′与BC,AB分别相切于点M,N,连接O′N,O′M.同理可得,∠BO′N为30°,且O′N为,∴BN=O′N•tan30°=1cm,EN=AB﹣AE﹣BN=8﹣3﹣1=4.∴⊙O滚过的路程为4.故选:B.5.解:如图,线段PQ扫过的面积是图中圆环面积.作OE⊥PQ于E,连接OQ.∵OE⊥PQ,∴EQ=PQ=4,∵OQ=5,∴OE===3,∴线段PQ扫过区域的面积=π•52﹣π•32=16π,故选:B.6.解:在该单词中字母o出现的频数是3.故选:C.7.解:当∠1=41°,∠2=49°,所以∠1+∠2=90°,此时两锐角之和为直角,所以∠1=41°,∠2=49°可作为命题“两锐角之和一定是钝角”是一个假命题的反例.故选:D.8.解:两边和第三边上的中线对应相等的两个三角形全等,所以①为真命题;腰长和面积对应相等的两个等腰三角形全等,所以②假命题.故选:A.9.解:命题“在同圆中,相等的圆心角所对的弧相等,所对的弦也相等”改写成“已知……求证……”的形式,已知:在⊙O中,∠AOB=∠COD.求证:弧AB=弧CD,AB=CD,故选:D.10.解:(1)∵DE是∠ADC的平分线∴∠ADE=∠CDE=45°∵∠AHD=∠DCE=90°∴∠HAD=∠DEC=45°∴△ADH和△DEC是等腰直角三角形∴BC=AD=DH∵BC=AB∴DH=AH=AB=DCAE=AE∴Rt△ABE≌Rt△AEH(HL)∴∠AEB=∠AEH所以(1)正确;(2)∵△DEC是等腰直角三角形∴DC=CE又BE=EH,DC=DH∴DH+EH=CE+BE=BC=AB所以(2)正确;(3)∵∠EDC=45°DC=DH∴∠DHC=67.5°∴∠EHO=67.5°∴∠AHO=90°﹣67.5°=22.5°∵∠CED=45°∴∠AEB=∠AEH=67.5°∴∠BAE=∠HAE=22.5°∴∠AHO=∠HAE=22.5°∴AO=HO∵∠OHE=∠OEH=67.5°∴OH=OE∴AO=OE=OH∴OH=AE所以(3)正确;(4)∵EC=DC=DH=AH∠AHF=∠ECH=22.5°∠FAH=∠HEC=45°AH=EC∴△AFH≌△EHC(ASA)∴AF=EH∴AF=EH=BE又AB=AH=CE∴BC﹣BF=CE+BE﹣(AB﹣AF)=AB+EH﹣AB+EH=2EH所以(4)正确.所以正确的命题是:(1)、(2)、(3)、(4).故选:D.二.填空题(共8小题)11.解:命题“如果mn=1,那么m、n互为倒数”的逆命题是如果m、n互为倒数,那么mn =1,故答案为:如果m、n互为倒数,那么mn=1.12.解:①试验次数越多频率就越接近概率,本说法正确;②汽车样式各异,不一定是轴对称图形,本说法错误;③直径是圆中最长的弦,本说法正确;④反比例函数y=(x>0)的图象是中心对称图形,本说法正确;故答案为:①③④.13.解:连接OB,OA,过O作OD⊥AB,∴AD=BD=AB=,∵OA=OB=2,∴OD=1,∴∠AOD=∠BOD=60°,∴∠AOB=120°,∴∠P=∠AOB=60°,连接IA,IB,∵点I为△PAB的内心,∴∠IAB=∠PAB,∠IBA=∠PBA,∵∠PAB+∠PBA=120°,∴∠AIB=180°﹣(∠PAB+∠PBA)=120°,∵点P为弧AB上动点,∴∠P始终等于60°,∴点I在以AB为弦,并且所对的圆周角为120°的一段劣弧上运动,设A,B,I三点所在的圆的圆心为O′,连接O′A,O′B,则∠AO′B=120°,∵O′A=O′B,∴∠O′AB=′O′BA=30°,连接O′D,∵AD=BD,∴O′D⊥AB,∴AO′===2,∴点I移动的路径长==π.故答案为:π.14.解:连接CF,∵等边△ABC,∴AB=BC,∵线段BE绕点B逆时针旋转60°得到BF,∴BE=BF,∠ABE=∠CBF,∴△ABE≌△BCF(ASA),F点在直线CF上运动,∴CF=AE,∠BCF=30°,∴F点在直线CF上运动,当DF⊥CF时,DF最小,∵CD=3,∴CF=,∴AE=,∵AD=3,∴DE=,故答案为.15.解:连接BM、EN,由题意可知∠BME=90°,BC=CM=2,BM=BC=2,DF⊥AC,∴MN∥EF,M为DF的中点,∴MN为△DEF的中位线,∴MN=EF=1,MF=DF=2,∴S阴影=S扇形﹣S△EMN﹣S△BMH=﹣﹣=2π﹣3.16.解:如图,设Rt△ABC移动后得到Rt△A'B'C',取B'C'中点E,连接OE,A'E,∵∠B'OC'=90°,点E是B'C'中点,∴OE=B'C'=2,B'E=C'E=2,∴A'E===2,在△A'EO中,A'O<A'E+EO,∴当点E在A'O上时,A'O有最大值为A'E+EO,∴AO的最大值为2+2,故答案为:2+2.17.解:如图,连接AF,∵△ABC是等边三角形,AO⊥BC,∴∠BAO=30°,∵线段BF与线段BE关于直线BA对称,∴BF=BE,∠ABF=∠ABE,且AB=AB,∴△ABF≌△ABE(SAS)∴∠BAF=∠BAE=30°,AF=AE,∴∠FAE=60°,∴点F的轨迹是在y轴左侧且与AE成60°的直线AF上,∴当OF⊥AF时,OF的长最小,∴此时AF=AO=,∴AE=,故答案为:.18.解:连接EM,MN.对于抛物线y=﹣x﹣=(x﹣1)2﹣2,∴E(1,﹣2),由题意A(﹣1,0),B(3,0),∴M(2,00,∴EM⊥x轴.EM=MA=MB=2,∴点E在⊙M上,∵EN=NP,∴MN⊥EP,∴∠MNE=90°,∴点N的运动轨迹是以EM为直径的半圆,点N运动的路径长=×2π•2=π,故答案为π.三.解答题(共6小题)19.解:我写的真命题是:已知:①②④;求证:③证明如下:∵BE=FC,∴BE+EC=CF+EC,即BC=FE,在△ABC和△DEF中,∴△ABC≌△DEF(SSS),∴∠B=∠DEF,∴AB∥DE.故答案为①②④;③.20.解:(1)①如图1中,∠ABC+∠DEF=180°.如图2中,∠ABC=∠DEF,故答案为:∠ABC+∠DEF=180°,∠ABC=∠DEF.理由:如图1中,∵BC∥EF,∴∠DPB=∠DEF,∵AB∥DE,∴∠ABC+∠DPB=180°,∴∠ABC+∠DEF=180°.如图2中,∵BC∥EF,∴∠DPC=∠DEF,∵AB∥DE,∴∠ABC=∠DPC,∴∠A BC=∠DEF.②结论:如果两个角的两边互相平行,那么这两个角相等或互补.故答案为:如果两个角的两边互相平行,那么这两个角相等或互补.(2)设两个角分别为x和2x﹣30°,由题意x=2x﹣30°或x+2x﹣30°=180°,解得x=30°或x=70°,∴这两个角的度数为30°,30°或70°和110°.21.(1)证明:∵四边形ABCD与四边形AEFG是正方形,∴AD=AB,AG=AE,∠EAG=∠BAD=90°,∴∠DAG+∠DAE=∠BAE+∠DAE=90°,∴∠DAG=∠BAE,在△ADG和△ABE中,,∴△ADG≌△ABE(SAS);(2)解:∵△ADG≌△ABE,∴∠ADG=∠ABE,∴∠BQD=∠BAD=90°,∴点Q的运动轨迹是以BD为直径的,所对的圆心角是90°,∵AB=12,∴BD=AB=12,∴点Q的运动路径长==3π,点Q的运动路径如图1所示:∵AE=6,∴AE=AG=BD=OD,当B、E、G三点共线,且OG=OD时,Q与G重合,如图2所示:则△OAG是等边三角形,∴∠GAO=60°,∵∠DAC=45°,∴∠BAE=∠DAG=60°﹣45°=15°,∴当α=15°时,点G恰好在点Q运动的路径上.22.解:(1)如图,点P即可所求.(2)设P(x,y),∵PA=PM,A(0,2),M(x,0),∴PA2=PM2,∴x2+(y﹣2)2=y2,整理得:y=x2+1,∴P点所形成的曲线L的解析式y=x2+1.23.解:(1)∵四边形PBCQ是长方形,∴CQ=BP,∴AP+CQ=AB,设经过的时间为ts,由题意得:4t+2t=26,解得:t=;答:经过的时间是s;(2)追不上,理由如下:∵=,∴p用时多,追不上.24.解:(1)当E、F两点分别在AB、BC上时,则AE=t,EB=4﹣t,BF=t,∵EB2+BF2=EF2,∴t2+(4﹣t)2=(2)2,∴t1=2+,t2=2﹣;当E、F两点分别在BC、CD上时,则CE=8﹣t,CF=t﹣4,∵CE2+CF2=EF2,∴(8﹣t)2+(t﹣4)2=(2)2,∴t1=6+,t2=6﹣;(2)①当点E在AB上,点F在BC上时,∵∠DAE=∠ABF=90°,AD=AB,AE=BF,∴△DAE≌△ABF(SAS),∴∴∠ADE=∠BAF,∵∠ADE+∠AED=90°,∴∠BAF+∠AED=90°,∴∠AME=90°,∴点M在以AD为直径的⊙O上运动,连接OC,OM,CM.如图2中,当点E在BC上,点F在CD上,同法可证,∠AMD=90°,推出点M在以AD 为直径的⊙O上运动,∵OM=2,OC===2,∵CM≥OC﹣OM,∴CM≥2﹣2,∴CM的最小值为2﹣2(此时O,C,M共线).故答案为(2﹣2).②如图1中,当CM=4时,∵CM=CD=4,OD=OM,∴OC⊥DE,∴∠ADE+∠DOC=90°,∵∠DCO+∠DOC=90°,∴∠ADE=∠DCO,∵∠DAE=∠CDO=90°,AD=CD,∴△DAE≌△CDO(ASA),∴AE=OD=2,∴t=2,如图2中,当点E与C重合时,点F与D重合时,此时CM=4,t=8,综上所述,t的值为2或8时,CM=4.故答案为2或8.。

2020年中考数学一轮复习基础考点及题型专题29 数据的分析(解析版)

2020年中考数学一轮复习基础考点及题型专题29 数据的分析(解析版)

中考数学 专题29 数据的分析考点总结【思维导图】【知识要点】知识点一 数据的集中趋势算术平均数:简称平均数,记作“x̅”,读作“x 拔”。

公式:平均数=n 个数的和个数=nx x x n+⋅⋅⋅++21【注意】分析平均数时,容易被数据的极值影响,导致错误的判断。

加权平均数概念:若n 个数1x ,2x ,…,n x 的权分别是1w ,2w ,…,n w ,则nnn w w w w x w x w x +⋅⋅⋅+++⋅⋅⋅++212211,叫做这n 个数的加权平均数.【注意】若各数据权重相同,则算术平均数等于加权平均数。

中位数的概念:将一组数据由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这个数据的中位数,如果数据的个数是偶数,则中间两个数的平均数就是这组数据的中位数。

确定中位数的一般步骤:第1步:排序,由大到小或由小到大。

第2步:确定是奇个数据(n+12)或偶个数据(n 2个数和它后一个数(n2+1)个数的平均数)。

第3步:如果是奇个数据,中间的数据就是中位数。

如果是偶数,中位数是中间两个数据的平均数。

众数的概念:一组数据中出现次数最多的数据就是这组数据的众数。

【注意】如果一组数据中有两个数据的频数一样且都是最大,那么这两个数据都是这组数据的众数,所以一组数据中众数的个数可能不唯一。

众数的意义:当一组数据有较多的重复数据时,众数往往能更好地反映其集中的趋势。

平均数、中位数、众数的区别:1、平均数的计算要用到所有的数据,它能够充分利用数据提供的信息,在现实生活中较为常用.但它受极端值的影响较大。

2、 当一组数据中某些数据多次重复出现时,众数往往是人们关心的一个量,众数不受极端值的影响,这是它的一个优势。

但当各个数据的重复次数大致相等时,众数往往没有意义。

3.中位数只需很少的计算,不受极端值的影响,这在有些情况下是一个优点。

【考查题型汇总】考查题型一 平均数、中位数、众数的计算方法1.(2019·山东中考模拟)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:则这些运动员成绩的中位数、众数分别为( ) A .1.70,1.75 B .1.70,1.70 C .1.65,1.75 D .1.65,1.70【答案】A 【详解】15名运动员,按照成绩从低到高排列,第8名运动员的成绩是1.70, 所以中位数是1.70,同一成绩运动员最多的是1.75,共有4人, 所以,众数是1.75.因此,中位数与众数分别是1.70,1.75, 故选A .2.(2019·四川中考真题)某班七个兴趣小组人数如下:5,6,6,x ,7,8,9,已知这组数据的平均数是7,则这组数据的中位数是( ) A .6 B .6.5C .7D .8【答案】C 【详解】∵5,6,6,x ,7,8,9,这组数据的平均数是7, ∴()775667898x =⨯-+++++=,∴这组数据从小到大排列为:5,6,6,7,8,8,9 ∵这组数据最中间的数为7, ∴这组数据的中位数是7. 故选C .3.(2019·四川中考真题)某班40名同学一周参加体育锻炼时间统计如表所示:那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是( ) A .17,8.5 B .17,9 C .8,9 D .8,8.5【答案】D 【详解】解:众数是一组数据中出现次数最多的数,即8; 由统计表可知,处于20,21两个数的平均数就是中位数, ∴这组数据的中位数为898.52+=; 故选:D .4.(2019·湖南中考模拟)据统计,某住宅楼30户居民五月份最后一周每天实行垃圾分类的户数依次是:27,30,29,25,26,28,29,那么这组数据的中位数和众数分别是( ) A .25和30 B .25和29C .28和30D .28和29【答案】D【详解】对这组数据重新排列顺序得,25,26,27,28,29,29,30,处于最中间是数是28, ∴这组数据的中位数是28, 在这组数据中,29出现的次数最多, ∴这组数据的众数是29, 故选D .5.(2019·山东中考真题)小明记录了临沂市五月份某周每天的日最高气温(单位:C ︒),列成如表:则这周最高气温的平均值是( ) A .26.25C ︒ B .27C ︒C .28C ︒D .29C ︒【答案】B 【详解】这周最高气温的平均值为()()1122226128329277C ⨯+⨯+⨯+⨯=︒; 故选:B .6.(2019·山东中考真题)在光明中学组织的全校师生迎“五四”诗词大赛中,来自不同年级的25名参赛同学的得分情况如图所示.这些成绩的中位数和众数分别是( )A .96分,98分B .97分,98分C .98分,96分D .97分,96分【答案】A【详解】98出现了9次,出现次数最多,所以数据的众数为98分;共有25个数,最中间的数为第13个数,是96,所以数据的中位数为96分.故选A.考查题型二加权平均数的应用方法1.(2016·内蒙古中考真题)从一组数据中取出a个x1,b个x2,c个x3,组成一个样本,那么这个样本的平均数是()A.x1+x2+x33B.ax1+ax2+ax3a+b+cC.ax1+ax2+ax33D.a+b+c3【答案】B【详解】由题意知,a个x1的和为ax1,b个x2的和为bx2,c个x3的和为cx3,数据总共有a+b+c个,所以这个样本的平均数=ax1+ax2+ax3a+b+c,故选B.2.(2019·双柏县雨龙中学中考模拟)某公司招聘考试分笔试和面试,其中笔试按60%,面试按40%计算加权平均数作为总成绩,小红笔试成绩为90分,面试成绩为80分,那么小红的总成绩为( )A.80分B.85分C.86分D.90分【答案】C【详解】解:根据题意得:小红的总成绩为:90×60%+80×40%=86(分),故选:C.3.(2019·湖北中考真题)某中学规定学生的学期体育成绩满分为100分,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%.小桐的三项成绩(百分制)依次为95,90,85.则小桐这学期的体育成绩是()A.88.5B.86.5C.90D.90.5【答案】A【详解】根据题意得:95×20%+90×30%+85×50%=88.5(分),即小彤这学期的体育成绩为88.5分.故选A.4.(2019·河南郑州实验外国语中学中考模拟)在某中学理科竞赛中,张敏同学的数学、物理、化学得分(单位:分)分别为84,88,92,若依次按照4:3:3的比例确定理科成绩,则张敏的成绩是( )A.84分B.87.6分C.88分D.88.5分【答案】B【详解】解:84488392387.6433⨯+⨯+⨯=++(分).5.(2019·福建中考模拟)小明是“大三”学生,按照学校积分规则,如果他的学期数学成绩达到95分,就能获得“保研”资格.在满分为100分的期中、期末两次数学考试中,他的两次成绩的平均分为90分.如果按期中数学成绩占30%,期末数学成绩占70%计算学期数学成绩,那么小明能获得“保研”资格吗?请你运用所学知识帮他做出判断,并说明理由.【答案】见解析【详解】按期中数学成绩占30%,期末数学成绩占70%计算学期数学成绩,可得期末数学成绩100分,期中数学成绩80分的成绩最高,80×30%+100×70%=24+70=94(分)∵94分<95分,∴小明不能获得“保研”资格.6.(2015·内蒙古中考真题)学校准备从甲乙两位选手中选择一位选手代表学校参加所在地区的汉字听写大赛,学校对两位选手从表达能力、阅读理解、综合素质和汉字听写四个方面做了测试,他们各自的成绩(百分制)如表:(1)由表中成绩已算得甲的平均成绩为80.25,请计算乙的平均成绩,从他们的这一成绩看,应选派谁;(2)如果表达能力、阅读理解、综合素质和汉字听写分别赋予它们2、1、3和4的权,请分别计算两名选手的平均成绩,从他们的这一成绩看,应选派谁. 【答案】(1)甲;(2)乙.(1)x 乙=(73+80+82+83)÷4=79.5, ∵80.25>79.5, ∴应选派甲;(2)x 甲=(85×2+78×1+85×3+73×4)÷(2+1+3+4)=79.5,x 乙=(73×2+80×1+82×3+83×4)÷(2+1+3+4)=80.4,∵79.5<80.4, ∴应选派乙.考查题型三 选择合适的统计量解决问题1.(2019·浙江中考真题)车间有20名工人,某天他们生产的零件个数统计如下表. 车间20名工人某一天生产的零件个数统计表(1)求这一天20名工人生产零件的平均个数;(2)为了提高大多数工人的积极性,管理者准备实行“每天定额生产,超产有奖”的措施.如果你是管理者,从平均数、中位数、众数的角度进行分析,你将如何确定这个“定额”?【答案】(1)这一天20名工人生产零件的平均个数为13个;(2)定额为11个时,有利于提高大多数工人的积极性. 【详解】 解:(1)()191101116124132152162191201=1320x =⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯(个) 答:这一天20名工人生产零件的平均个数为13个. (2)中位数为12个,众数为11个.当定额为13个时,有8个达标,6人获奖,不利于提高工人的积极性. 当定额为12个时,有12个达标,8人获奖,不利于提高大多数工人的积极性. 当定额为11个时,有18个达标,12人获奖,有利于提高大多数工人的积极性. ∴当定额为11个时,有利于提高大多数工人的积极性.2(2019·云南中考真题)某公司销售部有营业员15人,该公司为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励,为了确定一个适当的月销售目标,公司有关部门统计了这15人某月的销售量,如下表所示:(1)直接写出这15名营业员该月销售量数据的平均数、中位数、众数;(2)如果想让一半左右的营业员都能达到月销售目标,你认为(1)中的平均数、中位数、众数中,哪个最适合作为月销售目标?请说明理由.【答案】(1)平均数为278,中位数为180,众数为90;(2)中位数最适合作为月销售目标,理由见解析. 【详解】(1)这15名销售人员该月销售量数据的平均数为177048022031803120390415++⨯+⨯+⨯+⨯=278,排序后位于中间位置的数为180,故中位数180, 数据90出现了4次,出现次数最多,故众数为90; (2)中位数最适合作为月销售目标.理由如下:在这15人中,月销售额不低于278(平均数)件的有2人,月销售额不低于180(中位数)件的有8人,月销售额不低于90(众数)件的有15人.所以,如果想让一半左右的营销人员都能够达到月销售目标,(1)中的平均数、中位数、众数中,中位数最适合作为月销售目标.3.(2019·贵阳市第三中学中考模拟)为了解某小区居民使用共享单车次数的情况,某研究小组随机采访该小区的10位居民,得到这10位居民一周内使用共享单车的次数统计如下:(1)这10位居民一周内使用共享单车次数的中位数是 次,众数是 次,平均数是 次. (2)若小明同学把数据“20”看成了“30”,那么中位数,众数和平均数中不受影响的是 .(填“中位数”,“众数”或“平均数”)(3)若该小区有200名居民,试估计该小区居民一周内使用共享单车的总次数.【答案】(1)10、10、11;(2)中位数和众数;(3)2200次【详解】解:(1)这10位居民一周内使用共享单车次数的中位数是10102+=10(次),众数为10次,平均数为015110415320110⨯+⨯+⨯+⨯+⨯=11(次),故答案为:10、10、11;(2)把数据“20”看成了“30”,那么中位数,众数和平均数中不受影响的是中位数和众数,故答案为:中位数和众数.(3)估计该小区居民一周内使用共享单车的总次数为200×11=2200次.4.(2018·湖北中考真题)为了参加“荆州市中小学生首届诗词大会”,某校八年级的两班学生进行了预选,其中班上前5名学生的成绩(百分制)分别为:八(1)班86,85,77,92,85;八(2)班79,85,92,85,89.通过数据分析,列表如下:(1)直接写出表中a,b,c的值;(2)根据以上数据分析,你认为哪个班前5名同学的成绩较好?说明理由.【答案】(1)a=86,b=85,c=85;(2)八(2)班前5名同学的成绩较好,理由见解析.【详解】(1)a=78859285895++++,将八(1)的成绩排序77、85、85、86、92,可知中位数是85,众数是85,所以b=85,c=85;(2)∵22.8>19.2,∴八(2)班前5名同学的成绩较好.考查题型四求统计图表中平均数、中位数、众数的方法1.(2019·河南中考模拟)某工厂生产部门为了解本部门工人的生产能力情况,进行了抽样调查.该部门随机抽取了30名工人某天每人加工零件的个数,数据如下:整理上面数据,得到条形统计图:样本数据的平均数、众数、中位数如下表所示:根据以上信息,解答下列问题:(1)上表中众数m的值为;(2)为调动工人的积极性,该部门根据工人每天加工零件的个数制定了奖励标准,凡达到或超过这个标准的工人将获得奖励.如果想让一半左右的工人能获奖,应根据来确定奖励标准比较合适.(填“平均数”、“众数”或“中位数”)(3)该部门规定:每天加工零件的个数达到或超过25个的工人为生产能手.若该部门有300名工人,试估计该部门生产能手的人数.【答案】(1)18;(2)中位数;(3)100名.【详解】(1)由图可得,众数m的值为18,故答案为:18;(2)由题意可得,如果想让一半左右的工人能获奖,应根据中位数来确定奖励标准比较合适,故答案为:中位数;(3)300×11231230+++++=100(名),答:该部门生产能手有100名工人.2.(2010·河北中考真题)甲、乙两校参加区教育局举办的学生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如图所示的尚不完整的统计图表.甲校成绩统计表(1)在图①中,“7分”所在扇形的圆心角等于______︒;(2)请你将②的统计图补充完整;(3)经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好;(4)如果该教育局要组织8人的代表队参加市级团体赛,为便于管理,决定从这两所学校中的一所挑选参赛选手,请你分析,应选哪所学校?【答案】(1)144°;(2)乙校得8分的学生的人数为3人,据此可将图②的统计图补充完整如图③见解析;(3)从平均分和中位数的角度分析乙校成绩较好;(4)应选甲校.【详解】(1)由图①知“10分”的所在扇形的圆心角是90度,由图②知10分的有5人,所以乙校参加英语竞赛的人数为:5÷90360=20(人),所以“7分”所在扇形的圆心角=360°×820=144°,故答案为:144;(2)乙校得8分的学生的人数为208453---=(人), 补全统计图如图所示:(3)由(1)知甲校参加英语口语竞赛的学生人数也是20人, 故甲校得9分的学生有201181--=(人), 所以甲校的平均分为:71191088.320⨯++⨯=(分),中位数为7分,而乙校的平均数为8.3分,中位数为8分,因为两校的平均数相同,但甲校的中位数要低于乙校,所以从平均分和中位数的角度分析乙校成绩较好; (4)选8名学生参加市级口语团体赛,甲校得10分的有8人,而乙校得10分的只有5人,所以应选甲校.知识点二 数据的波动方差的概念:在一组数据1x ,2x ,…,n x 中,各个数据与平均数的差的平方的平均数叫做这组数据的方差,记作2s .计算公式是:()()()[]2222121x x x x x x ns n -+⋅⋅⋅+-+-=求一组数据方差的步骤:先平均、再做差、然后平方、最后再求平均数。

中考数学专题复习《正方形中的常考题型》知识点梳理及典例讲解课件

中考数学专题复习《正方形中的常考题型》知识点梳理及典例讲解课件

上一点,AF=2,P为AC上一点,则PF+PE的最小值为( C )
典例1图
A. 15
B. 4
C. 17
D. 3 2
典例2 如图,E是边长为8的正方形ABCD的对角线BD上的动点,以AE为
边向左侧作正方形AEFG,P为AD的中点,连接PG,在点E运动的过程
中,PG长的最小值是( C )
典例2图
A. 2
∠EOF=90°,
∴ ∠COCOE≌△DOF.∴ CE=DF.
典例8图
类型4 半角模型
模型解读:如图,在正方形ABCD中,∠EAF=45°,延长CB到点G,使
BG=DF,连接EF,AG,则△AEF≌△AEG,EF=EG=BE+DF.
典例9 如图,在正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=
B. 2
C. 2 2
D. 4 2
典例3 (2023·池州东至一模)如图,在正方形ABCD中,AB=6,P,Q
分别为边BC,AB上的动点,且AQ=BP,AP与DQ交于点E,则线段BE
长的最小值为
3 -3 .
典例3图
类型2 十字模型
模型解读:如图①,E,F分别是正方形ABCD的边CD,AD上的点.若
AE⊥BF,则AE=BF.如图②,E,F,G,H分别是正方形ABCD的边
AB,BC,CD,AD上的点.若EG⊥FH,则EG=FH.
典例4 如图,在正方形ABCD中,AE=BF,则下列结论中,一定成立的
是( D )
A. ∠BEC=60°
B. ∠CFD=60°
C. AB=2AE
D. CE⊥DF
典例4图
90°,∠EPF的两边分别交直线AB,BC于点E,F.
(1) 当点E,F分别在边AB,BC上时,如图①,求证: 2(AE+CF)

备战中考数学分点透练真题矩形、菱形、正方形(解析版)

备战中考数学分点透练真题矩形、菱形、正方形(解析版)

第十九讲矩形、菱形、正方形命题点1 矩形的相关证明与计算1.(2020•怀化)在矩形ABCD中,AC、BD相交于点O,若△AOB的面积为2,则矩形ABCD 的面积为()A.4B.6C.8D.10【答案】C【解答】解:∵四边形ABCD是矩形,对角线AC、BD相交于点O,∴AC=BD,且OA=OB=OC=OD,∴S△ADO=S△BCO=S△CDO=S△ABO=2,∴矩形ABCD的面积为4S△ABO=8,故选:C.2.(2021•遂宁)如图,在矩形ABCD中,AB=5,AD=3,点E为BC上一点,把△CDE 沿DE翻折,点C恰好落在AB边上的F处,则CE的长是()A.1B.C.D.【答案】D【解答】解:设CE=x,则BE=3﹣x.由折叠性质可知,EF=CE=x,DF=CD=AB=5.在Rt△DAF中,AD=3,DF=5.∴AF=4.∴BF=AB﹣AF=1.在Rt△BEF中,BE2+BF2=EF2.即(3﹣x)2+12=x2.解得x=.故选:D.3.(2021•黑龙江)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,在不添加任何辅助线的情况下,请你添加一个条件,使平行四边形ABCD是矩形.【答案】∠ABC=90°(答案不唯一)【解答】解:添加一个条件为:∠ABC=90°,理由如下:∵四边形ABCD是平行四边形,∠ABC=90°,∴平行四边形ABCD是矩形,故答案为:∠ABC=90°(答案不唯一).4.(2021•贵港)如图,在矩形ABCD中,BD是对角线,AE⊥BD,垂足为E,连接CE,若tan∠ADB=,则tan∠DEC的值是.【答案】【解答】解:如图,过点C作CF⊥BD于点F,在△ABE与△CDF中,,∴△ABE≌△CDF(AAS),∴AE=CF,BE=FD,∵AE⊥BD,tan∠ADB==,设AB=a,则AD=2a,∴BD=a,∵S△ABD=BD•AE=AB•AD,∴AE=CF=a,∴BE=FD=a,∴EF=BD﹣2BE=a﹣a=a,∴tan∠DEC==,故答案为:.5.(2021•十堰)如图,O是矩形ABCD的对角线AC的中点,M是AD的中点.若AB=5,AD=12,则四边形ABOM的周长为.【答案】20【解答】解:∵O是矩形ABCD的对角线AC的中点,M是AD的中点,∴OM=CD=AB=2.5,∵AB=5,AD=12,∴AC==13,∵O是矩形ABCD的对角线AC的中点,∴BO=AC=6.5,∴四边形ABOM的周长为AB+AM+BO+OM=5+6+6.5+2.5=20,故答案为:20.6.(2021•嘉峪关)如图,在矩形ABCD中,E是BC边上一点,∠AED=90°,∠EAD=30°,F是AD边的中点,EF=4cm,则BE=cm.【答案】6【解答】解:∵∠AED=90°,F是AD边的中点,EF=4cm,∴AD=2EF=8cm,∵∠EAD=30°,∴AE=AD•cos30°=8×=4cm,又∵四边形ABCD是矩形,∴AD∥BC,∠B=90°,∴∠BEA=∠EAD=30°,在Rt△ABE中,BE=AE•cos∠BEA=4×cos30°=4×=6(cm),故答案为:6.7.(2021•绍兴)图1是一种矩形时钟,图2是时钟示意图,时钟数字2的刻度在矩形ABCD 的对角线BD上,时钟中心在矩形ABCD对角线的交点O上.若AB=30cm,则BC长为cm(结果保留根号).【答案】【解答】解:过O点作OE⊥CD,OF⊥AD,垂足分别为E,F,由题意知∠FOD=2∠DOE,∵∠FOD+∠DOE=90°,∴∠DOE=30°,∠FOD=60°,在矩形ABCD中,∠C=90°,CD=AB=30cm,∴OE∥BC,∴∠DBC=∠DOE=30°,∴BC=CD=cm,故答案为.8.(2021•内江)如图,矩形ABCD中,AB=6,BC=8,对角线BD的垂直平分线EF交AD 于点E、交BC于点F,则线段EF的长为.【答案】【解答】解:∵四边形ABCD是矩形,∴∠A=90°,又AB=6,AD=BC=8,∴BD==10,∵EF是BD的垂直平分线,∴OB=OD=5,∠BOF=90°,又∠C=90°,∴△BOF∽△BCD,∴=,∴=,解得,OF=,∵四边形ABCD是矩形,∴AD∥BC,∠A=90°,∴∠EDO=∠FBO,∵EF是BD的垂直平分线,∴BO=DO,EF⊥BD,在△DEO和△BFO中,,∴△DEO≌△BFO(ASA),∴OE=OF,∴EF=2OF=.故答案为:.9.(2021•枣庄)如图,∠BOD=45°,BO=DO,点A在OB上,四边形ABCD是矩形,连接AC,BD交于点E,连接OE交AD于点F.下列4个判断:①OE⊥BD;②∠ADB =30°;③DF=AF;④若点G是线段OF的中点,则△AEG为等腰直角三角形,其中,判断正确的是.(填序号)【答案】①③④【解答】解:①∵四边形ABCD是矩形,∴EB=ED,∵BO=DO,∴OE⊥BD故①正确;②∵∠BOD=45°,BO=DO,∴∠ABD=(180°﹣45°)=67.5°,∴∠ADB=90°﹣27.5°=22.5°,故②错误;③∵四边形ABCD是矩形,∴∠OAD=∠BAD=90°,∴∠ABD+∠ADB=90°,∵OB=OD,BE=DE,∴OE⊥BD,∴∠BOE+∠OBE=90°,∴∠BOE=∠BDA,∵∠BOD=45°,∠OAD=90°,∴∠ADO=45°,∴AO=AD,∴△AOF≌△ABD(ASA),∴OF=BD,∴AF=AB,连接BF,如图1,∴BF=AF,∵BE=DE,OE⊥BD,∴DF=BF,∴DF=AF,故③正确;④根据题意作出图形,如图2,∵G是OF的中点,∠OAF=90°,∴AG=OG,∴∠AOG=∠OAG,∵∠AOD=45°,OE平分∠AOD,∴∠AOG=∠OAG=22.5°,∴∠F AG=67.5°,∠ADB=∠AOF=22.5°,∵四边形ABCD是矩形,∴EA=ED,∴∠EAD=∠EDA=22.5°,∴∠EAG=90°,∵∠AGE=∠AOG+∠OAG=45°,∴∠AEG=45°,∴AE=AG,∴△AEG为等腰直角三角形,故④正确;∴判断正确的是①③④.故答案为:①③④.10.(2021•贵阳)如图,在矩形ABCD中,点M在DC上,AM=AB,且BN⊥AM,垂足为N.(1)求证:△ABN≌△MAD;(2)若AD=2,AN=4,求四边形BCMN的面积.【答案】(1)略(2)4﹣8.【解答】(1)证明:在矩形ABCD中,∠D=90°,DC∥AB,∴∠BAN=∠AMD,∵BN⊥AM,∴∠BNA=90°,在△ABN和△MAD中,,∴△ABN≌△MAD(AAS);(2)解:∵△ABN≌△MAD,∴BN=AD,∵AD=2,∴BN=2,又∵AN=4,在Rt△ABN中,AB===2,∴S矩形ABCD=2×2=4,S△ABN=S△MAD=×2×4=4,∴S四边形BCMN=S矩形ABCD﹣S△ABN﹣S△MAD=4﹣8.11.(2021•金华)已知:如图,矩形ABCD的对角线AC,BD相交于点O,∠BOC=120°,AB=2.(1)求矩形对角线的长;(2)过O作OE⊥AD于点E,连结BE.记∠ABE=α,求tanα的值.【答案】(1)4 (2)tanα==【解答】解:(1)∵∠BOC=120°,∴∠AOB=60°,∵四边形ABCD是矩形,∴∠BAD=90°,AC=BD,AO=OC,BO=DO,∴AO=BO,∴△AOB是等边三角形,∴AB=AO=BO,∵AB=2,∴BO=2,∴BD=2BO=4,∴矩形对角线的长为4;(2)由勾股定理得:AD===2,∵OA=OD,OE⊥AD于点E,∴AE=DE=AD=,∴tanα==.命题点2 菱形的相关证明与计算12.(2021•河南)关于菱形的性质,以下说法不正确的是()A.四条边相等B.对角线相等C.对角线互相垂直D.是轴对称图形【答案】B【解答】解:A.菱形的四条边相等,正确,不符合题意,B.菱形的对角线互相垂直且平分,对角线不一定相等,不正确,符合题意,C.菱形的对角线互相垂直且平分,正确,不符合题意,D.菱形是轴对称图形,正确,不符合题意,故选:B.13.(2021•烟台)如图,在直角坐标系中,菱形ABCD的顶点A,B,C在坐标轴上,若点B的坐标为(﹣1,0),∠BCD=120°,则点D的坐标为()A.(2,2)B.(,2)C.(3,)D.(2,)【答案】D【解答】解:∵菱形ABCD,∠BCD=120°,∴∠ABC=60°,∵B(﹣1,0),∴OB=1,OA=,AB=2,∴A(0,),∴BC=AD=2,∴OC=BC﹣OB=2﹣1=1,∴C(1,0),D(2,),故选:D.14.(2021•陕西)如图,在菱形ABCD中,∠ABC=60°,连接AC、BD,则的值为()A.B.C.D.【答案】D【解答】解:设AC与BD交于点O,∵四边形ABCD是菱形,∴AO=CO,BO=DO,AC⊥BD,∠ABD=∠ABC=30°,∵tan∠ABD=,∴,故选:D.15.(2021•绍兴)如图,菱形ABCD中,∠B=60°,点P从点B出发,沿折线BC﹣CD 方向移动,移动到点D停止.在△ABP形状的变化过程中,依次出现的特殊三角形是()A.直角三角形→等边三角形→等腰三角形→直角三角形B.直角三角形→等腰三角形→直角三角形→等边三角形C.直角三角形→等边三角形→直角三角形→等腰三角形D.等腰三角形→等边三角形→直角三角形→等腰三角形【答案】C【解答】解:∵∠B=60°,故菱形由两个等边三角形组合而成,当AP⊥BC时,此时△ABP为直角三角形;当点P到达点C处时,此时△ABP为等边三角形;当P为CD中点时,△ABP为直角三角形;当点P与点D重合时,此时△ABP为等腰三角形,故选:C.16.(2021•安徽)如图,在菱形ABCD中,AB=2,∠A=120°,过菱形ABCD的对称中心O分别作边AB,BC的垂线,交各边于点E,F,G,H,则四边形EFGH的周长为()A.3+B.2+2C.2+D.1+2【答案】A【解答】解:如图,连接BD,AC.∵四边形ABCD是菱形,∠BAD=120°,∴AB=BC=CD=AD=2,∠BAO=∠DAO=60°,BD⊥AC,∴∠ABO=∠CBO=30°,∴OA=AB=1,OB=OA=,∵OE⊥AB,OF⊥BC,∴∠BEO=∠BFO=90°,在△BEO和△BFO中,,∴△BEO≌△BFO(AAS),∴OE=OF,BE=BF,∵∠EBF=60°,∴△BEF是等边三角形,∴EF=BE=×=,同法可证,△DGH,△OEH,△OFG都是等边三角形,∴EF=GH=,EH=FG=,∴四边形EFGH的周长=3+,故选:A.17.(2021•朝阳)如图,在菱形ABCD中,点E,F分别在AB,CD上,且BE=2AE,DF =2CF,点G,H分别是AC的三等分点,则的值为()A.B.C.D.【答案】A【解答】解:∵BE=2AE,DF=2FC,∴,∵G、H分别是AC的三等分点,∴,,∴,∴EG∥BC∴,同理可得HF∥AD,,∴,故选:A.18.(2021•南充)如图,在菱形ABCD中,∠A=60°,点E,F分别在边AB,BC上,AE =BF=2,△DEF的周长为3,则AD的长为()A.B.2C.+1D.2﹣1【答案】C【解答】解:如图,连结BD,作DH⊥AB,垂足为H,∵四边形ABCD是菱形,∴AB=AD,AD∥BC,∵∠A=60°,∴△ABD是等边三角形,∠ABC=180°﹣∠A=120°,∴AD=BD,∠ABD=∠A=∠ADB=60°,∴∠DBC=∠ABC﹣∠ABD=120°﹣60°=60°,∵AE=BF,∴△ADE≌△BDF(SAS),∴DE=DF,∠ADE=∠FDB,∴∠EDF=∠EDB+∠FDB=∠EDB+∠ADE=∠ADB=60°,∴△DEF是等边三角形,∵△DEF的周长是3,∴DE=,设AH=x,则HE=2﹣x,∵AD=BD,DH⊥AB,∴∠ADH=∠ADB=30°,∴AD=2x,DH=x,在Rt△DHE中,DH²+HE²=DE²,∴(x)²+(2﹣x)²=()²,解得:x=(负值舍去),∴AD=2x=1+,故选:C.19.(2021•北京)如图,在矩形ABCD中,点E,F分别在BC,AD上,AF=EC.只需添加一个条件即可证明四边形AECF是菱形,这个条件可以是(写出一个即可).【答案】AE=AF【解答】解:这个条件可以是AE=AF,理由:∵四边形ABCD是矩形,∴AD∥BC,即AF∥CE,∵AF=EC,∴四边形AECF是平行四边形,∵AE=AF,∴四边形AECF是菱形,故答案为:AE=AF.20.(2021•山西)如图,在菱形ABCD中,对角线AC,BD相交于点O,BD=8,AC=6,OE∥AB,交BC于点E,则OE的长为.【答案】【解答】解:∵菱形ABCD中,对角线AC,BD相交于点O,∴OA=OC=,OB=,AC⊥BD,∵OE∥AB,∴BE=CE,∴OE为△ABC的中位线,∴,在Rt△ABO中,由勾股定理得:,∴OE=21.(2021•盐城)如图,D、E、F分别是△ABC各边的中点,连接DE、EF、AE.(1)求证:四边形ADEF为平行四边形;(2)加上条件后,能使得四边形ADEF为菱形,请从①∠BAC=90°;②AE平分∠BAC;③AB=AC这三个条件中选择1个条件填空(写序号),并加以证明.【答案】(1)略(2)②【解答】解:(1)证明:已知D、E、F为AB、BC、AC的中点,∴DE为△ABC的中位线,根据三角形中位线定理,∴DE∥AC,且DE==AF.即DE∥AF,DE=AF,∴四边形ADEF为平行四边形.(2)证明:选②AE平分∠BAC,∵AE平分∠BAC,∴∠DAE=∠F AE,又∵ADEF为平行四边形,∴EF∥DA,∴∠DAE=∠AEF,∴∠F AE=∠AEF,∴AF=EF,∴平行四边形ADEF为菱形.选③AB=AC,∵EF∥AB且EF=,DE∥AC且DE=,又∵AB=AC,∴EF=DE,∴平行四边形ADEF为菱形.22.(2021•云南)如图,四边形ABCD是矩形,E、F分别是线段AD、BC上的点,点O是EF与BD的交点.若将△BED沿直线BD折叠,则点E与点F重合.(1)求证:四边形BEDF是菱形;(2)若ED=2AE,AB•AD=3,求EF•BD的值.【答案】(1)略(2)4【解答】解:(1)证明:将△BED沿BD折叠,使E,F重合,∴OE=OF,EF⊥BD,∵四边形ABCD是矩形,∴∠C=90°,AD∥BC,∴∠ODE=∠OBF,在△OBF和△ODE中,,∴△OBF≌△ODE(AAS),∴OB=OD,∵OE=OF,∴四边形BFDE是平行四边形,∵EF⊥BD,∴四边形BFDE是菱形.(2)如图,∵AB•AD=3,∴S△ABD=AB•AD=,∵ED=2AE,∴ED=AD,∴S△BDE:S△ABD=2:3,∴S△BDE=,∴菱形BEDF的面积=EF•BD=2S△BDE=2,∴EF•BD=4.命题点3 正方形的相关证明与计算23.(2021•玉林)一个四边形顺次添加下列条件中的三个条件便得到正方形:a.两组对边分别相等b.一组对边平行且相等c.一组邻边相等d.一个角是直角顺次添加的条件:①a→c→d②b→d→c③a→b→c则正确的是()A.仅①B.仅③C.①②D.②③【答案】C【解答】解:①由a得到两组对边分别相等的四边形是平行四边形,添加c即一组邻边相等的平行四边形是菱形,再添加d即一个角是直角的菱形是正方形,故①正确;②由b得到一组对边平行且相等的四边形是平行四边形,添加d即有一个角是直角的平行四边形是矩形,再添加c即一组邻边相等的矩形是正方形,故②正确;③由a得到两组对边分别相等的四边形是平行四边形,添加b得到一组对边平行且相等的平行四边形仍是平行四边形,再添加c即一组邻边相等的平行四边形是菱形,不能得到四边形是正方形,故③不正确;故选:C.24.(2019•毕节市)如图,点E在正方形ABCD的边AB上,若EB=1,EC=2,那么正方形ABCD的面积为()A.B.3C.D.5【答案】B【解答】解:∵四边形ABCD是正方形,∴∠B=90°,∴BC2=EC2﹣EB2=22﹣12=3,∴正方形ABCD的面积=BC2=3.故选:B.25.(2021•重庆)如图,正方形ABCD的对角线AC,BD交于点O,M是边AD上一点,连接OM,过点O作ON⊥OM,交CD于点N.若四边形MOND的面积是1,则AB的长为()A.1B.C.2D.2【答案】C【解答】解:∵四边形ABCD是正方形,∴∠MDO=∠NCO=45°,OD=OC,∠DOC=90°,∴∠DON+∠CON=90°,∵ON⊥OM,∴∠MON=90°,∴∠DON+∠DOM=90°,∴∠DOM=∠CON,在△DOM和△CON中,,∴△DOM≌△CON(ASA),∵四边形MOND的面积是1,四边形MOND的面积=△DOM的面积+△DON的面积,∴四边形MOND的面积=△CON的面积+△DON的面积=△DOC的面积,∴△DOC的面积是1,∴正方形ABCD的面积是4,∴AB2=4,∴AB=2,故选:C.26.(2021•湖北)如图,在正方形ABCD中,AB=4,E为对角线AC上与A,C不重合的一个动点,过点E作EF⊥AB于点F,EG⊥BC于点G,连接DE,FG,下列结论:①DE=FG;②DE⊥FG;③∠BFG=∠ADE;④FG的最小值为3.其中正确结论的个数有()A.1个B.2个C.3个D.4个【答案】C【解答】解:①连接BE,交FG于点O,如图,∵EF⊥AB,EG⊥BC,∴∠EFB=∠EGB=90°.∵∠ABC=90°,∴四边形EFBG为矩形.∴FG=BE,OB=OF=OE=OG.∵四边形ABCD为正方形,∴AB=AD,∠BAC=∠DAC=45°.在△ABE和△ADE中,,∴△ABE≌△ADE(SAS).∴BE=DE.∴DE=FG.∴①正确;②延长DE,交FG于M,交FB于点H,∵△ABE≌△ADE,∴∠ABE=∠ADE.由①知:OB=OF,∴∠OFB=∠ABE.∴∠OFB=∠ADE.∵∠BAD=90°,∴∠ADE+∠AHD=90°.∴∠OFB+∠AHD=90°.即:∠FMH=90°,∴DE⊥FG.∴②正确;③由②知:∠OFB=∠ADE.即:∠BFG=∠ADE.∴③正确;④∵点E为AC上一动点,∴根据垂线段最短,当DE⊥AC时,DE最小.∵AD=CD=4,∠ADC=90°,∴AC=.∴DE=AC=2.由①知:FG=DE,∴FG的最小值为2,∴④错误.综上,正确的结论为:①②③.故选:C.27.(2021•黔东南州)如图,在边长为2的正方形ABCD中,若将AB绕点A逆时针旋转60°,使点B落在点B′的位置,连接BB′,过点D作DE⊥BB′,交BB′的延长线于点E,则B′E的长为()A.B.C.D.【答案】A【解答】解:分别延长AD和BE交于点F,由题知,AB=2,∠ABF=60°,∴BF=AB÷cos60°=2÷=4,AF=BF•sin60°=4×=2,∠F=90°﹣∠ABF =30°,∴DF=AF﹣AD=2﹣2,∴EF=DF•cos∠F=(2)×=3﹣,由题知,△ABB'是等边三角形,∴B'E=BF﹣BB'﹣EF=4﹣2﹣(3﹣)=﹣1,故选:A.28.(2021•常德)如图,已知F、E分别是正方形ABCD的边AB与BC的中点,AE与DF 交于P.则下列结论成立的是()A.BE=AE B.PC=PDC.∠EAF+∠AFD=90°D.PE=EC【答案】C【解答】解:∵F、E分别是正方形ABCD的边AB与BC的中点,∴AF=BE,在△AFD和△BEA中,,∴△AFD≌△BEA(SAS),∴∠FDA=∠EAB,又∵∠FDA+∠AFD=90°,∴∠EAB+∠AFD=90°,即∠EAF+∠AFD=90°,故C正确,A、B、D无法证明其成立,故选:C.29.(2021春•新吴区月考)如图,将正方形OEFG放在平面直角坐标系中,O是坐标原点,点E的坐标为(2,3),则点F的坐标为()A.(﹣2,3)B.(﹣3,5)C.(5,﹣2)D.(﹣1,5)【答案】D【解答】解:如图,过点E作ED⊥x轴于点D,过点G和点F分别作y轴和x轴的平行线,交y轴和x轴于点B和A,两线相交于点C,得矩形ACBO,∴AC=OB,AO=CB,∵点E的坐标为(2,3),∴ED=3,OD=2,∵四边形OEFG是正方形,∴∠EOG=∠FGO=90°,∴∠EOD+∠GOB=90°,∵∠GOB+∠OGB=90°,∴∠EOD=∠OGB,在△EOD和△OGB中,,∴△EOD≌△OGB(AAS),∴ED=OB=3,OD=BG=2,同理可证:△EOD≌△FGC(AAS),∴ED=CG=3,OD=CF=2,∴AO=CB=BG+CG=3+2=5,AF=AC﹣CF=OB﹣CF=3﹣2=1,∴F(﹣1,5).故选:D.30.(2020•陕西)如图,在矩形ABCD中,AB=4,BC=8,延长BA至E,使AE=AB,以AE为边向右侧作正方形AEFG,O为正方形AEFG的中心,若过点O的一条直线平分该组合图形的面积,并分别交EF、BC于点M、N,则线段MN的长为.【答案】4【解答】解:如图,连接AC,BD交于点H,过点O和点H的直线MN平分该组合图形的面积,交AD于S,取AE中点P,取AB中点Q,连接OP,HQ,过点O作OT⊥QH 于T,∵四边形ABCD是矩形,∴AH=HC,又∵Q是AB中点,∴QH=BC=4,QH∥BC,AQ=BQ=2,同理可求PO=AG=2,PO∥AG,EP=AP=2,∴PO∥AD∥BC∥EF∥QH,EP=AP=AQ=BQ,∴MO=OS=SH=NH,∠OPQ=∠PQH=90°,∵OT⊥QH,∴四边形POTQ是矩形,∴PO=QT=2,OT=PQ=4,∴TH=2,∴OH===2,∴MN=2OH=4,故答案为:4.31.(2021•湖州)由沈康身教授所著,数学家吴文俊作序的《数学的魅力》一书中记载了这样一个故事:如图,三姐妹为了平分一块边长为1的祖传正方形地毯,先将地毯分割成七块,再拼成三个小正方形(阴影部分).则图中AB的长应是.【答案】﹣1【解答】解:∵地毯面积被平均分成了3份,∴每一份的边长为=,∴CD=3×=,在Rt△ACD中,根据勾股定理可得AD==,又根据剪裁可知BD=CK=1,∴AB=AD﹣BD=﹣1.故答案为:﹣1.32.(2021•东营)如图,正方形纸片ABCD的边长为12,点F是AD上一点,将△CDF沿CF折叠,点D落在点G处,连接DG并延长交AB于点E.若AE=5,则GE的长为.【答案】【解答】解:设CF与DE交于点O,∵将△CDF沿CF折叠,点D落在点G处,∴GO=DO,CF⊥DG,∵四边形ABCD是正方形,∴AD=CD,∠A=∠ADC=90°=∠FOD,∴∠CFD+∠FCD=90°=∠CFD+∠ADE,∴∠ADE=∠FCD,在△ADE和△DCF中,,∴△ADE≌△DCF(ASA),∴AE=DF=5,∵AE=5,AD=12,∴DE===13,∵cos∠ADE=,∴,∴DO==GO,∴EG=13﹣2×=,故答案为:.33.(2021•天津)如图,正方形ABCD的边长为4,对角线AC,BD相交于点O,点E,F 分别在BC,CD的延长线上,且CE=2,DF=1,G为EF的中点,连接OE,交CD于点H,连接GH,则GH的长为.【答案】【解答】解:以O为原点,垂直AB的直线为x轴,建立直角坐标系,如图:∵正方形ABCD的边长为4,CE=2,DF=1,∴E(4,﹣2),F(2,3),∵G为EF的中点,∴G(3,),设直线OE解析式为y=kx,将E(4,﹣2)代入得:﹣2=4k,解得k=﹣,∴直线OE解析式为y=﹣x,令x=2得y=﹣1,∴H(2,﹣1),∴GH==,方法二:如下图,连接OF,过点O作OM⊥CD交CD于M,∵O为正方形对角线AC和BD的交点,∴OM=CM=DM=CE=2,易证△OHM≌△EHC,∴点H、点G分别为OE、FE的中点,∴GH为△OEF的中位线,∴GH=OF,在Rt△OMF中,由勾股定理可得OF===,∴GH=OF=,故答案为:.34.(2021•邵阳)如图,在正方形ABCD中,对角线AC,BD相交于点O,点E,F是对角线AC上的两点,且AE=CF.连接DE,DF,BE,BF.(1)证明:△ADE≌△CBF.(2)若AB=4,AE=2,求四边形BEDF的周长.【答案】(1)略(2)8【解答】(1)证明:由正方形对角线平分每一组对角可知:∠DAE=∠BCF=45°,在△ADE和△CBF中,,∴△ADE≌△CBF(SAS).(2)解:∵AB=AD=,∴BD===8,由正方形对角线相等且互相垂直平分可得:AC=BD=8,DO=BO=4,OA=OC=4,又AE=CF=2,∴OA﹣AE=OC﹣CF,即OE=OF=4﹣2=2,故四边形BEDF为菱形.∵∠DOE=90°,∴DE===2.∴4DE=,故四边形BEDF的周长为8.。

2020年中考数学压轴题-专题28几何证明综合复习(判定四边形形状)(解析版)

2020年中考数学压轴题-专题28几何证明综合复习(判定四边形形状)(解析版)

专题28 几何证明综合复习(判定四边形形状)教学重难点1.培养学生通过探索和证明,发展推理意识和能力2.通过证明举例的学习和实践,懂得演绎推理的一般规则,并掌握规范表达的格式;了解证明之前进行分析的基本思路;3.体会用“分析综合法”探求解题思路;4.学习添置辅助线的基本方法,会添置常见的辅助线;5.会用文字语言、图形语言、符号语言三种数学语言进行证明说理。

【说明】:本部分为知识点方法总结性梳理,目的在于让学生能从题目条件和所证明结论,去寻找证明思路,用时大概 5-8 分钟左右。

【知识点、方法总结】:中考几何题证明思路总结几何证明题重点考察的是学生的逻辑思维能力,能通过严密的" 因为"、"所以 " 逻辑将条件一步步转化为所要证明的结论。

这类题目出法相当灵活,不像代数计算类题目容易总结出固定题型的固定解法,而更看重的是对重要模型的总结、常见思路的总结。

所以本文对中考中最常出现的若干结论做了一个较为全面的思路总结。

一、证明两线段相等1.两全等三角形中对应边相等。

2.同一三角形中等角对等边。

3.等腰三角形顶角的平分线或底边的高平分底边。

4.平行四边形的对边或对角线被交点分成的两段相等。

5.直角三角形斜边的中点到三顶点距离相等。

6.线段垂直平分线上任意一点到线段两段距离相等。

7.角平分线上任一点到角的两边距离相等。

8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。

9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。

10.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。

、证明两角相等1.两全等三角形的对应角相等。

2.同一三角形中等边对等角。

3.等腰三角形中,底边上的中线(或高)平分顶角。

4.两条平行线的同位角、内错角或平行四边形的对角相等。

5.同角(或等角)的余角(或补角)相等。

6.同圆(或圆)中,等弦(或弧)所对的圆心角相等;7.相似三角形的对应角相等;8.等于同一角的两个角相等。

中考数学一轮总复习 第28课时 矩形、菱形、正方形(无答案) 苏科版

中考数学一轮总复习 第28课时 矩形、菱形、正方形(无答案) 苏科版

A B C DEA′第28课时:矩形、菱形、正方形【知识梳理】1. 特殊的平行四边形的之间的关系2. 特殊的平行四边形的判别条件(1)矩形:①有一个角是 的平行四边形是矩形.②对角线 的平行四边形是矩形.③有三个角是 的四边形是矩形.(2)菱形:①一组 的平行四边形是菱形.②对角线 的平行四边形是菱形.③四条边都相等的四边形是菱形.(3)正方形:①有一个角是 的菱形是正方形.②对角线 的菱形是正方形.③有一组 的矩形是正方形.④对角线 的矩形是正方形.矩形 4.面积计算:(1)矩形:S=长×宽;(2)菱形:1212S l l =⋅(12l l 、是对角线);(3)正方形:S=边长2【课前预习】1、如图,将矩形ABCD 沿BE 折叠,若∠CBA′=30°则∠BEA′= .2、如图,菱形ABCD 的边长为10cm ,D E⊥AB,3sin 5A =,则这个菱形的面积= m 2. 3、如图,矩形内有两个相邻的正方形面积分别为25和4,那么阴影部分面积为 . 4、正方形的对角线长为a ,则它的对角线的交点到各边的距离为( ) A 、22 a B 、24 a C 、a2D 、2 2 a 【例题讲解】例1 如图,在四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 边上的中点,求证:四边形EFGH 是平行四边形. (若四边形ABCD 是矩形,则四边形EFGH 有什么变化?若四边形ABCD 是菱形呢……你能说明中点四边形的形状是由什么决定的么?) 正平行四边形矩形菱形方形B例2 如图,在平行四边形ABCD 中,∠D AB =60°,AB =2AD ,点 E 、F 分别是CD 的中点,过点A 作AG∥BD,交CB 的延长线于点G . (1)求证:四边形DEBF 是菱形;(2)请判断四边形AGBD 是什么特殊四边形?并加以证明.例3 如图,点G 是正方形ABCD 对角线CA 的延长线上任意一点,以线段AG 为边作一个正方形AEFG ,线段EB 和GD 相交于点H . (1)求证:EB=GD ;(2)判断EB 与GD 的位置关系,并说明理由; (3)若AB=2,AG=2,求EB 的长.例4 如图,△ABC 中,已知∠BAC=45°,AD⊥BC 于D ,BD =2,DC =3,求AD 的长.解答了此题.请按照小萍的思路,探究并解答下列问题:(1)AB 、AC 为对称轴,画出△ABD、△ACD 的轴对称图形,D 为E 、F ,延长EB 、FC 相交于G点,证明四边形AEGF 是正方形;设AD=x ,利用勾股定理,建立关于x 的方程模型,求出x 的值.【巩固练习】 1、如图,矩形ABCD 的两条对角线相交于点O ,602AOB AB ∠==°,,则矩形的对角线AC 的长是( ) A .2 B .4 C . D .2、如图,正方形ABCD 内有两条相交线段MN 、EF ,M 、N 、E 、F 分别在边AB 、CD 、AD 、BC 上.小明认为:若MN = EF ,则MN⊥EF;小亮认为: 若MN⊥EF,则MN = EF .你认为( )A .仅小明对B .仅小亮对C .两人都对D .两人都不对 3、如图,将两张长为8,宽为2的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的周长有最小值8,那么菱形周长的最大值是 .4、四边形ABCD 的对角线互相平分,要使它变为菱形,需要添加的条件是 (只填一个你认为正确的即可).6、在□ABC D 中,BC AE ⊥于E ,CD AF ⊥于F ,BD 与AE 、AF 分别相交于G 、H .(1)求证:△ABE∽△ADF;(2)若AH AG =,求证:四边形ABCD 是菱形.【课后作业】 班级 姓名OD CA BA DC B GEH F一、必做题1、如图,在△ABC 中,点E ,D ,F 分别在边AB ,BC ,CA 上,且DE//CA , DF//BA .下列四个判断中,不正确...的是( ) A. 四边形AEDF 是平行四边形B. 如果∠BAC=90°,那么四边形AEDF 是矩形C. 如果AD 平分∠BAC,那么四边形AEDF 是菱形D. 如果AD⊥BC 是AB =AC ,那么四边形AEDF 是正方形 2、下列命题正确的是( )A .对角线互相平分的四边形是菱形;B .对角线互相平分且相等的四边形是菱形C .对角线互相垂直且相等的四边形是菱形;D .对角线互相垂直且平分的四边形是菱形. 3、如图,两张宽度相等的纸条交叉重叠,重合部分是( ) A .平行四边形 B .菱形 C .矩形 D .正方形4、如图,将矩形ABCD 沿对角线BD 折叠,使C 落在C '处,BC '交AD 于E ,则下列结论不一定成立的是( )A .AD BC '=B .EBD ED B ∠=∠C .ABE CBD △∽△ D .sin AE ABE ED∠=5、如图,在菱形ABCD 中,∠BAD=80°,AB 的垂直平分线交对角线AC 于点F ,E 为垂足,连DF ,∠CDF 等于 °.6、如图,矩形ABCD 中,AB=3,BC=5过对角线交点O 作OE⊥AC 交AD 于E 则AE 的长是 .7、顺次连接对角线互相垂直的四边形的各边中点,所得图形一定是 .8、如图,在菱形ABCD 中,∠A=110°,E ,F 分别是边AB 和BC 的中点,EP⊥CD 于点P ,则∠FPC= .9、如图,平行四边形 ABCD 中,O 是对角线AC 的中点,EF⊥AC 交CD 于E ,交AB 于F ,问四边形AFCE 是菱形吗?请说明理由.10、如图,已知矩形ABCD 的两条对角线相交于O ,∠ACB=30°,AB=2. (1)求AC 的长;(2)求∠AOB 的度数;(3)以O B 、OC 为邻边作菱形OBEC ,求菱形OBEC 的面积.二、选做题第3题图第5题图 第6题图第8题图CD C 'A B E第4题图11、如图,l m ∥,矩形ABCD 的顶点B 在直线m 上,则α∠= 度.12、如图.边长为1的两个正方形互相重合,按住其中一个不动,将另一个绕顶点A 顺时针旋转45°,则这两个正方形重叠部分的面积是 .13、将五个边长都为2cm 的正方形按如图所示摆放,点A 、B 、C 、D 分别是正方形的中心,则途中四块阴影部分的面积和为__________cm 2.14、如图,正方形ABCD 的边长为1cm ,E 、F 分别是BC 、CD 的中点,连接BF 、DE ,则图中阴影部分的面积是 cm 2.15、如图,点P 是正方形ABCD 边AB 上一点(不与点A ,B 重合),连接PD 并将线段PD 绕点P 顺时针方向旋转90°得到线段PE ,PE 交边BC 于点F ,连接BE ,DF . (1)求证:∠ADP=∠EPB;(2)求∠CBE 的度数; (3)当APAB的值等于多少时,△PFD∽△BFP?并说明理由.16、学校植物园沿路护栏纹饰部分设计成若干个全等菱形图案,每增加一个菱形图案,纹饰长度就增加dcm,如图所示.已知每个菱形图案的边长,其一个内角为60°.(1)若d =26(2)当d =20时,若保持(1)中纹饰长度不变,则需要多少个这样的菱形图案?第11题图 第13题图 DA B C ml α 65°C 'B第12题图 第14题图。

2021年中考数学重难点专项突破专题29 图形折叠中的直角三角形存在性问题(解析版)

2021年中考数学重难点专项突破专题29 图形折叠中的直角三角形存在性问题(解析版)

①当∠CEB′=90°时,如图例 4-2 所示.
由折叠性质得:AB=AB′,四边形 ABE B′是矩形.
2
所以四边形 ABE B′是正方形.
此时,BE=AB=3.
②当∠CB′E=90°时,如图例 4-3 所示.
由折叠性质知,∠AB′C=90°,所以∠AB′C+∠CB′E=180°.
∴点 A、B′、C 共线
4
图例 6-1
图例 6-2
【答案】4 或 4 3
【解析】分两种情况讨论. ①当∠A’FE=90°时,如图例 6-2 所示. ∵D、E 分别为 AC、BC 的中点 ∴DE 是三角形 ABC 的中位线 即 DE∥BA ∴∠A’BA=90° ∴四边形 AB A’C 为矩形 由折叠得 AC=A’C ∴四边形 AB A’C 为正方形 即 AB=AC=4. ②当∠A’EF=90°时,如图例 6-3 所示. ∵∠A’EF= ∠ CDE=90° ∴A’E∥CD ∴∠DCE= ∠ CEA’ 由折叠知:∠DCE= ∠ A’CE
图例 5-3
3
2 +1
【答案】
或 1.
2
【解析】通过观察及分析可知,C 点不可能为直角顶点,分两种情况讨论.
①当∠CM B′=90°时,如图例 5-2 所示.
由折叠知:∠BMN= ∠ B′MB=45°,又因为∠B=45°,所以∠BNM=90°,∠MNB′=90°
即∠BNM+ ∠ MN B′=180°,所以 B、N、B′三点共线,此时 B′与点 A 重合.
3、如图例 5-1,在 Rt∆ABC 中,∠A = 90° , AB = AC , B=C 2 +1 ,点 M , N 分别是边 BC , AB 上
的动点,沿 MN 所在的直线折叠 ∠B ,使点 B 的对应点 B' 始终落在边 AC 上.若 ∆MB'C 为直角三角形,则

河北省中考数学复习 四边形 第28讲 正方形与四边形综合试题(含解析)-人教版初中九年级全册数学试题

河北省中考数学复习 四边形 第28讲 正方形与四边形综合试题(含解析)-人教版初中九年级全册数学试题

第28讲正方形与四边形综合1. (2013,某某) 一个正方形和两个等边三角形的位置如图所示.若∠3=50°,则∠1+∠2的度数为(B)第1题图A. 90°B. 100°C. 130°D. 180°【解析】如答图.∠BAC=180°-90°-∠1=90°-∠1,∠ABC=180°-60°-∠3=120°-∠3,∠ACB=180°-60°-∠2=120°-∠2.在△ABC中,∠BAC+∠ABC+∠ACB =180°,∴90°-∠1+120°-∠3+120°-∠2=180°.∴∠1+∠2=150°-∠3.∵∠3=50°,∴∠1+∠2=150°-50°=100°.第1题答图2. (2015,某某,导学号5892921)如图所示的是甲、乙两X不同的矩形纸片,将它们分别沿着虚线剪开后,各自要拼一个与原来面积相等的正方形,则(A)第2题图A. 甲、乙都可以B. 甲、乙都不可以C. 甲不可以,乙可以D. 甲可以,乙不可以【解析】甲、乙都可以拼一个与原来面积相等的正方形,所拼图形如答图所示.第2题答图3. (2016,某某)关于▱ABCD的叙述,正确的是(C)A. 若AB⊥BC,则▱ABCD是菱形B. 若AC⊥BD,则▱ABCD是正方形C. 若AC=BD,则▱ABCD是矩形D. 若AB=AD,则▱ABCD是正方形【解析】∵在▱ABCD中,AB⊥BC,∴四边形ABCD是矩形,不一定是菱形.故选项A错误.∵在▱ABCD中,AC⊥BD,∴四边形ABCD是菱形,不一定是正方形.故选项B错误.∵在▱ABCD中,AC=BD,∴四边形ABCD是矩形.故选项C正确.∵在▱ABCD中,AB=AD,∴四边形ABCD是菱形,不一定是正方形.故选项D错误.4. (2017,某某)如图所示的是边长为10 cm的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:cm)不正确的是(A)第4题图A B C D【解析】该正方形的对角线的长是10 2 cm≈14.14 cm,所以正方形内部的每一个点,到正方形的顶点的距离都要小于14.14 cm.正方形的性质例1 (2018,某某二模)如图,P为正方形ABCD的对角线BD上任意一点,过点P作PE⊥BC 于点E,PF⊥CD于点F,连接EF.给出以下4个结论:①△FPD是等腰直角三角形;②AP=EF;③AD=PD;④∠PFE=∠BAP.其中正确的结论是(C)例1题图A. ①②B. ①④C. ①②④D. ①③④【解析】 如答图,连接PC .∵P 为正方形ABCD 的对角线BD 上任意一点,∴PA =PC ,∠BCD =90°.∵PE ⊥BC ,PF ⊥CD ,∴∠PEC =∠DFP =∠PFC =∠BCD =90°.∴四边形PECF 是矩形.∴PC =EF .∴PA =EF .故②正确.∵BD 是正方形ABCD 的对角线,∴∠ABD =∠BDC =∠DBC =45°.∵∠PFD =∠BCD =90°,∴PF ∥BC .∴∠DPF =∠DBC =45°.∴△FPD 是等腰直角三角形.故①正确.在△PAB 和△PCB 中,⎩⎪⎨⎪⎧AB =CB ,∠ABP =∠CBP ,BP =BP ,∴△PAB ≌△PCB .∴∠BAP =∠BCP .易证∠PFE =∠BCP ,∴∠PFE =∠BAP .故④正确.∵P 是正方形对角线BD 上任意一点,∴AD 不一定等于PD .故③错误.例1答图针对训练1 (2018,某某丰南区二模)如图,在正方形ABCD 外侧,作等边三角形ADE ,AC ,BE 相交于点F ,则∠BFC 的度数为(B)训练1题图A. 75°B. 60°C. 55°D. 45°【解析】 ∵四边形ABCD 是正方形,∴∠BAD =90°,AB =AD ,∠BAF =45°.∵△ADE 是等边三角形,∴∠DAE =60°,AD =AE .∴∠BAE =90°+60°=150°,AB =AE .∴∠ABE =∠AEB =12×(180°-150°)=15°.∴∠BFC =∠BAF +∠ABE =45°+15°=60°.正方形的判定例2 (2018,某某灌阳县模拟)如图,在△ABC 中,O 是AC 上一动点,过点O 作直线MN ∥BC .设MN 交∠BCA 的平分线于点E ,交∠ACD 的平分线于点F .若点O 运动到AC 的中点,要使四边形AECF 是正方形,则∠ACB 的度数是(D)例2题图A. 30°B. 45°C. 60°D. 90°【解析】∵CE,CF分别为∠ACB,∠ACD的平分线,∴∠ECF=90°.∵MN∥BC,∴∠FEC=∠ECB.∵∠ECB=∠ECO,∴∠FEC=∠ECO.∴OE=OC.同理OC=OF.∴OE=OF.∵点O 运动到AC的中点,∴OA=OC.∴四边形AECF为矩形.若∠ACB=90°,则AC⊥EF.∴四边形AECF为正方形.针对训练2 如图,在菱形ABCD中,对角线AC,BD交于点O.添加一个条件,能使菱形ABCD 成为正方形的是(C)训练2题图A. BD=ABB. AC=ADC. ∠ABC=90°D. OD=AC【解析】要使菱形成为正方形,只要菱形满足以下条件之一即可:①有一个内角是直角;②对角线相等.平行四边形、矩形、菱形、正方形的关系例3 (2018,某某)如图,E,F,G,H分别是四边形ABCD的边AB,BC,CD,DA的中点.下列说法:①若AC=BD,则四边形EFGH为矩形;②若AC⊥BD,则四边形EFGH为菱形;③若四边形EFGH是平行四边形,则AC与BD互相平分;④若四边形EFGH是正方形,则AC与BD互相垂直且相等.其中正确的个数是(A)例3题图A. 1B. 2C. 3D. 4【解析】 由三角形中位线定理可知四边形的四边中点组成的四边形是平行四边形.本题中,当AC =BD 时,四边形EFGH 是菱形;当AC ⊥BD 时,四边形EFGH 是矩形;当AC =BD 且AC ⊥BD 时,四边形EFGH 是正方形.反之,四边形EFGH 是正方形时,AC 与BD 互相垂直且相等.只有说法④正确.针对训练3 (2018,某某盐都区模拟)如图,在四边形ABCD 中,AB =CD ,E ,F ,G ,H 分别为AD ,BC ,BD ,AC 的中点,顺次连接E ,G ,F ,H .(1)求证:四边形EGFH 是菱形;(2)当∠ABC 与∠DCB 满足什么关系时,四边形EGFH 为正方形,并说明理由;(3)猜想:∠GFH ,∠ABC ,∠DCB 三个角之间的关系.(直接写出结果)训练3题图【思路分析】 (1)根据三角形中位线的性质得到EG =12AB ,EH =12CD ,HF =12AB ,GF =12CD .根据菱形的判定定理即可得到结论.(2)根据平行线的性质得到∠ABC =∠HFC ,∠DCB =∠GFB .根据平角的定义得到∠GFH =90°,于是得到结论.(3)由平行线的性质得到∠ABC =∠HFC ,∠DCB =∠GFB .根据平角的定义即可得到结论.(1)证明:∵E ,F ,G ,H 分别为AD ,BC ,BD ,AC 的中点,∴EG =12AB ,EH =12CD ,HF =12AB ,GF =12CD . ∵AB =CD ,∴EG =EH =HF =GF .∴四边形EGFH 是菱形.(2)解:当∠ABC +∠DCB =90°时,四边形EGFH 为正方形.理由:∵E ,F ,G ,H 分别为AD ,BC ,BD ,AC 的中点,∴HF ∥AB ,GF ∥CD .∴∠ABC =∠HFC ,∠DCB =∠GFB .∵∠ABC +∠DCB =90°,∴∠HFC +∠GFB =90°.∴∠GFH =90°.∴菱形EGFH 是正方形.(3)解:∠GFH +∠ABC +∠DCB =180°.一、 选择题1. (2018,某某二模)如图,从正方形纸片的顶点沿虚线剪开,则∠1的度数可能是(A)第1题图A. 44°B. 45°C. 46°D. 47°【解析】 如答图.∵四边形为正方形,∴∠2=45°.∵∠1<∠2,∴∠1<45°.第1题答图2. (2018,某某)如图,正方形ABCD 的边长为1,E ,F 分别是对角线AC 上的两点,EG ⊥AB ,EI ⊥AD ,FH ⊥AB ,FJ ⊥AD ,垂足分别为G ,I ,H ,J ,则图中阴影部分的面积为(B)第2题图A. 1B. 12C. 13D. 14【解析】 根据对称性,可知四边形EFHG 的面积与四边形EFJI 的面积相等.∴S 阴影= 12S 正方形ABCD =12.3. (2018,某某)如图,在正方形ABCD 中,A ,B ,C 三点的坐标分别是(-1,2),(-1,0),(-3,0).将正方形ABCD 向右平移3个单位长度,则平移后点D 的坐标是(B)第3题图A. (-6,2)B. (0,2)C. (2,0)D. (2,2)【解析】∵在正方形ABCD中,A,B,C三点的坐标分别是(-1,2),(-1,0),(-3,0),∴点D的坐标为(-3,2).∴将正方形ABCD向右平移3个单位长度,平移后点D的坐标是(0,2).4. (2018,湘西州)下列说法中,正确的有(B)①对顶角相等;②两直线平行,同旁内角相等;③对角线互相垂直的四边形为菱形;④对角线互相垂直平分且相等的四边形为正方形.A. 1个B. 2个C. 3个D. 4个【解析】①对顶角相等,故①正确.②两直线平行,同旁内角互补,故②错误.③对角线互相垂直平分的四边形为菱形,故③错误.④对角线互相垂直平分且相等的四边形为正方形,故④正确.5. (2018,某某)如图,已知E,F,G,H分别是菱形ABCD各边的中点,则四边形EFGH 是(B)第5题图A. 正方形B. 矩形C. 菱形D. 平行四边形【解析】由菱形对角线的性质和三角形中位线定理可得四边形EFGH是矩形.6. 如图,已知正方形ABCD的边长为1,连接AC,BD,CE平分∠ACD交BD于点E,则DE 的长为(A)第6题图A. 2-1B.22C. 1D. 1-22【解析】 如答图,过点E 作EF ⊥DC 于点F .∵四边形ABCD 是正方形,∴AC ⊥BD .∵CE 平分∠ACD ,∴EO =EF .∵正方形ABCD 的边长为1,∴AC = 2.∴CO =12AC =22.∴CF =CO =22.∴EF =DF =DC -CF =1-22.∴DE =2DF =2-1.第6题答图7. 如图,正方形OABC 的两边OA ,OC 分别在x 轴、y 轴上,点D (5,3)在边AB 上.以点C 为中心,把△CDB 旋转90°,则旋转后点D 的对应点D ′的坐标是(C)第7题图A. (-2,0)B. (-2,10)C. (2,10)或(-2,0)D. (10,2)或(-2,10)【解析】 因为点D (5,3)在边AB 上,所以AB =BC =5,BD =5-3=2.①若把△CDB 顺时针旋转90°,则点D ′在x 轴上,OD ′=2,所以D ′(-2,0).②若把△CDB 逆时针旋转 90°,则点D ′到x 轴的距离为10,到y 轴的距离为2,所以D ′(2,10).综上,旋转后点D 的对应点D ′的坐标为(-2,0)或(2,10).8. 如图,边长为1的两个正方形互相重合,按住其中一个不动,将另一个绕顶点A 顺时针旋转45°,则这两个正方形重叠部分的面积是(D)第8题图A. 12B. 33C. 1-33D. 2-1 【解析】 ∵绕顶点A 顺时针旋转45°,∴∠D ′CE =45°,∠CD ′E =90°.∴CD ′=D ′E .∵AC =12+12=2,∴CD ′=2-1.∴正方形重叠部分的面积是12×1×1-12×(2-1)×(2-1)=2-1.二、 填空题9. 如图,在正方形ABCD 中,E 为AD 的中点,连接EC ,过点E 作EF ⊥EC ,交AB 于点F ,则tan ∠ECF =( 12).第9题图【解析】∵四边形ABCD是正方形,∴AD=DC,∠A=∠D=90°.∵AE=ED,∴CD=AD=2AE.∵∠FEC=90°,∴∠AEF+∠DEC=90°.∵∠DEC+∠DCE=90°,∴∠AEF=∠DCE.∵∠A=∠D,∴△AEF∽△DCE.∴EFEC=AEDC=12.∴tan∠ECF=EFEC=12.10. 如图,E为正方形ABCD外一点,AE=AD,∠ADE=75°,则∠AEB=30°.第10题图【解析】∵AE=AD,∠ADE=75°,∴∠DAE=180°-2∠ADE=180°-2×75°=30°.∴∠BAE=∠BAD+∠DAE=90°+30°=120°.∵AB=AD,∴AB=AE.∴∠AEB=1 2(180°-∠BAE)=12×(180°-120°)=30°.11. (2018,某某)以正方形ABCD的边AD为边作等边三角形ADE,则∠BEC的度数是30°或150°.【解析】如答图①.∵四边形ABCD为正方形,△ADE为等边三角形,∴AB=BC=CD=AD =AE=DE,∠BAD=∠ABC=∠BCD=∠ADC=90°,∠AED=∠ADE=∠DAE=60°.∴∠BAE=∠CDE=150°.∴∠AEB=∠CED=15°.∴∠BEC=∠AED-∠AEB-∠CED=30°.如答图②.同理∠CDE=∠ADC-∠ADE=90°-60°=30°.∴∠CED=∠ECD=12×(180°-30°)=75°.∴∠BEC=360°-75°×2-60°=150°.第11题答图12. (2018,某某)如图,将正方形OEFG放在平面直角坐标系中,O是坐标原点,点E的坐标为(2,3),则点F的坐标为(-1,5).第12题图【解析】 如答图,过点E 作x 轴的垂线EH ,垂足为H ,过点G 作x 轴的垂线GM ,垂足为M ,连接GE ,FO 相交于点O ′.∵四边形OEFG 是正方形,∴OG =EO .易证∠GOM =∠OEH ,∠OGM =∠EOH .∴△OGM ≌△EOH (ASA).∴GM =OH =2,OM =EH =3.∴G (-3,2).∴O ′⎝ ⎛⎭⎪⎫-12,52.∵点F 与点O 关于点O ′对称,∴点F 的坐标为(-1,5).第12题答图三、 解答题13. (2018,某某)如图,已知E 为正方形ABCD 的边AD 上一点,连接BE ,过点C 作⊥BE ,垂足为M ,交AB 于点N .(1)求证:△ABE ≌△B ;(2)若N 为AB 的中点,求tan ∠ABE .第13题图【思路分析】 (1)根据正方形的性质和全等三角形的判定定理证明即可.(2)根据全等三角形的性质和三角函数解答即可.(1)证明:如答图.∵四边形ABCD 为正方形,∴AB =BC ,∠A =∠CBN =90°,∠1+∠2=90°.∵CM ⊥BE ,∴∠2+∠3=90°.∴∠1=∠3.在△ABE 和△B 中,⎩⎪⎨⎪⎧∠A =∠CBN ,AB =BC ,∠1=∠3,∴△ABE ≌△B (ASA). (2)解:∵N 为AB 的中点, ∴BN =12AB .∵△ABE ≌△B , ∴AE =BN =12AB .在Rt △ABE 中,tan ∠ABE =AE AB =12AB AB =12.第13题答图14. (2018,某某)如图,在正方形ABCD 中,对角线BD 所在的直线上有两点E ,F 满足BE =DF ,连接AE ,AF ,CE ,CF .(1)求证:△ABE ≌△ADF ;(2)试判断四边形AECF 的形状,并说明理由.第14题图【思路分析】 (1)根据正方形的性质和全等三角形的判定定理证明即可.(2)四边形AECF 是菱形,根据对角线垂直且互相平分的四边形是菱形即可判断.(1)证明:∵四边形ABCD 是正方形, ∴AB =AD . ∴∠ABD =∠ADB . ∴∠ABE =∠ADF .在△ABE 和△ADF 中,⎩⎪⎨⎪⎧AB =AD ,∠ABE =∠ADF ,BE =DF ,∴△ABE ≌△ADF (SAS). (2)解:四边形AECF 是菱形.理由:如答图,连接AC . ∵四边形ABCD 是正方形, ∴OA =OC ,OB =OD ,AC ⊥EF . ∴OB +BE =OD +DF . ∴OE =OF .∴四边形AECF 是菱形.第14题答图15. (2018,某某)如图,在矩形ABCD 中,E 是AD 边上的一个动点,F ,G ,H 分别是BC ,BE ,CE 的中点.(1)求证:△BGF ≌△FHC ;(2)设AD =a ,当四边形EGFH 是正方形时,求矩形ABCD 的面积.第15题图【思路分析】 (1)根据三角形中位线定理和全等三角形的判定证明即可.(2)利用正方形的性质和矩形的面积公式解答即可.(1)证明:∵F ,G ,H 分别是BC ,BE ,CE 的中点, ∴FH ∥BE ,FH =12BE ,GE =BG =12BE ,BF =FC .∴∠CFH =∠CBG ,FH =BG . ∴△BGF ≌△FHC .(2)解:如答图,连接EF ,GH .当四边形EGFH 是正方形时,得EF ⊥GH 且EF =GH . ∵在△BEC 中,G ,H 分别是BE ,CE 的中点, ∴GH =12BC =12AD =12a ,且GH ∥BC .∴EF ⊥BC .∵四边形ABCD 为矩形,∴AB =EF =GH =12a .∴矩形ABCD 的面积为AB ·AD =12a ·a =12a 2.第15题答图16. (2018,某某)如图,正方形ABCD 的对角线交于点O ,点E ,F 分别在AB ,BC 上(AE <BE ),且∠EOF =90°,OE ,DA 的延长线相交于点M ,OF ,AB 的延长线相交于点N ,连接MN .(1)求证:OM =ON ;(2)若正方形ABCD 的边长为4,E 为OM 的中点,求MN 的长.(结果保留根号)第16题图【思路分析】 (1)证△OAM ≌△OBN 即可得.(2)作OH ⊥AD ,由正方形的边长为4且E 为OM 的中点知OH =HA =2,HM =4,再根据勾股定理得OM =2 5.由等腰直角三角形的性质知MN=2OM .(1)证明:∵四边形ABCD 是正方形, ∴OA =OB ,∠DAO =∠OBA =45°. ∴∠OAM =∠OBN =135°. ∵∠EOF =90°,∠AOB =90°, ∴∠AOM =∠BON .∴△OAM ≌△OBN (ASA).∴OM =ON . (2)解:如答图,过点O 作OH ⊥AD 于点H .∵正方形ABCD 的边长为4, ∴OH =HA =2. ∵E 为OM 的中点, ∴HM =4.∴OM =22+42=2 5. ∴MN =2OM =210.第16题答图1. (2018,某某)如图,已知E 是矩形ABCD 的对角线AC 上的一动点,正方形EFGH 的顶点G ,H 都在边AD 上.若AB =3,BC =4,则tan ∠AFE 的值为(A)第1题图A. 37B. 33C. 34 D. 随点E 位置的变化而变化 【解析】 ∵EF ∥AD ,∴∠AFE =∠FAG .∴HE ∥CD .∴△AEH ∽△ACD .∴EH AH =CD AD =34.设EH =3x ,AH =4x ,∴HG =GF =3x .∴tan ∠AFE =tan ∠FAG =GF AG =3x 3x +4x =37. 2. (2018,某某)如图,已知正方形ABCD 的边长为5,点E ,F 分别在AD ,DC 上,AE =DF =2,BE 与AF 相交于点G ,H 为BF 的中点,连接GH ,则GH 的长为 (342).(结果保留根号) 第2题图【解析】 ∵四边形ABCD 为正方形,∴∠BAE =∠D =90°,AB =AD .∵AE =DF ,∴△ABE ≌△DAF (SAS).∴∠ABE =∠DAF .∵∠ABE +∠BEA =90°,∴∠DAF +∠BEA =90°.∴∠BGF =∠AGE =90°.∵H 为BF 的中点,∴GH =12BF .∵BC =5,CF =CD -DF =5-2=3,∴BF =BC 2+CF2=34.∴GH =12BF =342.3. (2018,某某,导学号5892921)如图,在正方形ABCD 中,AB =3,点E ,F 分别在CD ,AD 上,CE =DF ,BE ,CF 相交于点G .若图中阴影部分的面积与正方形ABCD 的面积之比为2∶3,则△BCG 的周长为15+3.(结果保留根号)第3题图【解析】 ∵阴影部分的面积与正方形ABCD 的面积之比为2∶3,∴阴影部分的面积为23×9CE =DF ,BC =CD ,∠BCE =∠CDF =90°,可得△BCE ≌△CDF ,∴△BCG 的面积与四边形DEGF 的面积相等,均为12×3=32.易证∠BGC =90°.设BG =a ,CG =b ,则12ab =32.又∵a 2+b 2=32,∴a 2+2ab +b 2=9+6=15,即(a +b )2=15.∴a +b =15,即BG +CG =15.∴△BCG 的周长为15+3.4. (2018,,导学号5892921)如图,在正方形ABCD 中,E 是边AB 上的一动点(不与点A ,B 重合),连接DE ,点A 关于直线DE 的对称点为F ,连接EF 并延长交BC 于点G ,连接DG ,过点E 作EH ⊥DE 交DG 的延长线于点H ,连接BH .(1)求证:GF =GC ;(2)用等式表示线段BH 与AE 的数量关系,并证明.第4题图【思路分析】 (1)连接DF ,根据对称的性质,得△ADE ≌△FDE ,再由HL 证明Rt △DFG ≌Rt △DCG ,可得结论.(2)作辅助线,构建AM =AE ,先证明∠EDG =45°,得DE =EH ,证明△DME ≌△EBH ,则EM =BH ,根据勾股定理得EM =2AE ,得结论.(1)证明:如答图,连接DF . ∵四边形ABCD 是正方形, ∴DA =DC ,∠A =∠C =90°. ∵点A 关于直线DE 的对称点为F , ∴△ADE ≌△FDE .∴DA =DF ,∠DFE =∠A =90°.∴DF =DC ,∠DFG =90°.在Rt △DFG 和Rt △DCG 中,⎩⎪⎨⎪⎧DG =DG ,DF =DC ,∴Rt △DFG ≌Rt △DCG (HL). ∴GF =GC . (2)解:BH =2AE .证明:如答图,在线段AD 上截取AM ,使AM =AE . ∵AD =AB , ∴DM =BE .由(1)知∠1=∠2,∠3=∠4. ∵∠ADC =90°,∴∠1+∠2+∠3+∠4=90°. ∴∠2+∠3=45°,即∠EDG =45°. ∵EH ⊥DE , ∴∠DEH =90°.∴∠AED +∠BEH =∠AED +∠1=90°,△DEH 是等腰直角三角形. ∴∠1=∠BEH ,DE =EH . ∴△DME ≌△EBH . ∴EM =BH .在Rt △AEM 中,∠A =90°,AM =AE , ∴EM =2AE . ∴BH =2AE .第4题答图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正方形【命题趋势】在中考中.正方形主要在选择题.填空题.解答题考查为主.并结合相似.锐角三角函数结合考查.;其中正方形常考4种模型是中考中的重难点。

【中考考查重点】一、正方形的性质及判定二、正方形常考模型考点:正方形性质及判定一、正方形的概念和性质1.概念:有一组邻边相等.并且有一个角是直角的平行四边形是正方形.2.性质:(1)具有平行四边形、矩形、菱形的一切性质(2)正方形的四个角都是直角.四条边都相等(3)正方形的两条对角线相等.并且互相垂直平分.每一条对角线平分一组对角(4)正方形是轴对称图形.有4条对称轴(5)正方形的一条对角线把正方形分成两个全等的等腰直角三角形.两条对角线把正方形分成四个全等的小等腰直角三角形(6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等。

二、正方形的判定判定方法:(1)有一个角是直角的菱形是正方形;(2)对角线相等的菱形是正方形;(3)对角线互相垂直的矩形是正方形。

注意:判定一个四边形为正方形的一般顺序如下:先证明它是平行四边形.再证明它是菱形(或矩形).最后证明它是矩形(或菱形)。

1.(2020秋•法库县期末)平行四边形、矩形、菱形、正方形共有的性质是()A.对角线互相平分B.对角线相等C.对角线互相垂直D.对角线互相垂直平分【答案】A【解答】解:A、平行四边形、矩形、菱形、正方形的对角线都互相平分.故本选项正确;B、只有矩形.正方形的对角线相等.故本选项错误;C、只有菱形.正方形的对角线互相垂直.故本选项错误;D、只有菱形.正方形的对角线互相垂直平分.故本选项错误.故选:A.2.(2020秋•武功县期末)如图.在正方形ABCD中.AB=2.P是AD边上的动点.PE⊥AC于点E.PF⊥BD于点F.则PE+PF的值为()A.4B.2C.D.2【答案】C【解答】解:在正方形ABCD中.OA⊥OB.∠OAD=45°.∵PE⊥AC.PF⊥BD.∴四边形OEPF为矩形.△AEP是等腰直角三角形.∴PF=OE.PE=AE.∴PE+PF=AE+OE=OA.∵正方形ABCD的边长为2.∴OA=AC==.故选:C.3.(2010秋•金口河区期末)如图.在正方形ABCD中.E是DC上一点.F为BC延长线上一点.∠BEC=70°.且△BCE≌△DCF.连接EF.则∠EFD的度数是()A.10°B.15°C.20°D.25°【答案】D【解答】解:∵四边形ABCD是正方形.∴∠BCE=∠DCF=90°;由旋转的性质知:CE=CF.∠BEC=∠DFC=70°;则△ECF是等腰直角三角形.得∠EFC=45°.∴∠EFD=∠DFC﹣∠EFC=25°.故选:D.4.(2020春•沙坪坝区期末)如图.正方形ABCD中.AB=.点E是对角线AC上一点.EF⊥AB于点F.连接DE.当∠ADE=22.5°时.EF的长是()A.1B.2﹣2C.﹣1D.【答案】C【解答】解:∵四边形ABCD是正方形.∴AB=CD=BC=.∠B=∠ADC=90°.∠BAC=∠CAD=45°.∴AC=AB=2.∵∠ADE=22.5°.∴∠CDE=90°﹣22.5°=67.5°.∵∠CED=∠CAD+∠ADE=45°+22.5°=67.5°.∴∠CDE=∠CED.∴CD=CE=.∴AE=2﹣.∵EF⊥AB.∴∠AFE=90°.∴△AFE是等腰直角三角形.∴EF==﹣1.故选:C.5.(2021•罗湖区校级模拟)如图.在平面直角坐标系xOy中.正方形ABCD的顶点D在y轴上且A(﹣3.0).B(2.b).则正方形ABCD的面积是()A.20B.16C.34D.25【答案】C【解答】解:作BM⊥x轴于M.∵四边形ABCD是正方形.∴AD=AB.∠DAB=90°.∴∠DAO+∠BAM=90°.∠BAM+∠ABM=90°.∴∠DAO=∠ABM.∵∠AOD=∠AMB=90°.∴在△DAO和△ABM中.∴△DAO≌△ABM(AAS).∴OA=BM.AM=OD.∵A(﹣3.0).B(2.b).∴OA=3.OM=2.∴OD=AM=5.∴AD==.∴正方形ABCD的面积=34.故选:C.6.(2020春•老城区校级月考)如图.点P是正方形ABCD的对角线BD上一点.PE⊥BC于点E.PF⊥CD于点F.连接EF给出下列四个结论:①AP=EF;②AP⊥EF;③△APD一定是等腰三角形;④∠PFE=∠BAP.其中正确结论个数是()A.1B.2C.3D.4【答案】C【解答】解:如图.连接PC.延长AP交EF于H.延长FP交AB于G.在正方形ABCD中.∠ABP=∠CBP=45°.AB=CB.∵在△ABP和△CBP中..∴△ABP≌△CBP(SAS).∴AP=PC.∠BAP=∠BCP.又∵PE⊥BC.PF⊥CD.∴四边形PECF是矩形.∴PC=EF.∠BCP=∠PFE.∴AP=EF.∠PFE=∠BAP.故①④正确;只有点P为BD的中点或PD=AD时.△APD是等腰三角形.故③错误;∵PF∥BC.∴∠AGF=∠ABC=90°.∵∠BAP=∠PFE.∠APG=∠FPH.∴∠AGP=∠AHF=90°.∴AP⊥EF.故②正确.故选:C.7.(2021秋•南海区月考)如图.点B在MN上.过AB的中点O作MN的平行线.分别交∠ABM的平分线和∠ABN的平分线于点C、D.(1)试判断四边形ACBD的形状.并证明你的结论.(2)当△CBD满足什么条件时.四边形ACBD是正方形?并给出证明.【答案】(1)四边形ACBD是矩形(2)△CBD满足CB=BD时.四边形ACBD是正方形【解答】解:(1)四边形ACBD是矩形.证明:∵CD平行MN.∴∠OCB=∠CBM.∵BC平分∠ABM.∴∠OBC=∠CBM.∴∠OCB=∠OBC.∴OC=OB.同理可证:OB=OD.∴OA=OB=OC=OD.∵CD=OC+OD.AB=OA+OB.∴AB=CD.∴四边形ACBD是矩形;(2)△CBD满足CB=BD时.四边形ACBD是正方形.证明:由(1)得四边形ACBD是矩形.∵CB=BD.∴四边形ACBD是正方形.1.(2021秋•武侯区期末)下列说法中.是正方形具有而矩形不具有的性质是()A.两组对边分别平行B.对角线互相垂直C.四个角都为直角D.对角线互相平分【答案】B【解答】解:因为正方形的对角相等.对角线相等、垂直、且互相平分.矩形的对角相等.对角线相等.互相平分.所以正方形具有而矩形不具有的性质是对角线互相垂直.故选:B.2.(2017春•柳州期末)边长为4的正方形ABCD中.P是边AD上的动点.PE⊥AC于点E.PF⊥BD于点F.则PE+PF的值为()A.2B.4C.2D.6【答案】A【解答】解:如图.∵四边形ABCD为正方形.∴∠CAD=∠BDA=45°.∵PE⊥AC于点E.PF⊥BD于点F.∴△APE和△PDF为等腰直角三角形.∴PE=AP.PF=PD.∴PE+PF=(AP+PD)=×4=2.故选:A.3.(2021秋•普宁市期末)下列说法中正确的是()A.矩形的对角线平分每组对角B.菱形的对角线相等且互相垂直C.有一组邻边相等的矩形是正方形D.对角线互相垂直的四边形是菱形【答案】C【解答】解:A、矩形的对角线平分每组对角.说法错误.故本选项不符合题意;B、菱形的对角线互相垂直.故本选项不符合题意;C、有一组邻边相等的矩形是正方形.正确.故本选项符合题意;D、对角线互相垂直的四边形不一定是菱形.故本选项不符合题意.故选:C.4.(2020•眉山)下列说法正确的是()A.一组对边平行另一组对边相等的四边形是平行四边形B.对角线互相垂直平分的四边形是菱形C.对角线相等的四边形是矩形D.对角线互相垂直且相等的四边形是正方形【答案】B【解答】解:A、一组对边平行另一组对边相等的四边形可以是等腰梯形.可以是平行四边形.故选项A不合题意;B、对角线互相垂直平分的四边形是菱形.故选项B符合题意;C、对角线相等的平行四边形是矩形.故选项C不合题意;D、对角线互相垂直平分且相等的四边形是正方形.故选项D不合题意;故选:B.5.(2021秋•海州区期末)如图.在正方形ABCD中.点E在对角线AC上.EF⊥AB于点F.EG⊥BC于点G.连接DE.若AB=10.AE=3.则ED的长度为()A.7B.2C.D.【答案】C【解答】解:如图.连接BE.∵四边形ABCD是正方形.∴∠BAC=∠DAC=45°.AB=AD.∵AE=AE.∴△ABE≌△ADE(SAS).∴BE=DE.∵EF⊥AB于点F.AE=3.∴AF=EF=3.∵AB=10.∴BF=7.∴BE==.∴ED=.故选:C.6.(2021秋•铁锋区期末)如图.已知在正方形ABCD中.AB=BC=CD=AD=10厘米.∠A=∠B=∠C=∠D=90°.点E在边AB上.且AE=4厘米.如果点P在线段BC上以2厘米/秒的速度由B点向C点运动.同时.点Q在线段CD上由C点向D点运动.设运动时间为t秒.当△BPE与△CQP全等时.t的值为()A.2B.2或1.5C.2.5D.2.5或2【答案】D【解答】解:当点Q的运动速度与点P的运动速度都是2厘米/秒.若△BPE≌△CQP.则BP=CQ.BE=CP.∵AB=BC=10厘米.AE=4厘米.∴BE=CP=6厘米.∴BP=10﹣6=4厘米.∴运动时间=4÷2=2(秒);当点Q的运动速度与点P的运动速度不相等.∴BP≠CQ.∵∠B=∠C=90°.∴要使△BPE与△OQP全等.只要BP=PC=5厘米.CQ=BE=6厘米.即可.∴点P.Q运动的时间t==(秒).故选:D.7.(2021春•海淀区校级期末)如图.点E是正方形ABCD对角线AC上一点.EF⊥AB.EG ⊥BC.垂足分别为F.G.若正方形ABCD的周长是40cm.(1)求证:四边形BFEG是矩形;(2)求四边形EFBG的周长;(3)当AF的长为多少时.四边形BFEG是正方形?【答案】(1)略(2)20cm (3)AF=5cm【解答】解:(1)证明:∵四边形ABCD为正方形.∴AB⊥BC.∠B=90°.∵EF⊥AB.EG⊥BC.∴∠BFE=90°.∠BGE=90°.又∵∠B=90°.∴四边形BFEG是矩形;(2)∵正方形ABCD的周长是40cm.∴AB=40÷4=10cm.∵四边形ABCD为正方形.∴△AEF为等腰直角三角形.∴AF=EF.∴四边形EFBG的周长C=2(EF+BF)=2(AF+BF)=20cm.(3)若要四边形BFEG是正方形.只需EF=BF.∵AF=EF.AB=10cm.∴当AF=5cm时.四边形BFEG是正方形.1.(2021•玉林)一个四边形顺次添加下列条件中的三个条件便得到正方形:a.两组对边分别相等b.一组对边平行且相等c.一组邻边相等d.一个角是直角顺次添加的条件:①a→c→d②b→d→c③a→b→c则正确的是()A.仅①B.仅③C.①②D.②③【答案】C【解答】解:①由a得到两组对边分别相等的四边形是平行四边形.添加c即一组邻边相等的平行四边形是菱形.再添加d即一个角是直角的菱形是正方形.故①正确;②由b得到一组对边平行且相等的四边形是平行四边形.添加d即有一个角是直角的平行四边形是矩形.再添加c即一组邻边相等的矩形是正方形.故②正确;③由a得到两组对边分别相等的四边形是平行四边形.添加b得到一组对边平行且相等的平行四边形仍是平行四边形.再添加c即一组邻边相等的平行四边形是菱形.不能得到四边形是正方形.故③不正确;故选:C.2.(2019•毕节市)如图.点E在正方形ABCD的边AB上.若EB=1.EC=2.那么正方形ABCD的面积为()A.B.3C.D.5【答案】B【解答】解:∵四边形ABCD是正方形.∴∠B=90°.∴BC2=EC2﹣EB2=22﹣12=3.∴正方形ABCD的面积=BC2=3.故选:B.3.(2021•重庆)如图.正方形ABCD的对角线AC.BD交于点O.M是边AD上一点.连接OM.过点O作ON⊥OM.交CD于点N.若四边形MOND的面积是1.则AB的长为()A.1B.C.2D.2【答案】C【解答】解:∵四边形ABCD是正方形.∴∠MDO=∠NCO=45°.OD=OC.∠DOC=90°.∴∠DON+∠CON=90°.∵ON⊥OM.∴∠MON=90°.∴∠DON+∠DOM=90°.∴∠DOM=∠CON.在△DOM和△CON中..∴△DOM≌△CON(ASA).∵四边形MOND的面积是1.四边形MOND的面积=△DOM的面积+△DON的面积.∴四边形MOND的面积=△CON的面积+△DON的面积=△DOC的面积.∴△DOC的面积是1.∴正方形ABCD的面积是4.∴AB2=4.∴AB=2.故选:C.4.(2021•湖北)如图.在正方形ABCD中.AB=4.E为对角线AC上与A.C不重合的一个动点.过点E作EF⊥AB于点F.EG⊥BC于点G.连接DE.FG.下列结论:①DE=FG;②DE⊥FG;③∠BFG=∠ADE;④FG的最小值为3.其中正确结论的个数有()A.1个B.2个C.3个D.4个【答案】C【解答】解:①连接BE.交FG于点O.如图.∵EF⊥AB.EG⊥BC.∴∠EFB=∠EGB=90°.∵∠ABC=90°.∴四边形EFBG为矩形.∴FG=BE.OB=OF=OE=OG.∵四边形ABCD为正方形.∴AB=AD.∠BAC=∠DAC=45°.在△ABE和△ADE中..∴△ABE≌△ADE(SAS).∴BE=DE.∴DE=FG.∴①正确;②延长DE.交FG于M.交FB于点H.∵△ABE≌△ADE.∴∠ABE=∠ADE.由①知:OB=OF.∴∠OFB=∠ABE.∴∠OFB=∠ADE.∵∠BAD=90°.∴∠ADE+∠AHD=90°.∴∠OFB+∠AHD=90°.即:∠FMH=90°.∴DE⊥FG.∴②正确;③由②知:∠OFB=∠ADE.即:∠BFG=∠ADE.∴③正确;④∵点E为AC上一动点.∴根据垂线段最短.当DE⊥AC时.DE最小.∵AD=CD=4.∠ADC=90°.∴AC=.∴DE=AC=2.由①知:FG=DE.∴FG的最小值为2.∴④错误.综上.正确的结论为:①②③.故选:C.5.(2020•陕西)如图.在矩形ABCD中.AB=4.BC=8.延长BA至E.使AE=AB.以AE为边向右侧作正方形AEFG.O为正方形AEFG的中心.若过点O的一条直线平分该组合图形的面积.并分别交EF、BC于点M、N.则线段MN的长为.【答案】4【解答】解:如图.连接AC.BD交于点H.过点O和点H的直线MN平分该组合图形的面积.交AD于S.取AE中点P.取AB中点Q.连接OP.HQ.过点O作OT⊥QH于T.∵四边形ABCD是矩形.∴AH=HC.又∵Q是AB中点.∴QH=BC=4.QH∥BC.AQ=BQ=2.同理可求PO=AG=2.PO∥AG.EP=AP=2.∴PO∥AD∥BC∥EF∥QH.EP=AP=AQ=BQ.∴MO=OS=SH=NH.∠OPQ=∠PQH=90°.∵OT⊥QH.∴四边形POTQ是矩形.∴PO=QT=2.OT=PQ=4.∴TH=2.∴OH===2.∴MN=2OH=4.故答案为:4.6.(2021•邵阳)如图.在正方形ABCD中.对角线AC.BD相交于点O.点E.F是对角线AC上的两点.且AE=CF.连接DE.DF.BE.BF.(1)证明:△ADE≌△CBF.(2)若AB=4.AE=2.求四边形BEDF的周长.【答案】(1)略(2)8【解答】(1)证明:由正方形对角线平分每一组对角可知:∠DAE=∠BCF=45°.在△ADE和△CBF中..∴△ADE≌△CBF(SAS).(2)解:∵AB=AD=.∴BD===8.由正方形对角线相等且互相垂直平分可得:AC=BD=8.DO=BO=4.OA=OC=4.又AE=CF=2.∴OA﹣AE=OC﹣CF.即OE=OF=4﹣2=2.故四边形BEDF为菱形.∵∠DOE=90°.∴DE===2.∴4DE=.故四边形BEDF的周长为8.1.(2021•云岩区模拟)数学老师用四根长度相等的木条首尾顺次相接制成一个图1所示的菱形教具.此时测得∠D=60°.对角线AC长为16cm.改变教具的形状成为图2所示的正方形.则正方形的边长为()A.8cm B.4cm C.16cm D.16cm【答案】C【解答】解:如图1.图2中.连接AC.图1中.∵四边形ABCD是菱形.∴AD=DC.∵∠D=60°.∴△ADC是等边三角形.∴AD=DC=AC=16cm.∴正方形ABCD的边长为16cm.故选:C.2.(2021•石家庄一模)将图1中两个三角形按图2所示的方式摆放.其中四边形ABCD 为矩形.连接PQ.MN.甲、乙两人有如下结论:甲:若四边形ABCD为正方形.则四边形PQMN必是正方形;乙:若四边形PQMN为正方形.则四边形ABCD必是正方形.下列判断正确的是()A.甲正确.乙不正确B.甲不正确.乙正确C.甲、乙都不正确D.甲、乙都正确【答案】B【解答】解:若ABCD是正方形.可设AB=BC=CD=AD=x.∴AQ=4﹣x.AP=3+x.∴PQ2=AQ2+AP2.即PQ===.x取值不同则PQ的长度不同.∴甲不正确.若四边形PQMN为正方形.则PQ=PN=MN=MQ=5.且∠QMD+∠MQD=∠QAP=∠AQP+∠QP A=90°.在△QMD和△PQA中..∴△QMD≌△PQA(ASA).∴QD=AP.同理QD=AP=MC=BN.又∵BP=MD=AQ.∴QD﹣AD=P A﹣AB.∴AB=AD.同理AB=CD=AD=BC.即四边形ABCD为菱形.∵∠DAB=180°﹣∠QAP=90°.则四边形ABCD为正方形.∴乙正确.故选:B.3.(2021•临沂模拟)如图.AD是△ABC的角平分线.DE.DF分别是△ABD和△ACD的高.得到下列四个结论:①OA=OD;②AD⊥EF;③当∠A=90°时.四边形AEDF是正方形;④AE+DF=AF+DE.其中正确的是()A.②③B.②④C.①③④D.②③④【答案】D【解答】解:如果OA=OD.则四边形AEDF是矩形.没有说∠A=90°.不符合题意.故①错误;∵AD是△ABC的角平分线.∴∠EAD=∠F AD.在△AED和△AFD中..∴△AED≌△AFD(AAS).∴AE=AF.DE=DF.∴AE+DF=AF+DE.故④正确;∵在△AEO和△AFO中..∴△AEO≌△AFO(SAS).∴EO=FO.又∵AE=AF.∴AO是EF的中垂线.∴AD⊥EF.故②正确;∵当∠A=90°时.四边形AEDF的四个角都是直角.∴四边形AEDF是矩形.又∵DE=DF.∴四边形AEDF是正方形.故③正确.综上可得:正确的是:②③④.故选:D.4.(2020•宁津县一模)下列说法正确的是()A.对角线相等且相互平分的四边形是矩形B.对角线相等且相互垂直的四边形是菱形C.四条边相等的四边形是正方形D.对角线相互垂直的四边形是平行四边形【答案】A【解答】解:A、对角线相等且相互平分的四边形是矩形.故该选项正确;B、对角线相等且相互垂直的四边形不一定是菱形.故该选项错误;C、四条边相等的四边形是菱形.不是正方形.故该选项错误;D、对角线相互垂直的四边形不是平行四边形.故该选项错误.故选:A.5.(2021•南浔区模拟)如图.E.F是正方形ABCD的边BC上两个动点.BE=CF.连接AE.BD交于点G.连接CG.DF交于点M.若正方形的边长为1.则线段BM的最小值是()A.B.C.D.【答案】D【解答】解:如图.在正方形ABCD中.AB=AD=CB.∠EBA=∠FCD.∠ABG=∠CBG.在△ABE和△DCF中..∴△ABE≌△DCF(SAS).∴∠BAE=∠CDF.在△ABG和△CBG中..∴△ABG≌△CBG(SAS).∴∠BAG=∠BCG.∴∠CDF=∠BCG.∵∠DCM+∠BCG=∠FCD=90°.∴∠CDF+∠DCM=90°.∴∠DMC=180°﹣90°=90°.取CD的中点O.连接OB、OF.则OF=CO=CD=.在Rt△BOC中.OB===.根据三角形的三边关系.OM+BM>OB.∴当O、M、B三点共线时.BM的长度最小.∴BM的最小值=OB﹣OF==.故选:D.6.(2021•平凉模拟)如图.在矩形ABCD中.M、N分别是边AD、BC的中点.E、F分别是线段BM、CM的中点.(1)求证:BM=CM.(2)当AB:AD的值为多少时.四边形MENF是正方形?请说明理由.【答案】(1)略(2)当AB:AD=1:2时.四边形MENF是正方形【解答】(1)证明:∵四边形ABCD是矩形.∴AB=DC.∠A=∠D=90°.∵M为AD中点.∴AM=DM.在△ABM和△DCM中..∴△ABM≌△DCM(SAS).∴BM=CM;(2)解:当AB:AD=1:2时.四边形MENF是正方形.理由如下:∵N、E、F分别是BC、BM、CM的中点.∴NE∥CM.NE=CM.∵MF=CM.∴NE=FM.∵NE∥FM.∴四边形MENF是平行四边形.由(1)知△ABM≌△DCM.∴BM=CM.∵E、F分别是BM、CM的中点.∴ME=MF.∴平行四边形MENF是菱形;∵M为AD中点.∴AD=2AM.∵AB:AD=1:2.∴AD=2AB.∴AM=AB.∵∠A=90°.∴∠ABM=∠AMB=45°.同理∠DMC=45°.∴∠EMF=180°﹣45°﹣45°=90°.∵四边形MENF是菱形.∴菱形MENF是正方形.7.(2021•沂水县二模)如图.四边形ABCD是正方形.△ABE是等边三角形.M为对角线BD(不含B点)上的点.(1)当点M是CE与BD的交点时.如图1.求∠DMC的度数;(2)若点M是BD上任意一点时.将BM绕点B逆时针旋转60°得到BN.连接EN.CM.求证:EN=CM;(3)当点M在何处时.BM+2CM的值最小.说明理由.【答案】(1)60°(2)略(3)当M点位于BD.CE交点时.BM+2CM的值最小【解答】(1)解:∵△AEB是等边三角形.∴EB=AB=AE.∠EBA=60°.∵四边形ABCD是正方形.∴AB=BC.∠ABC=90°.∴EB=CB.∠EBC=∠EBA+∠ABC=60°+90°=150°.∴∠BCE=(180°﹣∠EBC)=×(180°﹣150°)=15°.∵BD是正方形ABCD的对角线.∴∠DBC=45°.∵∠DMC是△BMC的外角.∴∠DMC=∠DBC+∠BCE=45°+15°=60°;(2)证明:由旋转可知.BM=BN.∠MBN=60°.∵∠MBA=45°.∴∠ABN=∠MBN﹣∠MBA=15°.∵∠ABE=60°.∴∠NBE=∠ABE﹣∠ABN=45°.在△BMC和△BNE中..∴△BMC≌△BNE(SAS).∴CM=EN;(3)当M点位于BD.CE交点时.BM+2CM的值最小.理由如下:在△ADM和△CDM中..∴△ADM≌△CDM(SAS).∴AM=CM.将BM绕点B旋转60°.得到BN.∵∠EBN+∠NBA=60°.∠NBA+∠ABM=60°.∴∠EBN=∠ABM.在△ENB和△AMB中..∴△ENB≌△AMB(SAS).∴AM=EN.∵BM=BN.∠NBM=60°.∴△BMN是等边三角形.∴BM=NM.∴BM+2CM=BM+AM+CM=MN+EN+CM=EN+MN+CM.即E.N.M.C四点共线时.有最小值.8.(2022•南昌模拟)已知正方形ABCD与正方形AEFG.正方形AEFG绕点A旋转一周.(1)如图1.连接BG、CF.①求的值;②求∠BHC的度数.(2)当正方形AEFG旋转至图2位置时.连接CF、BE.分别取CF、BE的中点M、N.连接MN.猜想MN与BE的数量关系与位置关系.并说明理由.【答案】(1)①=②45°(2)BE=2MN.MN⊥BE【解答】解:(1)①如图1.连接AF.AC.∵四边形ABCD和四边形AEFG都是正方形.∴AC=AB.AF=AG.∠CAB=∠GAF=45°.∠BAD=90°.∴∠CAF=∠BAG..∴△CAF∽△BAG.∴=;②∵AC是正方形BCD的对角线.∴∠ABC=90°.∠ACB=45°.在△BCH中.∠BHC=180°﹣(∠HBC+∠HCB)=180°﹣(∠HBC+∠ACB+∠ACF)=180°﹣(∠HBC+∠ACB+∠ABG)=180°﹣(∠ABC+∠ACB)=45°;(2)BE=2MN.MN⊥BE.理由如下:如图2.连接ME.过点C作CQ∥EF.交直线ME于Q.连接BH.设CF与AD 交点为P.CF与AG交点为R.∵CQ∥EF.∴∠FCQ=∠CFE.∵点M是CF的中点.∴CM=MF.又∵∠CMQ=∠FME.∴△CMQ≌△FME(ASA).∴CQ=EF.ME=QM.∴AE=CQ.∵CQ∥EF.AG∥EF.∴CQ∥AG.∴∠QCF=∠CRA.∵AD∥BC.∴∠BCF=∠APR.∴∠BCQ=∠BCF+∠QCF=∠APR+∠ARC.∵∠DAG+∠APR+∠ARC=180°.∠BAE+∠DAG=180°.∴∠BAE=∠BCQ.又∵BC=AB.CQ=AE.∴△BCQ≌△BAE(SAS).∴BQ=BE.∠CBQ=∠ABE.∴∠QBE=∠CBA=90°.∵MQ=ME.点N是BE中点.∴BQ=2MN.MN∥BQ.∴BE=2MN.MN⊥BE.。

相关文档
最新文档