统计学计算题

合集下载

统计学计算题整理

统计学计算题整理

:典型计算题一1、某地区销售某种商品的价格和销售量资料如下:根据资料计算三种规格商品的平均销售价格。

解:36==∑∑ffxx (元)点评: 第一,此题给出销售单价和销售量资料,即给出了计算平均指标的分母资料,所以需采用算术平均数计算平均价格。

第二,所给资料是组距数列,因此需计算出组中值。

采用加权算术平均数计算平均价格。

第三,此题所给的是比重权数,因此需采用以比重形式表示的加权算术平均数公式计算。

2、某企业1992年产值计划是1991年的105%,1992年实际产值是1991的的116%,问1992年产值计划完成程度是多少解:%110%105%116===计划相对数实际相对数计划完成程度。

即1992年计划完成程度为110%,超额完成计划10%。

点评:此题中的计划任务和实际完成都是“含基数”百分数,所以可以直接代入基本公式计算。

3、某企业1992年单位成本计划是1991年的95%,实际单位成本是1991年的90%,问1992年单位成本计划完成程度是多少解: 计划完成程度%74.94%95%90==计划相对数实际相对数。

即92年单位成本计划完成程度是%,超额完成计划%。

点评:本题是“含基数”的相对数,直接套用公式计算计划完成程度。

4、某企业1992年产值计划比91年增长5%,实际增长16%,问1992年产值计划完成程度是多少解:计划完成程度%110%51%161=++=点评:这是“不含基数”的相对数计算计划完成程度,应先将“不含基数”的相对数还原成“含基数”的相对数,才能进行计算。

5、某企业1992年单位成本计划比1991年降低5%,实际降低10%,问1992年单位成本降低计划完成程度是多少解:计划完成程度%74.94%51%101=--=点评:这是“不含基数”的相对数计算计划完成程度,应先将“不含基数”的相对数还原成“含基数”的相对数,才能进行计算。

6、某企业产值计划完成103%,比上期增长5%,问产值计划规定比上期增加多少 解:103%=105%÷(1+x )x=%即产值计划规定比上期增加%.点评:计划完成程度=103%,实际完成相对数=105%,设产值计划规定比上期增加x,则计划任务相对数=1+x,根据基本关系推算出x.7、某煤矿某月计划任务为5400吨,各旬计划任务是均衡安排的,根据资料分析本月生产情况.=104%),但在节奏性方面把握不解:从资料看,尽管超额完成了全期计划(5400好。

统计学计算题整理

统计学计算题整理

:典型计算题一1、某地区销售某种商品的价格和销售量资料如下:根据资料计算三种规格商品的平均销售价格。

解:(元)点评:第一,此题给出销售单价和销售量资料,即给出了计算平均指标的分母资料,所以需采用算术平均数计算平均价格.第二,所给资料是组距数列,因此需计算出组中值。

采用加权算术平均数计算平均价格.第三,此题所给的是比重权数,因此需采用以比重形式表示的加权算术平均数公式计算.2、某企业1992年产值计划是1991年的105%,1992年实际产值是1991的的116%,问1992年产值计划完成程度是多少?解:.即1992年计划完成程度为110%,超额完成计划10%。

点评:此题中的计划任务和实际完成都是“含基数"百分数,所以可以直接代入基本公式计算。

3、某企业1992年单位成本计划是1991年的95%,实际单位成本是1991年的90%,问1992年单位成本计划完成程度是多少?解:计划完成程度。

即92年单位成本计划完成程度是94。

74%,超额完成计划5。

26%.点评:本题是“含基数”的相对数,直接套用公式计算计划完成程度。

4、某企业1992年产值计划比91年增长5%,实际增长16%,问1992年产值计划完成程度是多少?解:计划完成程度点评:这是“不含基数”的相对数计算计划完成程度,应先将“不含基数”的相对数还原成“含基数"的相对数,才能进行计算。

5、某企业1992年单位成本计划比1991年降低5%,实际降低10%,问1992年单位成本降低计划完成程度是多少?解:计划完成程度点评:这是“不含基数”的相对数计算计划完成程度,应先将“不含基数”的相对数还原成“含基数”的相对数,才能进行计算。

6、某企业产值计划完成103%,比上期增长5%,问产值计划规定比上期增加多少?解:103%=105%÷(1+x)x=1。

9%即产值计划规定比上期增加1.9%.点评:计划完成程度=103%,实际完成相对数=105%,设产值计划规定比上期增加x,则计划任务相对数=1+x,根据基本关系推算出x。

统计学计算题(54学时)

统计学计算题(54学时)

统计学习题集第三章数据分布特征的描述五、计算题1。

某企业两个车间的工人生产定额完成情况如下表:技术水平A车间B车间工人数完成定额工时人均完成工时工人数完成工时定额人均完成工时高50 14000 280 20 6000 300中30 7500 250 40 10400 260低20 4000 200 40 8200 205合计100 25500 255 100 24600 246从表中看,各个技术级别的工人劳动生产率(人均完成工时定额)都是A车间低于B车间,试问:为什么A车间的平均劳动生产率又会高于B车间呢?3。

根据某城市500户居民家计调查结果,将居民户按其食品开支占全部消费开支的比重(即恩格尔系数)分组后,得到如下的频数分布资料:恩格尔系数(%) 居民户数20以下620~30 3830~40 10740~50 13750~60 11460~70 7470以上24合计500要求:(1)据资料估计该城市恩格尔系数的中位数和众数,并说明这两个平均数的具体分析意义。

(2)利用上表资料,按居民户数加权计算该城市恩格尔系数的算术平均数.(3)试考虑,上面计算的算术平均数能否说明该城市恩格尔系数的一般水平?为什么?恩格尔系数(%)居民户数(户)f 组中值x 向上累积频数20以下 6 15 620~30 38 25 4430~40 107 35 15140~50 137 45 28850~60 114 55 40260~70 74 65 47670以上24 75 500合计500 --答:(1)Me=47。

226%,指处于中间位置的居民家庭恩格尔系数水平;Mo=45。

661%,指居民家庭中出现最多的恩格尔系数水平;(2)均值=47。

660%;4. 某学院二年级两个班的学生英语统考成绩如下表。

要求:(1)分别计算两个班的平均成绩;(2)试比较说明,哪个班的平均成绩更有代表性?哪个班的学生英语水平差距更大?你是用什么指标来说明这些问题的;为什么?英语统考成绩学生人数A班B班60以下4 660~70 12 1370~80 24 2880~90 6 890以上4 5合计50 605. 利用上题资料,试计算A班成绩分布的极差与平均差,并与标准差的计算结果进行比较,看看三者之间是何种数量关系。

统计学计算题

统计学计算题

统计学计算题27、【104199】(计算题)某班级30名学生统计学成绩被分为四个等级:A .优;B .良;C .中;D .差。

结果如下:B C B A B D B C C B C D B C A B B C B A B A B B D C C B C A BDAACDCABD(1)根据数据,计算分类频数,编制频数分布表;(2)按ABCD 顺序计算累积频数,编制向上累积频数分布表和向下累计频数分布表。

【答案】28、【104202】(计算题)某企业某班组工人日产量资料如下:根据上表指出:(1)上表变量数列属于哪一种变量数列;(2)上表中的变量、变量值、上限、下限、次数; (3)计算组距、组中值、频率。

【答案】(1)该数列是等距式变量数列。

(2)变量是日产量,变量值是50-100,下限是,、、、、9080706050上限是,、、、、10090807060次数是111625199、、、、; (3)组距是10,组中值分别是 9585756555、、、、,频率分别是13.75%31.25%.20%23.75%11.25% 、、。

29、【104203】(计算题) 甲乙两班各有30名学生,统计学考试成绩如下:(1)根据表中的数据,制作甲乙两班考试成绩分类的对比条形图; (2)比较两班考试成绩分布的特点。

【答案】乙班学生考试成绩为优和良的比重均比甲班学生高,而甲班学生考试成绩为中和差的比重比乙班学生高。

因此乙班学生考试成绩平均比乙班好。

两个班学生都呈现出"两头大,中间小"的特点,即考试成绩为良和中的占多数,而考试成绩为优和差的占少数。

30、【104205】(计算题)科学研究表明成年人的身高和体重之间存在着某种关系,根据下面一组体重身高数据绘制散点图,说明这种关系的特征。

体重(Kg )5053 57 60 66 70 76 75 80 85 身高(cm ) 150155160165168172178180182185【答案】散点图:可以看出,身高与体重近似呈现出线性关系。

统计学计算题

统计学计算题

第三章统计整理例 1、某厂工人日产量资料如下:(单位:公斤)162 158 158 163 156 157 160 162 168 160164 152 159 159 168 159 154 157 160 159163 160 158 154 156 156 156 169 163 167试根据上述资料,编制组距式变量数列,并计算出频率。

解:将原始资料按其数值大小重新排列。

152158 159154 154 156 156 156 156 157 157 158 158 159 159 159 159 160 160 160 162 162 163 163 163 164 167168 168 169最大数=169,最小数=152,全距=169-152=17n=30, 分为 6 组例 2、某企业 50 个职工的月工资资料如下:113 125 78 115 84 135 97 105 110 130105 85 88 102 101 103 107 118 103 87116 67 106 63 115 85 121 97 117 10794 115 105 145 103 97 120 130 125 127122 88 98 131 112 94 96 115 145 143试根据上述资料,将50 个职工的工资编制成等距数列,列出累计频数和累计频率。

解:将原始资料按其数值大小重新排列。

63 97 117 118工人按日产量分组(公斤)152-154155-157158-160161-163164-166 工人数(人)361151比率(频率)(%)10.0020.0036.6016.7067 78 84 85 85 87 88 88 94 94 96 97 97 98 101 102 103 103 103 105 105 105 107 110 112 113 115 115 115 115 116 118 120 121 122 125 125 127 130 130 131 135 143 145 145按工资额分组(元)60-70 70-80 80-90频数216工人数频率( %)4212频数239向上累计频率( %)4618频数504847向下累计频率(%)1009694例 3、有 27 个工人看管机器台数如下:5 4 2 4 3 4 3 4 4 2 4 3 4 3 26 4 4 2 2 3 4 5 3 2 4 3试编制分布数列。

统计学计算题例题

统计学计算题例题

第四章1。

某企业1982年12月工人工资的资料如下:要求:(1)计算平均工资;(79元)(2)用简捷法计算平均工资。

2. 某企业劳动生产率1995年比1990年增长7%,超额完成计划2%,试确定劳动生产率计划增长数。

7%-2%=5%3. 某厂按计划规定,第一季度的单位产品成本比去年同期降低8%。

实际执行结果,单位产品成本较去年同期降低4%。

问该厂第一季度产品单位成本计划的完成程度如何?104.35%((1—4%)/(1—8%)*100%=96%/92%*100%=104。

35%结果表明:超额完成4。

35%(104.35%—100%))4. 某公社农户年收入额的分组资料如下:要求:试确定其中位数及众数。

中位数为774.3(元)众数为755。

9(元)求中位数:先求比例:(1500—720)/(1770—720)=0.74286分割中位数组的组距:(800—700)*0。

74286=74.286加下限700+74。

286=774。

286求众数:D1=1050-480=570D2=1050—600=450求比例:d1/(d1+d2)=570/(570+450)=0.55882分割众数组的组距:0。

55882*(800—700)=55.882加下限:700+55.882=755.8825.1996年某月份某企业按工人劳动生产率高底分组的生产班组数和产量资料如下:.64。

43(件/*140+85*60)/)6。

根据表中资料计算中位数和众数.中位数为733。

33(元)众数为711.11(元)求中位数:先求比例:(50—20)/(65—20)=0。

6667分割中位数组的组距:(800-600)*0.6667=66。

67 加下限:600+66.67=666。

677.某企业产值计划完成103%,比去年增长5%。

试问计划规定比去年增长 多少?1.94%(上年实际完成1。

03/1.05=0.981 本年实际计划比上年增长(1—0。

统计学计算题例题(含答案)

统计学计算题例题(含答案)

1、某企业制定了销售额的五年计划,该计划要求计划期的最后一年的年销售额应达到1200万元。

实际执行最后两年情况如下表:请根据上表资料,对该企业五年计划的完成情况进行考核。

1、计划完成相对数=1410/1200*100%=117.5%该计划完成相对数指标为正指标,计划完成相对数又大于100%,所以表示该计划超额完成。

从第四年5月至第五年4月的一年的年销售额之和恰好为1200万元,所以该计划在第五年4月完成,提前8个月完成。

2、某地区制定了一个植树造林的五年计划,计划中设定的目标是五年累计植树造林面积为2000万亩。

实际执行情况如下:请对该长期计划的完成情况进行考核。

2、计划完成程度相对数=2100/2000*100%=105%计划完成相对数指标大于100%,且该指标为正指标,所以该计划超额完成截止第五年第三季度累计完成2000万亩造林面积,所以提前1个季度完成3、某班学生统计学课程考试成绩情况如下表:请根据上述资料计算该班统计学课程的平均成绩、成绩的中位数、众数和成绩的标准差。

4、某学校有5000名学生,现从中按重复抽样方法抽取250名同学,调查其每周观看电视的小时数的情4> 样本平均数X= Sxf/Sf-l250/250-5样 ________ __________二>/刀(好予f/(工f—1)二V 1136/249二2. 14抽样平均误差U二s/ Vn=0.14因为F (t) =95%,所以日.96抽样极限误差△二t U 二 1. 96*0. 14=0. 27 区间下限=5-0. 27=4. 73 区间上限二5+0. 27-5. 27全校学生每周平均收看电视的吋间在(4.73,5.27)小时之间,概率保证程度为95%5、某企业对全自动生产线上的产品随机抽取1000件进行检验,发现有45件是不合格的,设定允许的极限误差为 1.32%。

请对全部产品的合格率进行区间估计。

5、样本合格率p=955/1000=95.5% 抽样平均误差u二V pChp)/n= 0.66%因为△=1.32%,所以t= A/ u =2所以F.(.t)-95. 45%区间下限二95. 5%-l. 32%=94. 18%区间上限二95. 5%+l. 32%二96. 82%所以我们以95. 45%的概率估计全部产品和合格率是在(94.18%, 96. 82%)之间。

统计学计算题

统计学计算题

统计学计算题要求:计算三种产品的成本总指数以及由于单位产品成本变动使总成本使总成本变动的绝=本使总成本变动的绝对额;(-)★标准答案:4. 某厂三个车间一季度生产情况如下:第一车间实际产量为200件,完成计划95%;第二件,完成计划105%,请车间实际产量280件,完成计划100%;第三车间实际产量650根据资料计算:(1)产量计划平均完成百分比;8. 某市场上某种蔬菜早市每斤0.25元,中午每斤0.2元,晚市每斤0.1元,现在早、中、9. 某商店出售某种商品第一季度价格为6.5元,第二季度价格为6.25元,第三季度为6元,第四季度为6.2元,已知第一季度销售额3150元,第二季度销售额3000元,第三季度销10. 某厂生产某种机床配件,要经过三道工序,各加工工序的合格率分别为95.74%,★标准答案:试根据上表已知数据计算空格中的数字(保留一位小数并分别说明⑵、⑹、⑻、⑼栏是何试计算:(1)三种商品的销售额总指数(2)三种商品的价格综合指数和销售量综合指数18. 某自行车车库4月1日有自行车320辆,4月6日调出70辆,4月18日进货120辆,419. 某厂开展增产节约运动后,1月份总成本为10000元,平均成本为10元,2月份总成本为3000元,平均成本为8元,3月份总成本为35000元,平均成本为7.2元,试问,第试计算该地区三种水果的价格指数及由于价格变动对居民开支的影响。

2003年年末定额流动资金占有额为320万元。

根据上表资料,分别计算该企业定额流动资24. 某市2002年社会商品零售额12000万元,2003年增加为15600万元。

物价指数提高要求:(1)计算并填列表中所缺数字。

(2)计算该地区1997—2001年间的平均国民生产总值。

要求:⑴填满表内空格31.★标准答案:3(1)计算平均每个小组的日产量;★标准答案:计算平均每个小组的日产量(产量。

要求:(1)分别计算2000年、2001年的进出口贸易差额;(2)计算2001年进出口总额比例相对数及出口总额增长速度;(3)分析我国进出口贸易状况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章六、计算题.1.下面是某公司工人月收入水平分组情况和各组工人数情况:月收入(元)工人数(人)400-500 20500-600 30600-700 50700-800 10800-900 10指出这是什么组距数列,并计算各组的组中值和频率分布状况。

2.抽样调查某省20户城镇居民平均每人全年可支配收入(单位:百元)如下:88 77 66 85 74 92 67 84 77 94 58 60 74 64 75 66 78 55 70 66⑴根据上述资料进行分组整理并编制频数分布数列⑵编制向上和向下累计频数、频率数列答:⑴⑵第三章六、计算题.要求:⑴填满表内空格.⑵对比全厂两年总产值计划完成程度的好坏。

⑵该企业2005年的计划完成程度相对数为110.90%,而2006年只有102.22%,所以2005年完成任务程度比2006好。

⒉某工厂2006年计划工业总产值为1080万吨,实际完成计划的110%,2006年计划总产值比2005年增长8%,试计算2006年实际总产值为2005年的百分比?解:118.8%3.某种工业产品单位成本,本期计划比上期下降5%,实际下降了9%,问该种产品成本计划执行结果?解:95.79%4.我国“十五”计划中规定,到“十五”计划的最后一年,钢产量规定为7200万吨,根据上表资料计算:⑴钢产量“十五”计划完成程度;⑵钢产量“十五”计划提前完成的时间是多少?解:⑴102.08%;⑵提前三个月5.某城市2005年末和2006年末人口数和商业网点的有关资料如下:计算:⑴平均每个商业网点服务人数;⑵平均每个商业职工服务人数;⑶指出是什么相对指标。

⑶上述两个指标是强度相对指标。

6.某市电子工业公司所属三个企业的有关资料如下:试根据上表已知数据计算空格中的数字(保留一位小数并分别说明⑵、⑹、⑻、⑼栏是何种相对指标。

)表中⑵栏为结构相对数;⑹栏为计划完成程度相对数;⑻栏为动态相对数;⑼栏为比较相对数。

7.某企业2005年计划比上年增产甲产品10%,乙产品8%,丙产品5%;实际产量甲产品为上年1.2倍,乙产品为上年85%,丙产品为上年2.03倍。

试确定三种产品的计划完成程度指标。

解:计划完成程度的计算表如下:8.某企业产值计划完成103%,比上年增长55%,试问计划规定比上年增长多少?又该企业某产品成本应在去年600元水平上降低12元,实际上今年每台672元,试确定降低成本计划完成指标。

解:由题意知:本年实际产值/本年计划产值=103%本年实际产值/上年实际产值=155%所以:本年计划产值/上年实际产值=155%÷103%=150.49%计划规定比上年增长50.49%;成本计划完成程度=672÷(600-12)=114.29%9.甲乙两企业生产同种产品,1月份各批产量和单位产品成本资料如下:试比较和分析哪个企业的单位成本高,为什么?解:甲企业的平均单位产品成本=1.0×10%+1.1×20%+1.2×70%=1.16(元)乙企业的平均单位产品成本=1.2×30%+1.1×30%+1.0×40%=1.09(元)可见甲企业的单位产品成本较高,其原因是甲企业生产的3批产品中,单位成本较高(1.2元)的产品数量占70%,而乙企业只占30%。

10.某厂开展增产节约运动后,1月份总成本为10000元,平均成本为10元,2月份总成本为3000元,平均成本为8元,3月份总成本为35000元,平均成本为7.2元,试问,第一季度该厂平均单位成本为多少元? 解:第一季度该厂平均成本为:x =11.6236480002.73500083000101000035000300010000=++++=∑∑xm m =7.70(元)11.有四个地区销售同一种产品,其销售量和销售额资料如下:试计算各地区平均价格和此种商品在四个地区总的平均价格。

总平均价格=23010600=销售总量销售总额=46.0912.某商店售货员的工资资料如下:根据上表计算该商店售货员工资的全距,平均差和标准差,平均差系数和标准差系数。

解:⑴2010200==∑∑fXf X =510(元); ⑵全距=690-375=315(元)⑶156020X XfA D f-⋅==∑∑=78(元); ⑷)(202085002==∑∑-ffXX σ=102.1(元)⑸%10051078%100⨯=⨯⋅=⋅XD A V D A =15.29%; ⑹%1005101.102%100⨯=⨯=XV σσ=20.02%13.某厂400名职工工资资料如下:试根据上述资料计算该厂职工平均工资和标准差。

平均工资:54400400Xf X f==∑∑=1360(元) 标准差:σ==(元)14..某班甲乙两个学习小组某科成绩如下: 甲小组试比较甲乙两个学习小组该科平均成绩的代表性大小。

241770==∑∑fXf X =73.75(分) σ=(分) 11.0673.75PXV σσσ===×100%=15.00% 乙小组241790==∑∑fXf X =74.58(分) σ===(分) 10.674.58XV σσ==×100%=14.21% 计算结果得知乙小组标准差系数小,所以乙小组平均成绩代表性大。

第四章六、计算题.请计算各季平均每月总产值和全年平均每月总产值。

解:第一季度平均每月总产值=4400万元第二季度平均每月总产值≈4856.7万元第三季度平均每月总产值=5200万元第四季度平均每月总产值=5500万元全年平均每月总产值=4989.2万元请计算该企业2005年各季平均职工人数和全年平均职工人数。

解:第一季度平均职工人数≈302人第二季度平均职工人数≈310人第三季度平均职工人数=322人第四季度平均职工人数=344人全年平均职工人数≈320人请计算各种动态指标,并说明如下关系:⑴发展速度和增长速度;⑵定基发展速度和环比发展速度;⑶逐期增长量与累计增长量;⑷平均发展速度与环比发展速度;⑸平均发展速度与平均增长速度。

“十五”时期工业总产值平均发展速度=53.3439.783=117.96% 各种指标的相互关系如下:⑴增长速度=发展速度-1,如2001年工业总产值发展速度为130.21%,同期增长速度=130.21%-100%=30.21%⑵定基发展速度=各年环比发展速度连乘积,如2005年工业总产值发展速度228.34%=130.21%×116.2%×105.58%×128.23%×111.41%⑶累计增长量=各年逐期增长量之和,如2005年累计增长量440.6=103.7+72.7+29.0+154.9+80.3⑷平均发展速度等于环比发展速度的连乘积再用其项数开方。

如“十五”期间工业总产值平均发展速度⑸平均增长速度=平均发展速度-1,如“十五”期间平均增长速度17.96%=117.96%-100%⒋某国对外贸易总额2003年较2000年增长7.9%,2004年较2003年增长4.5%,2005年又较2004年增长20%,请计算2000-2005每年平均增长速度。

解:2000-2005年每年平均增长速度=6.2%要求:⑴计算第一季度和第二季度非生产人员比重,并进行比较;⑵计算上半年非生产人员比重。

解:⑴第一季度非生产人员比重:17.4%;第二季度非生产人员比重:16.4%;∴第二季度指标值比第一季度少1%。

⑵上半年非生产人员比重:16.9%。

⒍某地区2001年至2005年水稻产量资料如下表:试用最小平方法配合直线趋势方程,并据此方程预测该地区2008年水稻产量。

解:y c=345.6+14.4x;y2008=417.6万吨试根据上述资料,计算表中所缺的数字。

⒏已知我国1997年自行车产量为2800万辆,若今后以每年递增15%的速度发展,则到2005年将达到什么水平?解:已知:y=2800,x=115% 或1.15,n=8x ,()0nnx y y=y n=2800×8(1.15)=8565.26(万辆)9.某县2001-2004年各季度鲜蛋销售量数据如下(单位:万公斤)⑴用同期平均法计算季节变动⑵用趋势剔除法计算季节变动;⑶拟合线性模型测定长期趋势,并预测2005年各季度鲜蛋销售量。

⑶上表(一)中,其趋势拟合为直线方程:8.69250.6399T t ∧=+。

根据上表计算的季节比率,按照公式t t t KL Y T S ∧∧∧-=计算可得: 2004年第一季度预测值:()171718.69250.639917 1.071420.9682Y T S ∧∧∧==+⨯⨯=2004年第二季度预测值:()181828.69250.639918 1.122422.6845Y T S ∧∧∧==+⨯⨯=2004年第三季度预测值:()191938.69250.6399190.8673418.0837Y T S ∧∧∧==+⨯⨯=2004年第四季度预测值:()202048.69250.6399200.938820.1753Y T S ∧∧∧==+⨯⨯=第五章六、计算题.⒈用同一数量人民币、报告期比基期多购买商品5%,问物价是如何变动的?解:物价指数为95.24%;即物价降低了4.76%⒉报告期和基期购买等量的商品,报告期比基期多支付50%的货币,物价变动否?是如何变化的?解:物价上涨了,物价指数为150%,即报告期比基期物价提高了50%⒊依据下列资料计算产量指数和价格指数:⑵综合指数:产量 118.1%出厂价格 105.8%计算:⑴成本个体指数和产量个体指数;⑵综合成本指数; ⑶总生产费用指数。

⑵综合成本指数=91.3% ⑶总生产费用指数1920020000011==∑∑Q Z Q Z K ZQ =104.2%⒌某厂所有产品的生产费用2005年为12.9万元,比上年多0.9万元,单位产品成本平均比上年降低3%。

试确定⑴生产费用总指数;⑵由于成本降低而节约的生产费用。

解:⑴生产费用总指数=9.09.129.12-×100%=107.5%⑵单位成本降低而总生产费用节约了3990元。

依据上表资料计算加权算术平均指数,以及由于产量增长,使产值增加多少? 解:⑴产量总指数:123.5%⑵由于产量提高,而增加的总产值235万元。

7.某工厂工人和工资情况如下表:计算:平均工资的可变构成指数,固定构成指数和结构影响指数,并分析。

解:⑴平均工资可变构成指数116.67%固定构成指数121.74%结构影响指数95.83%⑵全厂工人平均工资提高100元技工普工平均工资提高使总平均工资提高125元。

相关文档
最新文档