数的开方及二次根式

合集下载

第四讲:数的开方及二次根式

第四讲:数的开方及二次根式

数的开方与二次根式知识点:平方根、立方根、算术平方根、二次根式、二次根式性质、最简二次根式、 同类二次根式、二次根式运算、分母有理化教学目标:1.理解平方根、立方根、算术平方根的概念,会用根号表示数的平方根、立方根和算术平方根;会求实数的平方根、算术平方根和立方根;2.了解二次根式、最简二次根式、同类二次根式的概念,会辨别最简二次根式和同类二次根式;掌握二次根式的性质,会化简简单的二次根式,能根据指定字母的取值范围将二次根式化简;3.掌握二次根式的运算法则,能进行二次根式的加减乘除四则运算,会进行简单的分母有理化。

教学重难点:1.平方根、算术平方根、立方根的概念(有关试题在试题中出现的频率很高,习题类型多为选择题或填空题);2.最简二次根式、同类二次根式概念(有关习题经常出现在选择题中);3.二次根式的计算或化简求值(有关问题在中考题中出现的频率非常高,在选择题和中档解答题中出现的较多)。

教学过程:1、知识要点:考点1 平方根、算术平方根与立方根:若)0(2≥=a a x ,则x 叫做a 的平方根,记作a ±;正数a 的正的平方根叫做a 的算术平方根,0的算术平方根是0。

当0≥a 时,a 的算术平方根记作a 。

注意:1、非负数是指正数或0,常见的非负数有:(1)绝对值:0≥a ;(2)实数的平方:02≥a ;(3) 算术平方根:)0(0≥≥a a 。

2、如果a 、b 、 c 是实数,且满足02=++c b a , 则有0=a,0=b ,0=c考点2 二次根式的有关概念:1、二次根式:式子)0(≥a a 叫做二次根式(注意被开方数只能是正数或0); 二次根式a 定义中的“a ≥0”是定义的一个重要组成部分,不可以省略,因为负数没有平方根,所以当a<0时,没有意义.在具体问题中,一旦出现了二次根式a ,就意味着a ≥0,这通常作为一个重要的隐含条件来应用;被开方数a 既可以是具体的数,也可以是单项式或多项式,如:3、ab (ab ≥0)、3+x (x ≥-3)都是二次根式.2、最简二次根式:被开方数所含因数是整数,因式是整式,不含能开得尽方的因数或因式的二次根式,叫做最简二次根式;最简二次根式,满足两个条件:①被开方数不含分母;②被开方数中不含开得尽方的因数或因式.3、同类二次根式:①化成最简二次根式后,被开方数相同的二次根式,叫做同类二次根式; ②二次根式的性质: )0()(2≥=a a a ⎩⎨⎧<-≥==)0()0(||2a a a a a a )0;0(≥≥⋅=b a b a ab )0;0(>≥=b a ba b a 考点3 二次根式的运算:1、二次根式的加减:二次根式相加减,先把各个二次根式化成最简二次根式,再把同类二次根式分别合并;2、二次根式的乘法: 二次根式相乘,等于各个因式的被开方数的积的算术平方根,即 ).0,0(≥≥=⋅b a ab b a(二次根式的和相乘,可参照多项式的乘法进行;两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,那么这两个二次根式互为有理化因式);3、二次根式的除法:二次根式相除,通常先写成分式的形式,然后分子、分母都乘以分母的有理化因式,把分母的根号化去(或分子、分母约分);把分母的根号化去,叫做分母有理化。

开方及二次根式知识点

开方及二次根式知识点

开方及二次根式知识点全文共四篇示例,供读者参考第一篇示例:开方是数学中常见的运算符号,表示一个数的平方根。

而二次根式则是指包含开方的代数式。

在学习数学过程中,掌握开方及二次根式的知识是非常重要的。

本文将就开方及二次根式的相关知识进行详细介绍。

我们来看看开方的定义。

对于一个非负实数a,如果实数b满足b 的平方等于a,即b²=a,那么b就是a的平方根,记作√a,其中√符号称为根号。

如果a是一个负数,那么它的平方根定义为复数,可以表示为±√(-a),其中±表示取正负号。

开方的运算可以用来求解方程、计算距离等实际问题,是数学中的重要工具。

在代数中,我们经常会遇到二次根式,即含有开方的代数式。

如√2、√3等都属于二次根式。

二次根式通常可以简化,使其形式更加简洁。

简化二次根式的方法是利用数的乘法性质,将开方中的被开方数进行因式分解,找到一个完全平方数因子,然后将其提出开方符号。

对于√12,可以找到一个完全平方数的因子4,即√12=√(4*3)=2√3。

这样就化简成了更加简洁的形式。

在进行运算时,需要注意开方及二次根式的运算规则。

首先是同底数相乘的运算法则,即√a*√b=√(a*b),这条规则适用于任意实数a、b。

其次是开方的乘法公式,即√a±√b=√(a±2√(a*b)±√b),这个公式在计算开方时经常会用到。

如果要进行开方的除法运算,可以采用类似的方法,将被开方数分解成较小的因子,然后进行化简。

运用这些运算规则,可以更加方便地进行开方及二次根式的运算。

除了基本的开方运算,还有一些特殊的开方,如立方根、四次根等。

立方根表示一个数的三次方根,记作³√a,其运算规则与平方根类似。

比如³√8=2,因为2³=8。

四次根则表示一个数的四次方根,记作⁴√a,其运算规则也可以类似的推出。

这些特殊的开方可以在数学问题中发挥重要作用,例如求解立方程等。

数的开方、二次根式复习

数的开方、二次根式复习

值范围常转化为不等式(组).
二 二次根式的非负性的应用
1.已知: x 4 + 2x y =0,求 x-y 的值.
解:由题意,得 x-4=0 且 2x+y=0 解得 x=4,y=-8
x-y=4-(-8)= 4+ 8 =12 2.已知x,y为实数,且 x 1 +3(y-2)2 =0,则x-y的值为( D )
方法:分母有理化
4.二次根式的运算 a b =___a_b__(a≥0,b≥0);
a b
a =__b__(a≥0,b>0).
二次根式加减时,可以先将二次根式化成_最__简__二__次__根__式__, 再将__被__开__方__数__相__同____的二次根式进行合并.
考点分类
一 确定二次根式中被开方数所含字母的取值范围
∵16﹤17﹤25
∴4﹤ 17 ﹤5
则 - 5﹤ 17 ﹤- 4 所以b = - 4
∴a – b = 5 - ( - 4 ) = 9 a – b的平方根为±3
知识梳理
二 次 根 式
二次根式
三个概念 最简二次根式
两个公式
两个性质 四种运算
同类二次根式
1. ab a ba 0,b 0
4、实数与数轴:
知 识
无限不循环小数叫做无理数。
如:2,3,5,,3 2,3 3 ,2.030030003……等。
要 5.有理数与无理数统 有理数有限小数或无限循环小数
实数
负有理数
无理数负正无无理理数数无限不循环小数
A.3
B.-3
C.1
D.-1
二 二次根式的非负性的应用
4. 若实数 x,y,m 满足等式 3x 5y 3 m +(2x+3y﹣m)2=

第2节 数的开方与二次根式

第2节 数的开方与二次根式

1.当 x 取何值时,二次根式有意义. (1) 3+x :__x_≥__-__3____;
x-1 (2) 3-x :__x_≥__1_且__x_≠__3_____;
2.(1)8 的立方根是__2__,3 -8 =___-__2__;
(2)若 x 的平方根是±8,则 x 的立方根是_4___;
(3)(易错题) 16 的平方根是__±__2__,
(8) 14 × 7 =_7___2____.
4.若|a-1|+(b+2)2+ c-3 =0,则 a=_1___,b=_-__2_,c=_3___.
二次根式及其性质(北部湾5年3考)
例 1 (2024 南宁模拟)如果二次根式 a 有意义,那么 a 的值可以是( D ) A.-3 B.-2.5 C.-1 D.1
例 6 (2024 南宁模拟)计算:9+(-3)+ 4 ×(5-2). 解:原式=9-3+2×3=9-3+6=12.
二次根式的估值(2024.14)
例 7 估算 7 的值是在( B ) A.1 到 2 之间 B.2 到 3 之间 C.3 到 4 之间 D.4 到 5 之间
例8
(2024 广西)写出一个比 3 大的整数,可以是
__2_(_答__案__不__唯__一__)_____.
(2020 桂林)若 x-1 =0,则 x 的值是( C ) A.-1 B.0 C.1 D.2
例 2 (2021 桂林)下列根式中,是最简二次根式的是( D )
A.
1 9
B. 4
C. a2
D. a+b
(2024 钦州一模)下列二次根式中,化简后能与 2 进行合并的二次根式 是( C )
A. 4 B. 6 C. 8 D. 12 例 3 (2023 广西) 9 =__3__.

数的开方与二次根式

数的开方与二次根式

数的开方及二次根式
哎,说起数的开方跟二次根式,这事儿咱们得扯扯清楚。

在数学里头,数的开方,就好比是把一个数儿,咔嚓一下,劈成好多相等的部分,看能劈成几份儿,每份儿是多少。

比如说,9的开方,那就是3嘛,因为3乘3等于9,简单得很。

二次根式呢,听起来有点儿玄乎,其实也不难。

就是把个平方根摆在那儿,再跟其他数儿一起搅和搅和,搞出些新花样来。

比如说,根号下面有个4,再加上个5,写成式子就是√4+5,结果就是2+5,等于7。

当然,这只是个简单的例子,实际运用起来,可能要复杂得多。

在计算二次根式的时候,咱们得注意点儿,根号下面的数儿得是非负的,要不然就没得解了。

还有啊,根号跟根号之间不能直接相加,得想办法把它们变成同类项,才能相加或者相减。

比如说,√2跟√8,看着不一样,其实√8可以变成2√2,这样一来,它们就能相加了。

总的来说,数的开方跟二次根式,都是数学里头挺重要的东西。

虽然刚开始接触的时候,可能会觉得有点儿难,但是只要多练练,多琢磨琢磨,慢慢地就能掌握其中的窍门了。

毕竟,数学这东西,还是得靠多练,才能熟能生巧嘛。

所以,大家伙儿,要是遇到了数的开方或者二次根式的问题,别怕,大胆地去做,相信你们一定能行的!。

第4节 数的开方与二次根式

第4节 数的开方与二次根式
2
1.( a )2=a(a② ≥0

返回
运 算
二次根式 ab a 乘法: 除法: a ⑤
b
加减:先将二次根式化成最简二次根式,再合并同类
b
(a≥0,b≥0)
a b (a≥0,b>0)
返回
2.找出与平方后所得数字相邻的两个开得尽方的整数,如4<7<9 估 值 3.对以上两个整数开方,如 4 =2, 9 =3 4.确定这个根式的值在这两个整数之间,如2< 7 <3
2.被开方数中不含能开得尽方的因数或因式
同类二次根式:几个二次根式化为最简二次根式后,如果它们 的被开方数相同,则把这几个二次根式叫做同类二次根式. 如 8 2 2 ,所以 8 与 2 是同类二次根式 未完继续
a (a≥0) a | a | 2. -a a≤0) ③ _____( 性 3. ab a b (a≥0,b≥0) 质 a a(a≥0,b④ >0 ) 4. b b 5.双重非负性:
1.先对根式平方,如( 7 )2=7
返回
第一章
数与式
第4节 数的开方运算 二次根式 估值
定 义 及 其 性 质

定义:形如 a (a≥0)的式子,其中a叫被开方数
有意义的条件:被开方数大于或等于零 最简二次根式同时满足两个“不含”条件 : 1.被开方数不含① 分母 ,分母中也不含二次根式

2020中考复习第02课时数的开方与二次根式

2020中考复习第02课时数的开方与二次根式
数③ 相同
,立方根等于本身的数为±1,0.
考点聚焦
考点二 二次根式的相关概念和性质
1.二次根式:形如 (a≥0)的式子叫做二次根式.
2.二次根式有意义的条件:被开方数大于或等于④
0
.
3.最简二次根式
必须同时满足以下两个条件:
(1)被开方数不含分母;
(2)被开方数中不含能开得尽方的因数或因式.
如: 5, 2 + 1是最简二次根式,而 8,
[解析]∵9<13<16,3.52=12.25,
∴3.5< 13<4,
A.4
B.5
C.6
D.7
∴与 13最接近的整数是 4,
∴与 10- 13最接近的整数是 6,故选 C.
考点聚焦
考向五 二次根式的性质
例 7 若在数轴上表示实数 a 的点如图 2-1 所示, [答案] 3
2
则化简 (-5) + -2 的结果为
考点聚焦
例 4 下列根式中,与 3是同类二次根式的是 ( B )
A. 24
C.
3
2
B. 12
D. 18
考点聚焦
| 考向精练 |
下列各式中,哪些是同类二次根式?
0.5,2
1
7
2 3 (a≥0,x≥0), 50 2 (x≥0,y≥0).
,
12,
75,1
,
2
3
25
1
解:∵ 0.5=
2
2,2
1 2
,
12,
75是同类二次根式,
2
3
考点聚焦
考向三 二次根式的化简与计算
例 5 (1) [2019·扬州]计算:

2016初中数学基础知识讲义06—数的开方及二次根式

2016初中数学基础知识讲义06—数的开方及二次根式

数的开方及二次根式1、(2015黄冈)9 的平方根是( ) A.±3 B.±31C.3D.-3 2、(2014东营( ) A.±3 B.3 C.±9 D.93、(2015=_____ 4、(2015=_____1、(2015黄冈)9 的平方根是( ) A.±3 B.±31C.3D.-3 2、(2015的值是( )A .±5 B.5 C .–5 D . 6253、(2014菏泽)下列计算中,正确的是( )A .a 3•a 2=a 6 B .(π﹣3.14)0=1 C .133-=- D 3?4、(2015南京)4的平方根是 ;4的算术平方根是 (2015山东潍坊模拟)4 的算术平方根是5、(2015(20156、(2015(2015甘肃武威)64的立方根是_____7、(2015随州)4的算术平方根是 ,9的平方根是 ,﹣27的立方根是8、(2015= 9、(201401)+=初中数学基础知识讲义—数的开方及二次根式考点2:二次根式概念:式子a ( )叫做二次根式。

称为二次根号,二次根号下的a 叫做被开方数.由算术平方根和二次根式的意义,只有当a≥0...,当a <0①二次根式a 必须注意a_ __o 这一条件,其结果也是一个非负数即:a _ __o , ②二次根式a (a≥o)中,a 可以表示数,也可以是一切符合条件的代数式考点一:二次根式有意义的条件1、(2015四川甘孜)使二次根式的有意义的x 的取值范围是( ) A .x >0 B .x >1 C .x ≥1 D . x ≠12、(2015武汉)若代数式2-x 在实数范围内有意义,则x 的取值范为是( )A .x ≥-2B .x >-2C .x ≥2D .x ≤21、(2015南京)x 的取值范围是 ______2、(2015x 的取值范围是3、(2015四川乐山)函数y =x 的取值范围是4、(2015湖南衡阳)函数y =x 的取值范围为( )A .x ≥0 B .x ≥-1 C .x >-1 D .x >1考点3:二次根式的性质 : ⑴; ⑵ ()=2a (a ≥0) ⑶ =2a ;= (0,0a b吵);= (0,0a b?).a ===,一般情况下二次根式除法运算过程就要进行分母有理化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《数的开方及二次根式(复习)》教学设计
宜良县第六中学 袁志刚
教学内容:人教版义务教育实验教科书“数与代数”(八上)第十三章、(九 上)第二十一章。

课型:复习课 课时:1课时
教学目标:
1、 能够比较熟练应用二次根式的性质进行化简.
2、 能够比较熟练进行二次根式的运算.
3、 进一步渗透化归思想、分类讨论思想及进行逆向思维训练。

教学重点:二次根式的性质的应用,二次根式的运算。

教学难点:二次根式的化简及灵活应用公式
教具:多媒体课件、《导学案》
教法:互动式教学法
教学过程
(教师寄语:一千个愿望,一千个计划,一千个决心,不如一个行动!)
、小试牛刀:
1. 当X _ <3__时,J 3—X 有意义。

2. 3 -8 二-2 ;
3.化简:二 _2j5 ___
5. 计算屈乂弱-屈二 _屈_ .
6. 把分母中的根号化去(分母有理化):
丄二 迺 丄二 週 価二 迈
(1) 匸 ________ . _________ ; ( 2 、、「「 _____ . _________ ; ( 3)二」- ____ - _________ 4 •比较大小:(1) 13— 3 2 ⑵ _2命 __ 〉 __ —3^/2
7.若:r.有意义,则,'L的取值范围是x>6
匚的结果是(
&化简
D •以上答案都不对
(A
a>0—>0
D .丄■一
10.一一「的值为(B
C
l
冷-2
11.若代数式「丨有意义,则.[的取值范围是
2
A. 一且
B.
12.计算2* (3—1)2+ 1 +
解:原式= 匕注+ . 2+ 1+ 3 —2
=2—,3+ 2 + 1+ 3— 2 = 3.
5 - 8= 0则以x, y的值为两边长的等腰三角13.[2012攀枝花]已知实数x, y满
形的周长是(B
A. 20 或16 B .20 C. 16 D .以上答案均不对
二、考点聚焦:
考点1 平方根、算术平方根与立方根一个数x的平方—等于a,那么x叫做a的平方根,记作
一个正数x的平方.等于a,则x叫做a的算术平方根,记作.a , 0的算术平方根是0
一个数x的_立方等于a,那么x叫做a的立方根
考点6 二次根式的大小比较
考点2 二次根式的有关概念
⑴ 式子,a(a - 0)叫做二次根式•注意被开方数
a 只能是 非负数 .
⑵最简二次根式
同时满足下列两个条件的二次根式叫做最简二次根式: (1)被开方数中不含能开得尽方的因数或因式;
(2)被开方数不含分母 (3) 同类二次根式
化成最简二次根式后,被开方数 相同的 几个二次根式,叫做同类二次根式.
考点3 二次根式的性质
⑴ a 0 ;
⑵■. a = _________ ( a > 0)⑶■■ a 2 = ______________
⑶...ab = ( a _ 0,b _ 0 );
⑷ J ? = ____________ ( a X 0,b a 0 )
(1)二次根式的加减:
需要先把二次根式化简,然后把被开方数相同的二次根式(即同类二次根式)的系数相加减,被开方 数不变。

(2) 二次根式的乘法: J.■: 小「Ik - -'Hi
(3) 二次根式的除法:
(4) 二次根式的混合运算:
先乘方(或开方),再乘除,最后加减,有括号的先算括号里面的;能利用运算律或乘法公式进行运 算的,可适当改变运算顺序进行简便运算.
考点5
把分母中的根号化去(分母有理化) 一般常见的互为有理化因式有如下几类:
考点4
二次根式的运算[…科,网]
=(a >0, i > 0)
(1) 若 J '■ II ,则有-/-■ - ; ( 2 )若 心- / ,则有;-.;.
说明:一般情况下,可将根号外的因式都移到根号里面去以后再比较大小•注意:
(1)负号不能移到根号内;(2)根号外的正因数要平方后才能从根号外移到根号内.
三、爱拼才会赢:
(2012 .云南)12.函数的自变量x 的取值范围是 ________________________________________________________________ (2011 .昆明)6、列各式运算中,正确的是( )
A 、3a?2a=6a
B 、忑-2 =2-亞
C 、V32 —晶=2
D 、(2a+b ) (2a -b ) =2a 2— b 2
(2011.昆明)10、当x ____________ 时,二次根式、、X - 5有意义.
(2011.昆明)16、计算:..12 •(丄)」-(.,2-1)0 (-1)2011.
(2010.昆明)7.下列各式运算中,正确的是 ( )
A . (a b)^a 2 b 2
B . (3)2 =3
3 2 6
D . (—) r(a=0) a a
(2010.昆明)16.计算:(-1 )' - -3 -2010° ( 一2)2
4
四、认识自我: 3 4 12 a a a (2010.昆明)13.计算:
二次根式化简中的整体思想
教材母题:人教版九上P18第6题
已知加=何+1』=疗一I,求下列各式的值:
(1 )x + 2xy+y2;(2).v3- y.
解:因为x= /T+ l,y= /T-l, 所以x + y = 2/T,r -y =2.
则(I )x2+ 2xy + y2二(x+y)2二(2$)' = 12* (2)x2-/ = (x+y)(x-v) =4/T. 中考变式
(2012.云南)&若a2「b2= - , a —b =丄,则a + b 的值为( )
4 2
1 1
A B . C . 1 D . 2
2 2
五、课后作业:《迎考精练》。

相关文档
最新文档