数字电视参数测量

合集下载

数字电视QAM调制器关键参数测量的深入探讨

数字电视QAM调制器关键参数测量的深入探讨
对一个高质量的 信号 所有接收的数据 点靠近理想位置 且云 团的扩展范围对于星 座的总尺寸是很小的 随着噪声和另外的损 伤造成信号质量的下 降 云团的范围将扩 大 从而导致符号误差 增加 更多的数据点将
图 2 64QAM 星座图
图3 星座门限判决示意图
广播与电视技术 87
万方数据
有线电视测量
传输覆盖网络
与传统的模拟电视调制的测量有所不同 这主要是由 Q A M 调制的方式决定的 由于 Q A M 调制是一种对载波信号 进行抑制的调制方式 其调制信号的能量是均匀分布在整个 调制带宽上 所以在数字调制中引入了每比特能量 Eb 的 概念 其调制信号的总能量是所有调制带宽内的数据流所占 能量的总和 而模拟电视调制是基带信号直接调制载波信号 上 其整个通带能量主要是集中在载波信号上 因此在实际 的信号能量的测量上和传统的模拟电视调制相比由很大的区 别 这就意味着在工程测量中 QAM 调制信号幅度的测量和 模拟电视调制的信号幅度测量上是完全不同的
QAM 调制器作为数字电视前端的主要调制设备 MER
输出信号电平幅度是衡量调制器的主要技术参数 采用正确
的测量设置和测量方法 对整个数字电视系统的维护和运行
具有非常大的帮助
(收稿日期 2004-09-07)
书讯
GY/T 194-2003 有线电视系统光工作站技术要求和测量方法 本标准规定了有线电视系统光工作站的
5 在测量 Q A M 调制器的某些参数时 关闭均衡的考虑
为了防止传输符号间的相互串扰 数字系统中大都采用 升余弦滚降信号波形 升余弦滚降信号具有良好的传输特 性 但实际的传输信道不可能是完全理想无失真的 因而经 过传输后这种波形常常会遭到破坏 其后果就会引起符号间 的串扰 由于符号间串扰与噪声干扰不同 它来自传输信号 本身 某个采样点处的符号间串扰来自于相邻信号采样点 符号间串扰难以用增大信号功率的方式减小其影响 因为增 大信号功率会将符号间串扰同时增大 符号间串扰是一种乘 性干扰 符号间串扰严重时会使整个系统无法工作 为了补 偿信道的线性失真 必须对其进行校正 这个校正的过程称 为均衡

DTV数字电视测试详细介绍

DTV数字电视测试详细介绍

1.1. D T V数字电视的主要测量技术指标我们要准确把握数字电视传输网络质量的好坏,应该分三步。

第一步:对平均功率,MER,BER这三个指标进行测量。

MER、BER测量门限(实际经验总结)前端MER Pro FECBERPost FECBER64QAM优良38dBuv >1.00E-9 >1.00E-9 正常值36dBuv 1.00E-8 >1.00E-9 临界值34dBuv 1.00E-7 1.00E-8光节点MER Pro FECBERPost FECBER64QAM优良36dBuv >1.00E-9 >1.00E-9 正常值34dBuv 1.00E-8 >1.00E-9 临界值32dBuv 1.00E-7 1.00E-8放大器MER Pro FECBERPost FECBER64QAM优良35dBuv 1.00E-9 >1.00E-9 正常值33dBuv 1.00E-8 1.00E-9 临界值28dBuv 1.00E-7 1.00E-8分支器MER Pro FECBERPost FECBER64QAM优良32dBuv 1.00E-8 >1.00E-9 正常值28dBuv 1.00E-7 1.00E-9 临界值24dBuv 1.00E-6 1.00E-8机顶盒MER Pro FECBERPost FECBER64QAM优良32dBuv 1.00E-8 >1.00E-9正常值28dBuv 1.00E-7 1.00E-8临界值24dBuv 1.00E-6 1.00E-7第二步:当这些指标恶化的时候,应该对其它指标进行详细的测量,判断造成网络质量恶化的原因。

因为MER的恶化是最主要的因素,它将直接导致BER的下降并最终影响用户接收机的接收效果。

所以因主要测试调制质量参数,找出问题原因。

调制质量参数主要有:调制误差率、载波抑制、幅度不平衡、正交误差、相位抖动,RS解码前误码率等。

数字电视参数测量精

数字电视参数测量精

度与方法数字电视参数测量精度与方法导言数字电视(Digital Television,简称DTV)是利用数字技术实现电视节目的传输、接收和显示的全新电视系统。

伴随着数字技术的不断发展,数字电视已成为了当下主流的电视传输方式,而数字电视参数的测量精度对其传输质量起着至关重要的作用。

本文将探讨数字电视参数测量的精度与方法。

数字电视参数测量的重要性在数字电视传输过程中,各种参数的准确性都对信号的传输质量、接收图像的清晰度、音效的真实度等方面产生影响。

因此,数字电视参数测量需要严格地按照相关标准进行。

数字电视参数测量的方法数字电视参数测量有多种方法,下面我们分别进行介绍。

数字电视信号强度(RF Level)的测量数字电视信号强度是指数字电视信号中每个频道上的电磁场强度。

为了使每个频道上的电视节目达到最佳接收状态,必须将每个频道上的信号强度控制在一定的范围内。

常见的信号强度测量仪器包括:功率计、频谱分析仪等。

数字电视误码率(BER)和误差向量幅度(EVM)的测量数字电视误码率(BER)是在数字电视传输过程中,信道码率中出现错误比例的度量。

误差向量幅度(EVM)是根据TX和RX之间的信号误差来计算其分布的一个指标,反映了发射端和接收端之间的信号失真程度。

需要注意的是,数字电视的误码率和误差向量幅度都只能在数字电视解调器(Demodulator)处进行测量。

数字电视帧误码率(FEC)的测量数字电视帧误码率是传输数据帧丢失的比例,通常以每百万个数据帧为单位。

为了保证数据传输的可靠性,每个数字电视信道都要有容错机制,这就需要数字电视系统对传输过程中的帧误码率进行实时监测,以便及时进行误码率的修正。

以上就是数字电视参数测量的主要方法。

此外,数字电视参数的测量还需考虑采样精度、信号抗干扰性等方面的影响。

数字电视参数测量的标准主要由国际电信联盟(ITU)和欧洲电信标准委员会(ETSI)等组织出台。

数字电视参数测量精度对数字电视传输质量和接收效果有着重要的影响,数字电视参数测量的方法也比较多样。

数字电视指标

数字电视指标

6
调制误差率(MER)
MER是描述数字调制信号总体质量的参数,类似模拟系
统中的S/N、C/N指标,它等于误差幅度的有效值与平均
矢量幅度的比值,结果用dB表示。
7
图解说明:当接收机接收信号时,在某一段时间里 捕获到N个符号(应远大于星座点数M),得到N个 矢量,记录他们的实际位置,同该符号的理想位置比 较,从而可得到误差矢量,即实际位置到理想位置的 偏移。MER反映的是实际信号对理想信号位置的总体 偏移程度。
2
调制质量参数主要有: 调制误差率(MER)、载波抑制、幅度不平衡、正交 误差、相位抖动,RS解码前误码率等。 其中调制误差率反映了调制的总体质量; 载波抑制、幅度不平衡等反映调制中可能引起误差的 主要原因; RS解码前误码率则反映了整个信道的可靠性的性能。 对数字调制的直接测量是找到信号失真源头的有用工 具。
8
调制误差率MER反映了在整个测量系统中对信号的 所有相位、幅度类型的损伤和劣化。例如:各种非中 断性的损伤(系统噪声、CSO、CTB、侵入噪声)、 相位误差、相位噪声等造成的相位误差及调制器IQ幅 度不平衡、放大器压缩造成的幅度误差等。 在只考虑频道中的高斯噪声时,MER近视于基带数 字调制信号的SNR。MER的测试结果客观而准确的反 映了数字接收机正确还原数字信号的能力,也可以看 作为数字信号被正确还原的概率。在考察数字电视传 输系统的性能、调制信号的质量及SNR的分配时, MER比S/N更能说明整个系统的性能。
3
数字电视测量参数: 模拟系统中,我们通常用CSO、CTB、C/N这几个 参数来衡量信号的优劣。 CSO、CTB是反映信号的保真度, C/N是信号的 信噪比。如果保真度不够,将表现为:图象里有网纹 、滚条等干扰,信噪比不够表现为图象里号是离散信号,衡量其质 量的标准只能用信号的取值(或状态)判断的正确与 否来评价,即用误码率作为衡量信号质量的主要参数 ,系统的CSO、CTB、C/N等指标都反映到误码率上 。数字信号的指标劣化,表现为马赛克、静幀至图象 中断。

数字电视的主要测量技术指标03226

数字电视的主要测量技术指标03226

数字电视的主要测量技术指标(一)2008-08-12 11:55 来源: 作者:网友评论 0 条浏览次数 821我们要准确把握数字电视传输网络质量的好坏,应该分三步。

第一步:对平均功率,MER,BER这三个指标进行测量。

MER、BER测量门限(实际经验总结)前端MER Pro FECBERPost FECBER64QAM优良38dBuv>1.00E-9>1.00E-9正常值36dBuv 1.00E-8>1.00E-9临界值34dBuv 1.00E-7 1.00E-8光节点MER Pro FECBERPost FECBER64QAM优良36dBuv>1.00E-9>1.00E-9正常值34dBuv 1.00E-8>1.00E-9临界值32dBuv 1.00E-7 1.00E-8放大器MER Pro FECBERPost FECBER64QAM优良35dBuv 1.00E-9>1.00E-9正常值33dBuv 1.00E-8 1.00E-9临界值28dBuv 1.00E-7 1.00E-8分支器MER Pro FEC Post FEC64QAM BER BER优良32dBuv 1.00E-8>1.00E-9正常值28dBuv 1.00E-7 1.00E-9临界值24dBuv 1.00E-6 1.00E-8机顶盒MER Pro FECBERPost FECBER64QAM优良32dBuv 1.00E-8>1.00E-9正常值28dBuv 1.00E-7 1.00E-8临界值24dBuv 1.00E-6 1.00E-7第二步:当这些指标恶化的时候,应该对其它指标进行详细的测量,判断造成网络质量恶化的原因。

因为MER的恶化是最主要的因素,它将直接导致BER的下降并最终影响用户接收机的接收效果。

所以因主要测试调制质量参数,找出问题原因。

调制质量参数主要有:调制误差率、载波抑制、幅度不平衡、正交误差、相位抖动,RS解码前误码率等。

数字有线电视测试参数

数字有线电视测试参数

第三,仪器正确解码MPEG-2信号,即可显示其在FEC前 或FEC后的BER值(取决于测试的端口)。 在此,纠正一个错误的认识,”在传输系统的任意位臵, 都要求BER<1E-9”。这既不现实也不需要。因为标准规 定了在FEC解码前每传输小时少于一个不可校正数据包, 折算成FEC前的BER为小于1E-4。因此,在FEC前只要BER <1E-4,在FEC后都能达到BER <1E-9。这就是为什么 我们并不要求FEC前BER越低越好,因为,这将使系统造 价大大地提高。 c)测量仪器 QAM数字CATV分析仪 电视频谱场强仪
f)用场强仪近视测量
场强仪是用来测量模拟电视频道的RF电平,由于在频道载波频率处 一个窄的测量带宽内的RF功率,几乎占有整个频道RF功率的80%,因 此,通常就用载波处测量的RF电平来表示整个频道的RF功率。 用场强仪近视测量数字频道的RF功率时: 第一步,将场强仪的频率调谐到被测量数字频道的中心频率; 第二步,测量该中心频率处的RF电平值至少三次取平均值V1 第三步,按下公式计算被测量数字频道的RF功率V
数字有线电视测试参数
刘小莉 2012年4月24日
数字信号测量分类 Nhomakorabea基带信号或者称传输码流的测量 调制信号或者称射频信号的测量
两大类参数 1) 系统参数 2) 码流参数
系统参数
(1)数字电视频道功率(电平)
定义: 8MHz带宽内的总RF功率,测试点频率在被测试频道的 中央。其单位为dBmV或dBμV。 测量方式: 电视模式下的自动方式测量法 电视模式即解调后的电视信号显示在仪器屏幕上的方式。 频谱模式下的综合方式测量法 频谱模式即在仪器屏幕上显示所选频段的功率频谱的方式。
第二,仪器测量出FEC(前向纠错)前的BER和FEC纠错后接 收到的不可校正包(即错误数据包)。 为了给信号质量提供参考,定义了一个标准,即系统在FEC 解码前每传输小时少于一个不可校正数据包,即可被认为 该系统传输质量较好。这就是“准无差错传输”标准 ETR290 ,该标准的边界值称为QEF(准无差错),近似相 当于FEC前BER为2.0E-4(即每10,000比特2个误码)。

精选数字电视显示设备性能的测量方法

精选数字电视显示设备性能的测量方法

(2)按观看的光学方式 a、直视式显示器 CRT显示器、PDP显示器、LCD显示器、OLED显示器、 SED显示器、 LED显示器 等。 b、投影式显示器 - 前投影式显示器,包括有: LCD 投影显示器、LCOS投影显示器 DLP投影显示器 - 背投影式显示器,包括有: LCD 背投影显示器、LCOS背投影显示器 DLP背投影显示正在制定的标准GB/Txxxxx-xxxx 地面数字电视接收机通用技术条件GB/Txxxxx-xxxx 地面数字电视接收机测量方法 GB/Txxxxx-xxxx 地面数字电视接收器通用技术条件GB/Txxxxx-xxxx 地面数字电视接收器测量方法 GB/Txxxxx-xxxx 数字电视接收设备测试信号规范 GB/Txxxxx-xxxx 数字电视标准码流分析仪技术规范 GB/Txxxxx-xxxx 地面数字电视数字视频接口技术规范GB/Txxxxx-xxxx 地面数字电视标准测试发射机技术规范GB/Txxxxx-xxxx 地面数字电视标准测试接收机测量方法GB/Txxxxx-xxxx 地面数字电视音视频同步性技术要求和测量方法 GB/Txxxxx-xxxx 地面数字电视亮度与色差信号时间差技术要求和测量方法GB/Txxxxx-xxxx 数字电视机道分离测量方法GB/Txxxxx-xxxx 地面数字电视调谐器技术要求和测量方法 GB/Txxxxx-xxxx 数字电视机道分离技术规范
4、数字电视接收显示设备SJ/T 11157-1998 广播电视接收机测量方法 第2部分:伴音通道电性能测量 一般测量和单声道测量方法SJ/T 11335-2006《卫星数字电视接收器测量方法》 SJ/T 11334-2006《卫星数字电视接收器通用规范》SJ/T 11338-2006《数字电视液晶背投影显示器通用规范》SJ/T 11339-2006《数字电视等离子体显示器通用规范》SJ/T 11340-2006《液晶前投影机通用规范》SJ/T 11341-2006《数字电视阴极射线管背投影显示器通用规SJ/T 11342-2006《数字电视阴极射线管显示器通用规范》SJ/T 11343-2006《数字电视液晶显示器通用规范》SJ/T 11344-2006《数字电视液晶背投影显示器测量方法》SJ/T 11345-2006《数字电视阴极射线管显示器测量方法》SJ/T 11346-2006《电子投影机测量方法》SJ/T 11347-2006《数字电视阴极射线管背投影显示器测量方法》SJ/T 11348-2006《数字电视平板显示器测量方法》

浅谈数字电视信号的测量

浅谈数字电视信号的测量
器 ,对 数 字 电视 音 频基 带 信号 进 行质 量 测 试 。协 议 层 测试 主 要用 于 衡量 设 备对 于 标
电平 要 比模 拟 频道 电平 低 l d 。这 是 因为 小 ,信 号质 量越 好 。一般 仪 器能 够显 示 的 OB
统计 峰值 电平 比平 均功 率 高 l d ,为避 免 来显示 。 OB 放 大 器 失真 ,产生 互 调干 扰 , 需要 将数 字 频 道 的 峰值 电平调 整 到和 模 拟频 道 的峰 值
括 在 信源 、信 道 、信 宿三 个 方面 都 要 实现 信 号 ,在 用 户 端 电 缆 信 号 系 统 出 口处 要 顶盒 接收端 ,一般来说 ,只要B R 1 O E 5 E < . O 一 数 字 化处 理 。 与之 相 对应 的数字 电视测 试 求 :信号 电平为 4  ̄ 8 d ,因为 同系 统 就 能正 常接 收 ( 能 偶有 马 赛克 现 象 ), 7 0 BuV 可 大 致 分为 四个层 次 ,即应 用层 、协 议层 、 中传 输有8 套模拟 频道 ,所 以要求 数字 信号 B R I O E 4 本就 无法 看 了 ,B R E = .O 一 基 E 数值 越 传 输 层 、物 理层 。应 用层 测试 主 要 针对 于 能 提供 多 功 能 、多 标 准测 试平 台的测 试 仪
的B R E 时甚 至 需要 几 小时 。B R E 只反 映严 重
2 l a 底 基本 完 成 ,我们 郊 县 的数 字 电视 个 噪声 频 谱 ,用 噪声 功 率 的概 念 , 以每赫 到 造成 误码 的调 制损 伤 ,对 数字 调 制 中的 Oo 业务 自去年 年 初 也 已经 开展 ,作为 基 层 的 噪 声功 率 给 予积 分 的方 式求 得 所 谓频 道 功 细 节 问题 仍然 是不敏 感 的。一个 好 的B R E 表 技术 工 作人 员 , 现在 急 需掌 握 的是 数 字 电 率 ,为 了设 计 使 用 方 便 仍 然 用 电平 来 表 明的是合 适 的业务传送 ,一个坏 的B R E 强调 的是受 损 伤 的业 务 ,但 是看 不 出造 成 问题 的具体 原 因 。这 就要 求 我们 维护 人 员在 排 门测试 数字 信 号 指标 的仪 器 来分 析 、排 查 B R 常用 l 的 负多 少 次方 表 示 ,例 E通 0 如 :在 一万 位 数据 中 出现 一 位差 错 , 即误
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有线数字电视信号传输中参数的测量方法关键词:数字电视,传输,参数,测量,方本文描述了在有线数字电视传输中测量参数的客观方法。

重点是有线数字电视信号从信号源到用户接收端的端到端性能。

这个传输链包括电缆分配系统,也可包括为有线电视前端提供信号源的链路,如卫星链路、地面传输链路、或宽带网络链路等。

因为卫星系统、地面系统、微波系统有截然不同的测量规范,这里不对它们一一进行定义。

同时建议在测量有线电视系统性能时,通过系统的信号不应是解调后的信号,即有线电视的源信号取自卫星传输(经QPSK、BPSK等调制)、地面开路传输(经8-VSB或COFDM调制)或多点分配微波系统。

本文所述内容适用于任何工作频率从30MHz到2150MHz的有同轴电缆输出的电视和声音信号的有线数字电视分配系统(包括独立接收系统)。

在未来的应用中,频率范围将可能扩展为从5MHz到3000MHz。

本文介绍了对有同轴电缆输出的有线数字电视分配系统工作特性的基本测量方法,以便评估此类系统的性能及其性能限制。

这些测量方法应用于经PSK、QAM和OFDM等方式调制后的数字信号(对于在有线系统中的VSB信号的测量,还需要另外的测量方法),测量的参数如下:系统输出口的相互隔离度通道内的幅频响应射频载波功率射频噪声功率载噪比(C/N)比特误码率(BER)比特误码率与Eb/No噪声余裕调制误差率(MER)信噪比(S/N)射频相位抖动回波(用于测量均衡器的屏蔽能力)数字调制信号的测量方法不同于模拟调制信号,主要有以下几个原因:a) 除VSB调制方式外,数字调制的信号不存在载波,因此无法测量(例如ITU-T J83中的 PSK或QAM调制系统等),或是有几千条载波(例如OFDM调制系统,包括导频及BPSK、QPSK和QAM调制);b) 被调制信号频谱像噪声般平铺于频带中;c) 影响接收信号质量的参数与通过信道传输在解调和纠错前引入的比特或字符误码因素有关(如:噪声、幅度和相位的失真等);数字调制信号的测量方法基于以下几个条件:a) 对于各种基带系统,其输入输出信号为MPEG-2的传输流(TS),例如卫星,有线,SMATV,MMDS/MVDS和地面分配系统;b) 通过卫星接收的PSK调制数字信号,例如QPSK等方式,能够以同样的调制方式在有线网络(SMATV) 中分配;c) 通过卫星接收的数字调制信号以QAM方式在有线电视网(CATV)中分配;d) 通过地面广播系统接收的OFDM调制信号能以同样的OFDM调制方式在SMATV/CATV系统中分配;e) 提供PSK,QAM或OFDM调制的I/Q基带信号源,具备适用的接口和相关的SI文件信息;f) 在注明的有关地方需用PSK,QAM或OFDM调制的一个基准接收机,并指明其接口;g) 解码设备不会影响结果的一致性.(1)系统输出口的相互隔离度系统隔离度通常在以下几个连接处测量a) 系统输出连接相邻用户的分支器连接处;b) 系统输出连接相同多用户的分支器连接处;c) 相邻环路系统的输出处;测量方法如同模拟调制系统方法,使用扫描信号发生器测量。

(2)通道内的幅频响应本参数用于描述在有线电视分配系统特定两点间,某一独立信道频带的幅度响应。

但是,对那些输入信号解调到基带后再调制频道,其调制器及解调器的响应不应包括进来。

当需要将这些响应特性包括进来时,应使用适用的测试手段对这些设备进行独立的评估。

如果在被测系统的天线输入与系统输出之间有变频设备,应进行设备的输出频率标准。

首先检查信号发生器输入频率到输出频率的频响平坦度。

测量方法如同模拟调制系统的方法,采用扫描信号发生器测量。

(3)射频载波功率数字调制信号的射频载波功率使用热功率计来测量。

也可用频谱仪积分信道标称频带中频谱功率来测量(许多种频谱仪都有此项功能)。

对于PSK、QPSK和QAM调制的信号,其带宽(BW)定义为符号率的(1+α)倍,此处α为滚降系数,不同应用中有不同的定义。

OFDM信号的带宽定义是两个边界副载波所占的频带外边界的差值。

射频载波功率的单位是dBm(dB对应于1mW的功率)。

也可使用其它一些适用设备来测量数字调制信号的射频功率,如矢量信号分析仪等。

在测量载波功率时,应该将一些预防措施考虑在内,具体见附录Ⅰ。

测量可以在系统输出端进行,也可在有源或无源的分配设备输出处进行,还可在前端输出处或卫星接收设备的户外单元输出处(SHF接收)进行。

(4)射频噪声功率任何传输系统都会有噪声,而且都可对传输信号造成重要的损伤。

噪声功率使用热功率计测量。

也可用频谱仪积分信道标称频带中频谱功率来测量。

在测量时, 应当停止被测信道的载波(停止业务)。

测量射频噪声功率的带宽应与测量射频载波功率的相同。

射频噪声功率的单位是dBm(dB对应于1mW的功率)。

也可使用矢量信号分析仪等仪器来测量射频噪声功率。

测量可以在系统输出端进行,也可在有源或无源的分配设备输出处进行,还可在前端输出处或卫星接收设备的户外单元输出处(SHF接收)进行。

在测量噪声功率时,应该将一些预防措施考虑在内,具体见附录Ⅰ.(5)载噪比(C/N)载噪比的定义是射频载波功率与射频噪声功率的比值。

附录Ⅰ解说了大致的测量过程。

(6)比特误码率(BER)BER是描述一个数字传输系统的主要指标,它的定义是错误比特数与总接收比特数的比值。

业务中断BER测量是在FEC之前,测量接收的总错误比特数,此时调制器的前端接PRBS。

业务在线传输中进行的实际数据BER测量,利用FEC解码的R-S误码检测能力来进行。

这种方法提供了一种测量接收信号性能的统计手段。

无论是哪一种测量方法,在提到BER时,应当说明是净比特率还是总比特率,以及是在何点测量得到的。

1)业务中断,FEC前总BER测量如果在FEC解码器前的业务中断的BER值在10-2到10-4之间,测量能在合理的时间内进行。

测量必须在不进行业务传输时进行。

测量BER的框图见图1图1 BER测量示意图测量时,打开调制器,测量误码率观测足够长的时间,以发现至少100比特的错误,然后将误码数总的传输比特数相比。

总比特数与净比特数的区别见附录Ⅰ。

2)在FEC前的,业务在线传输BER的测量以下文字所指的总BER值都是指FEC解码前的值。

可以这么认为,如果FEC解码器的输入错误是随机的(非突发的),且错误率低于2×10-4时,R-S 解码器的输出是准无错(QEF)信号。

QEF是指每一传输小时中,不可纠正错误小于一个,此时,R-S 解码器的输出BER值在10-10到10-11之间。

在这种情况下,纠错之后不能测量到误码率。

在无不可纠正错误的情况下,测量方法是将FEC解码器的输出再进行FEC编码,并将其与经过延时后的FEC输入端的TS进行比较,两个TS流之间不同的比特数即为错误比特数,计算总BER时,要考虑同步头,有效载荷及编码信息。

只有在传输流中无不可纠正错误时,此测量才是有效的。

3)业务在线传输FEC后BER的测量以下文字的BER值都是指FEC解码后的值。

当发生了严重的突发错误时,可能会超出纠错算法的纠错范围,此时不能纠正TS包中的错误。

此时,传输包中transport_error_indicator位将会置1。

将错误包的数量与时间联系起来,可以定义以下几个测量值:●误码块(EB)一个传输包中至少有一个不可纠正错误,可由transport_error_indictor标志置1来判断。

●同步丢失连续两个以上同步字节丢失的情况。

●严重乱码间隔(SDP)同步丢失或信号丢失的时间间隔。

●误码秒(ES)在一秒钟内出现的一个以上误码包。

●严重误码秒(SES)在一秒钟内,误码块的比例超出某一特定的百分比,或者至少包含一个SDP。

在传输流转换时,此百分比应在协议中定义。

●不可用时间(Ut)不可用时间起始于10个连续严重误码秒事件(SES)。

这十个严重误码秒事件也被视为不可用时间的一部分。

可用时间起始于10个连续非严重误码秒(SES)。

这十个非严重误码秒也被视为可用时间的一部分。

(7) BER与Eb/No这主要针对PSK或QAM数字调制信号比特误码率的测量。

可将测量出的BER和Eb/No列出关系曲线,并与理论曲线关系图进行比较,在特定的BER值下,对比二者Eb/No的不同,可以发现系统实现的不足之处。

Eb/No值很高时仍残留的BER是网络系统可能存在问题的一种指示。

经常研究的BER值在10-7到10-3之间。

测量应在有线电视分配系统输出端进行,根据被测量系统不同,将所需调制信号从系统前端或分配网络的前端输入到系统中。

前端可包括调制转换器(例如从PSK转到QAM格式).此项测量必须停止业务。

测量BER与Eb/No的框图见图2。

图2 BER与Eb/No和噪声门限的测量原理图利用以下公式计算Eb/No:(Eb/No)dB = (C/N)dB + 10 lg(BW) - 10 lg(fs)- 10 lgm这里fs 是指符号率,m是指调制信号(PSK或QAM)中每一符号所代表的比特数。

例如BPSK时, m=1;QPSK或TC8PSK时,m=2;16QAM时,m=4;64QAM时,m=6;256QAM时,m=8。

测量步骤如下:●打开调制器和噪声发生器●改变衰减器的设置,在接收机的输入端测量BER,并在输出端测量Eb/No。

●重复以上步骤,得到一组BER和Eb/No的值。

当在有线电视系统中测量一个ITU-TJ.83规定的QAM调制信号时,Eb/No值相对的净比特率应以FEC码率计算,包括加上的同步字和帧头以及RFEC 后。

对于ITU-TJ.83中附件 A 的RS(204,188)码格式(详见附录Ⅰ),可使用以下转换系数:10 lg10(204/188) = +0.448dB对于ITU-TJ.83中附件 B 码格式(见附录Ⅰ),可使用以下转换系数:10 lg10(1/ RFEC) = +0.512dB (64QAM)10 lg10(1/ RFEC) = +0.434dB (256QAM)当测量一个有额外卷积FEC码的PSK,BPSK或QAM信号或一个OFDM调制信号时,计算Eb/No的值时所引用的净比特率应考虑内码率和外码率。

例如内码率是3/4时,可使用以下转换公式:10 lg10(4/3) (204/188) = +1.604dB最后画出BER相对Eb/No(dB)点的曲线图。

同时,应标明BER的测量点。

(8)噪声余裕该参数的测量可反映被测传输通道的可靠性。

噪声余裕是衡量系统操作余裕的一项有用参数,测量噪声余裕比测量BER值更方便,因为BER与Eb/No曲线在边缘十分陡峭。

测量应在有线电视分配系统输出端进行,根据被测系统不同,将所需格式的调制信号输入到系统前端输入口或分配网络输入口。

相关文档
最新文档