美赛特等奖原版论文集--37075

合集下载

7315A-国际一等奖

7315A-国际一等奖

V2b , 惯性矩 MOI, 恢复系数 COR, 球棒的质量,
击球的位置, 不能仅仅利用一个力矩的理论或者自 己的印象在头脑中简单的得出结论。 我们将在第 III 部分展开讨论。
图 1 球-棒碰撞前后的速度变化示意图 第二个方面是能量问题。原始的撞击前的能量 在撞击过程中和撞击后变成了很多种形式的能量:例 如球最终的动能,刚体模式中损耗的能量(棒平移和 自转过程中损耗的能量),球棒的振动能量,球与棒 撞击挤压过程中损耗的能量,以及由弹簧效应重新产 生的一些能量(只有金属棒中才考虑)。如上所述, 最终能量转化成了很多种形式,不仅仅包括球最终的 能量,所以我们不能简单的决定最佳击球点的位置, 理论的基础,实验中的数据以及模 型的调整都是必不会可少的,这些 问题将在第五部分予以讨论。
Team # 7315
Page 3 of 19
3.3.3 结果与分析……………………………..…………………….……………………………..……………...17 3.3.4优缺点分析…………………………….………………………….……………………..…………...….18 4.结论.............................................................................................. ..................................................................... 19 5. 未来的工作................................................................................................................................................ 19 5.1 其他分析问题的方法?.................................................................................................................19 5.2 其他方法的局限性

美国大学生数学建模竞赛优秀论文

美国大学生数学建模竞赛优秀论文

For office use onlyT1________________ T2________________ T3________________ T4________________Team Control Number7018Problem ChosencFor office use onlyF1________________F2________________F3________________F4________________ SummaryThe article is aimed to research the potential impact of the marine garbage debris on marine ecosystem and human beings,and how we can deal with the substantial problems caused by the aggregation of marine wastes.In task one,we give a definition of the potential long-term and short-term impact of marine plastic garbage. Regard the toxin concentration effect caused by marine garbage as long-term impact and to track and monitor it. We etablish the composite indicator model on density of plastic toxin,and the content of toxin absorbed by plastic fragment in the ocean to express the impact of marine garbage on ecosystem. Take Japan sea as example to examine our model.In ask two, we designe an algorithm, using the density value of marine plastic of each year in discrete measure point given by reference,and we plot plastic density of the whole area in varies locations. Based on the changes in marine plastic density in different years, we determine generally that the center of the plastic vortex is East—West140°W—150°W, South—North30°N—40°N. According to our algorithm, we can monitor a sea area reasonably only by regular observation of part of the specified measuring pointIn task three,we classify the plastic into three types,which is surface layer plastic,deep layer plastic and interlayer between the two. Then we analysis the the degradation mechanism of plastic in each layer. Finally,we get the reason why those plastic fragments come to a similar size.In task four, we classify the source of the marine plastic into three types,the land accounting for 80%,fishing gears accounting for 10%,boating accounting for 10%,and estimate the optimization model according to the duel-target principle of emissions reduction and management. Finally, we arrive at a more reasonable optimization strategy.In task five,we first analyze the mechanism of the formation of the Pacific ocean trash vortex, and thus conclude that the marine garbage swirl will also emerge in south Pacific,south Atlantic and the India ocean. According to the Concentration of diffusion theory, we establish the differential prediction model of the future marine garbage density,and predict the density of the garbage in south Atlantic ocean. Then we get the stable density in eight measuring point .In task six, we get the results by the data of the annual national consumption ofpolypropylene plastic packaging and the data fitting method, and predict the environmental benefit generated by the prohibition of polypropylene take-away food packaging in the next decade. By means of this model and our prediction,each nation will reduce releasing 1.31 million tons of plastic garbage in next decade.Finally, we submit a report to expediction leader,summarize our work and make some feasible suggestions to the policy- makers.Task 1:Definition:●Potential short-term effects of the plastic: the hazardeffects will be shown in the short term.●Potential long-term effects of the plastic: thepotential effects, of which hazards are great, willappear after a long time.The short- and long-term effects of the plastic on the ocean environment:In our definition, the short-term and long-term effects of the plastic on the ocean environment are as follows.Short-term effects:1)The plastic is eaten by marine animals or birds.2) Animals are wrapped by plastics, such as fishing nets, which hurt or even kill them.3)Deaden the way of the passing vessels.Long-term effects:1)Enrichment of toxins through the food chain: the waste plastic in the ocean has no natural degradation in theshort-term, which will first be broken down into tinyfragments through the role of light, waves,micro-organisms, while the molecular structure has notchanged. These "plastic sands", easy to be eaten byplankton, fish and other, are Seemingly very similar tomarine life’s food,causing the enrichment and delivery of toxins.2)Accelerate the greenhouse effect: after a long-term accumulation and pollution of plastics, the waterbecame turbid, which will seriously affect the marineplants (such as phytoplankton and algae) inphotosynthesis. A large number of plankton’s deathswould also lower the ability of the ocean to absorbcarbon dioxide, intensifying the greenhouse effect tosome extent.To monitor the impact of plastic rubbish on the marine ecosystem:According to the relevant literature, we know that plastic resin pellets accumulate toxic chemicals , such as PCBs、DDE , and nonylphenols , and may serve as a transport medium and soure of toxins to marine organisms that ingest them[]2. As it is difficult for the plastic garbage in the ocean to complete degradation in the short term, the plastic resin pellets in the water will increase over time and thus absorb more toxins, resulting in the enrichment of toxins and causing serious impact on the marine ecosystem.Therefore, we track the monitoring of the concentration of PCBs, DDE, and nonylphenols containing in the plastic resin pellets in the sea water, as an indicator to compare the extent of pollution in different regions of the sea, thus reflecting the impact of plastic rubbish on ecosystem.To establish pollution index evaluation model: For purposes of comparison, we unify the concentration indexes of PCBs, DDE, and nonylphenols in a comprehensive index.Preparations:1)Data Standardization2)Determination of the index weightBecause Japan has done researches on the contents of PCBs,DDE, and nonylphenols in the plastic resin pellets, we illustrate the survey conducted in Japanese waters by the University of Tokyo between 1997 and 1998.To standardize the concentration indexes of PCBs, DDE,and nonylphenols. We assume Kasai Sesside Park, KeihinCanal, Kugenuma Beach, Shioda Beach in the survey arethe first, second, third, fourth region; PCBs, DDE, andnonylphenols are the first, second, third indicators.Then to establish the standardized model:j j jij ij V V V V V min max min --= (1,2,3,4;1,2,3i j ==)wherej V max is the maximum of the measurement of j indicator in the four regions.j V min is the minimum of the measurement of j indicatorstandardized value of j indicator in i region.According to the literature [2], Japanese observationaldata is shown in Table 1.Table 1. PCBs, DDE, and, nonylphenols Contents in Marine PolypropyleneTable 1 Using the established standardized model to standardize, we have Table 2.In Table 2,the three indicators of Shioda Beach area are all 0, because the contents of PCBs, DDE, and nonylphenols in Polypropylene Plastic Resin Pellets in this area are the least, while 0 only relatively represents the smallest. Similarly, 1 indicates that in some area the value of a indicator is the largest.To determine the index weight of PCBs, DDE, and nonylphenolsWe use Analytic Hierarchy Process (AHP) to determine the weight of the three indicators in the general pollution indicator. AHP is an effective method which transforms semi-qualitative and semi-quantitative problems into quantitative calculation. It uses ideas of analysis and synthesis in decision-making, ideally suited for multi-index comprehensive evaluation.Hierarchy are shown in figure 1.Fig.1 Hierarchy of index factorsThen we determine the weight of each concentrationindicator in the generall pollution indicator, and the process are described as follows:To analyze the role of each concentration indicator, we haveestablished a matrix P to study the relative proportion.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111323123211312P P P P P P P Where mn P represents the relative importance of theconcentration indicators m B and n B . Usually we use 1,2,…,9 and their reciprocals to represent different importance. The greater the number is, the more important it is. Similarly, the relative importance of m B and n B is mn P /1(3,2,1,=n m ).Suppose the maximum eigenvalue of P is m ax λ, then theconsistency index is1max --=n nCI λThe average consistency index is RI , then the consistencyratio isRICI CR = For the matrix P of 3≥n , if 1.0<CR the consistency isthougt to be better, of which eigenvector can be used as the weight vector.We get the comparison matrix accoding to the harmful levelsof PCBs, DDE, and nonylphenols and the requirments ofEPA on the maximum concentration of the three toxins inseawater as follows:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=165416131431P We get the maximum eigenvalue of P by MATLAB calculation0012.3max =λand the corresponding eigenvector of it is()2393.02975.09243.0,,=W1.0042.012.1047.0<===RI CI CR Therefore,we determine the degree of inconsistency formatrix P within the permissible range. With the eigenvectors of p as weights vector, we get thefinal weight vector by normalization ()1638.02036.06326.0',,=W . Defining the overall target of pollution for the No i oceanis i Q , among other things the standardized value of threeindicators for the No i ocean is ()321,,i i i i V V V V = and the weightvector is 'W ,Then we form the model for the overall target of marine pollution assessment, (3,2,1=i )By the model above, we obtained the Value of the totalpollution index for four regions in Japanese ocean in Table 3T B W Q '=In Table3, the value of the total pollution index is the hightest that means the concentration of toxins in Polypropylene Plastic Resin Pellets is the hightest, whereas the value of the total pollution index in Shioda Beach is the lowest(we point up 0 is only a relative value that’s not in the name of free of plastics pollution)Getting through the assessment method above, we can monitor the concentration of PCBs, DDE and nonylphenols in the plastic debris for the sake of reflecting the influence to ocean ecosystem.The highter the the concentration of toxins,the bigger influence of the marine organism which lead to the inrichment of food chain is more and more dramatic.Above all, the variation of toxins’ concentration simultaneously reflects the distribution and time-varying of marine litter. We can predict the future development of marine litter by regularly monitoring the content of these substances, to provide data for the sea expedition of the detection of marine litter and reference for government departments to make the policies for ocean governance.Task 2:In the North Pacific, the clockwise flow formed a never-ending maelstrom which rotates the plastic garbage. Over the years, the subtropical eddy current in North Pacific gathered together the garbage from the coast or the fleet, entrapped them in the whirlpool, and brought them to the center under the action of the centripetal force, forming an area of 3.43 million square kilometers (more than one-third of Europe) .As time goes by, the garbage in the whirlpool has the trend of increasing year by year in terms of breadth, density, and distribution. In order to clearly describe the variability of the increases over time and space, according to “Count Densities of Plastic Debris from Ocean Surface Samples North Pacific Gyre 1999—2008”, we analyze the data, exclude them with a great dispersion, and retain them with concentrated distribution, while the longitude values of the garbage locations in sampled regions of years serve as the x-coordinate value of a three-dimensional coordinates, latitude values as the y-coordinate value, the Plastic Count per cubic Meter of water of the position as the z-coordinate value. Further, we establish an irregular grid in the yx plane according to obtained data, and draw a grid line through all the data points. Using the inverse distance squared method with a factor, which can not only estimate the Plastic Count per cubic Meter of water of any position, but also calculate the trends of the Plastic Counts per cubic Meter of water between two original data points, we can obtain the unknown grid points approximately. When the data of all the irregular grid points are known (or approximately known, or obtained from the original data), we can draw the three-dimensional image with the Matlab software, which can fully reflect the variability of the increases in the garbage density over time and space.Preparations:First, to determine the coordinates of each year’s sampled garbage.The distribution range of garbage is about the East - West 120W-170W, South - North 18N-41N shown in the “Count Densities of Plastic Debris from Ocean Surface Samples North Pacific Gyre 1999--2008”, we divide a square in the picture into 100 grids in Figure (1) as follows:According to the position of the grid where the measuring point’s center is, we can identify the latitude and longitude for each point, which respectively serve as the x- and y- coordinate value of the three-dimensional coordinates.To determine the Plastic Count per cubic Meter of water. As the “Plastic Count per cubic Meter of water” provided by “Count Densities of P lastic Debris from Ocean Surface Samples North Pacific Gyre 1999--2008”are 5 density interval, to identify the exact values of the garbage density of one year’s different measuring points, we assume that the density is a random variable which obeys uniform distribution in each interval.Uniform distribution can be described as below:()⎪⎩⎪⎨⎧-=01a b x f ()others b a x ,∈We use the uniform function in Matlab to generatecontinuous uniformly distributed random numbers in each interval, which approximately serve as the exact values of the garbage density andz-coordinate values of the three-dimensional coordinates of the year’s measuring points.Assumptions(1)The data we get is accurate and reasonable.(2)Plastic Count per cubic Meter of waterIn the oceanarea isa continuous change.(3)Density of the plastic in the gyre is a variable by region.Density of the plastic in the gyre and its surrounding area is interdependent , However, this dependence decreases with increasing distance . For our discussion issue, Each data point influences the point of each unknown around and the point of each unknown around is influenced by a given data point. The nearer a given data point from the unknown point, the larger the role.Establishing the modelFor the method described by the previous,we serve the distributions of garbage density in the “Count Pensities of Plastic Debris from Ocean Surface Samples North Pacific Gyre 1999--2008”as coordinates ()z y,, As Table 1:x,Through analysis and comparison, We excluded a number of data which has very large dispersion and retained the data that is under the more concentrated the distribution which, can be seen on Table 2.In this way, this is conducive for us to get more accurate density distribution map.Then we have a segmentation that is according to the arrangement of the composition of X direction and Y direction from small to large by using x co-ordinate value and y co-ordinate value of known data points n, in order to form a non-equidistant Segmentation which has n nodes. For the Segmentation we get above,we only know the density of the plastic known n nodes, therefore, we must find other density of the plastic garbage of n nodes.We only do the sampling survey of garbage density of the north pacificvortex,so only understand logically each known data point has a certain extent effect on the unknown node and the close-known points of density of the plastic garbage has high-impact than distant known point.In this respect,we use the weighted average format, that means using the adverse which with distance squared to express more important effects in close known points. There're two known points Q1 and Q2 in a line ,that is to say we have already known the plastic litter density in Q1 and Q2, then speculate the plastic litter density's affects between Q1、Q2 and the point G which in the connection of Q1 and Q2. It can be shown by a weighted average algorithm22212221111121GQ GQ GQ Z GQ Z Z Q Q G +*+*=in this formula GQ expresses the distance between the pointG and Q.We know that only use a weighted average close to the unknown point can not reflect the trend of the known points, we assume that any two given point of plastic garbage between the changes in the density of plastic impact the plastic garbage density of the unknown point and reflecting the density of plastic garbage changes in linear trend. So in the weighted average formula what is in order to presume an unknown point of plastic garbage density, we introduce the trend items. And because the greater impact at close range point, and thus the density of plastic wastes trends close points stronger. For the one-dimensional case, the calculation formula G Z in the previous example modify in the following format:2212122212212122211111112121Q Q GQ GQ GQ Q Q GQ Z GQ Z GQ Z Z Q Q Q Q G ++++*+*+*=Among them, 21Q Q known as the separation distance of the known point, 21Q Q Z is the density of plastic garbage which is the plastic waste density of 1Q and 2Q for the linear trend of point G . For the two-dimensional area, point G is not on the line 21Q Q , so we make a vertical from the point G and cross the line connect the point 1Q and 2Q , and get point P , the impact of point P to 1Q and 2Q just like one-dimensional, and the one-dimensional closer of G to P , the distant of G to P become farther, the smaller of the impact, so the weighting factor should also reflect the GP in inversely proportional to a certain way, then we adopt following format:221212222122121222211111112121Q Q GQ GP GQ GQ Q Q GQ GP Z GQ Z GQ Z Z P Q Q Q Q G ++++++*+*+*=Taken together, we speculated following roles:(1) Each known point data are influence the density of plastic garbage of each unknown point in the inversely proportional to the square of the distance;(2) the change of density of plastic garbage between any two known points data, for each unknown point are affected, and the influence to each particular point of their plastic garbage diffuse the straight line along the two known particular point; (3) the change of the density of plastic garbage between any two known data points impact a specific unknown points of the density of plastic litter depends on the three distances: a. the vertical distance to a straight line which is a specific point link to a known point;b. the distance between the latest known point to a specific unknown point;c. the separation distance between two known data points.If we mark 1Q ,2Q ,…,N Q as the location of known data points,G as an unknown node, ijG P is the intersection of the connection of i Q ,j Q and the vertical line from G to i Q ,j Q()G Q Q Z j i ,,is the density trend of i Q ,j Q in the of plasticgarbage points and prescribe ()G Q Q Z j i ,,is the testing point i Q ’ s density of plastic garbage ,so there are calculation formula:()()∑∑∑∑==-==++++*=Ni N ij ji i ijGji i ijG N i Nj j i G Q Q GQ GPQ Q GQ GP G Q Q Z Z 11222222111,,Here we plug each year’s observational data in schedule 1 into our model, and draw the three-dimensional images of the spatial distribution of the marine garbage ’s density with Matlab in Figure (2) as follows:199920002002200520062007-2008(1)It’s observed and analyzed that, from 1999 to 2008, the density of plastic garbage is increasing year by year and significantly in the region of East – West 140W-150W, south - north 30N-40N. Therefore, we can make sure that this region is probably the center of the marine litter whirlpool. Gathering process should be such that the dispersed garbage floating in the ocean move with the ocean currents and gradually close to the whirlpool region. At the beginning, the area close to the vortex will have obviously increasable about plastic litter density, because of this centripetal they keeping move to the center of the vortex ,then with the time accumulates ,the garbage density in the center of the vortex become much bigger and bigger , at last it becomes the Pacific rubbish island we have seen today.It can be seen that through our algorithm, as long as the reference to be able to detect the density in an area which has a number of discrete measuring points,Through tracking these density changes ,we Will be able to value out all the waters of the density measurement through our models to determine,This will reduce the workload of the marine expedition team monitoring marine pollution significantly, and also saving costs .Task 3:The degradation mechanism of marine plasticsWe know that light, mechanical force, heat, oxygen, water, microbes, chemicals, etc. can result in the degradation of plastics . In mechanism ,Factors result in the degradation can be summarized as optical ,biological,and chemical。

2010 美赛 MCM 优秀论文

2010 美赛 MCM 优秀论文
For the second problem, using Rayleigh distribution function, we obtain a preliminary probability distribution of the crime site based on the residence determined in the first problem . Taking geographical character and the offender’s geographical preference into account, we utilize cluster analysis to divide all the crime sites into 4 zones. In these 4 zones, we construct 4 two-dimensional normal distributions around the 4 circle centers with the standard deviations being the radii of the circles. In view of the influence of the crime time, we add a time factor to the preliminary distribution. As a result, the preliminary distribution is modulated by geographical and temporal factors, producing an ultimate prediction, which is rather satisfactory after validation.
3 Center of Minimum Distance Model.................................. 5

2012年美国高中生数学建模竞赛特等奖论文

2012年美国高中生数学建模竞赛特等奖论文

题目:How Much Gas Should I Buy This Week?题目来源:2012年第十五届美国高中生数学建模竞赛(HiMCM)B题获奖等级:特等奖,并授予INFORMS奖论文作者:深圳中学2014届毕业生李依琛、王喆沛、林桂兴、李卓尔指导老师:深圳中学张文涛AbstractGasoline is the bleed that surges incessantly within the muscular ground of city; gasoline is the feast that lures the appetite of drivers. “To fill or not fill?” That is the question flustering thousands of car owners. This paper will guide you to predict the gasoline prices of the coming week with the currently available data with respect to swift changes of oil prices. Do you hold any interest in what pattern of filling up the gas tank can lead to a lower cost in total?By applying the Time series analysis method, this paper infers the price in the imminent week. Furthermore, we innovatively utilize the average prices of the continuous two weeks to predict the next two week’s average price; similarly, employ the four-week-long average prices to forecast the average price of four weeks later. By adopting the data obtained from 2011and the comparison in different aspects, we can obtain the gas price prediction model :G t+1=0.0398+1.6002g t+−0.7842g t−1+0.1207g t−2+ 0.4147g t−0.5107g t−1+0.1703g t−2+ε .This predicted result of 2012 according to this model is fairly ideal. Based on the prediction model,We also establish the model for how to fill gasoline. With these models, we had calculated the lowest cost of filling up in 2012 when traveling 100 miles a week is 637.24 dollars with the help of MATLAB, while the lowest cost when traveling 200 miles a week is 1283.5 dollars. These two values are very close to the ideal value of cost on the basis of the historical figure, which are 635.24 dollars and 1253.5 dollars respectively. Also, we have come up with the scheme of gas fulfillment respectively. By analyzing the schemes of gas filling, we can discover that when you predict the future gasoline price going up, the best strategy is to fill the tank as soon as possible, in order to lower the gas fare. On the contrary, when the predicted price tends to decrease, it is wiser and more economic for people to postpone the filling, which encourages people to purchase a half tank of gasoline only if the tank is almost empty.For other different pattern for every week’s “mileage driven”, we calculate the changing point of strategies-changed is 133.33 miles.Eventually, we will apply the models -to the analysis of the New York City. The result of prediction is good enough to match the actual data approximately. However, the total gas cost of New York is a little higher than that of the average cost nationally, which might be related to the higher consumer price index in the city. Due to the limit of time, we are not able to investigate further the particular factors.Keywords: gasoline price Time series analysis forecast lowest cost MATLABAbstract ---------------------------------------------------------------------------------------1 Restatement --------------------------------------------------------------------------------------21. Assumption----------------------------------------------------------------------------------42. Definitions of Variables and Models-----------------------------------------------------4 2.1 Models for the prediction of gasoline price in the subsequent week------------4 2.2 The Model of oil price next two weeks and four weeks--------------------------5 2.3 Model for refuel decision-------------------------------------------------------------52.3.1 Decision Model for consumer who drives 100 miles per week-------------62.3.2 Decision Model for consumer who drives 200 miles per week-------------73. Train and Test Model by 2011 dataset---------------------------------------------------8 3.1 Determine the all the parameters in Equation ② from the 2011 dataset-------8 3.2 Test the Forecast Model of gasoline price by the dataset of gasoline price in2012-------------------------------------------------------------------------------------10 3.3 Calculating ε --------------------------------------------------------------------------12 3.4 Test Decision Models of buying gasoline by dataset of 2012-------------------143.4.1 100 miles per week---------------------------------------------------------------143.4.2 200 miles per week---------------------------------------------------------------143.4.3 Second Test for the Decision of buying gasoline-----------------------------154. The upper bound will change the Decision of buying gasoline---------------------155. An analysis of New York City-----------------------------------------------------------16 5.1 The main factor that will affect the gasoline price in New York City----------16 5.2 Test Models with New York data----------------------------------------------------185.3 The analysis of result------------------------------------------------------------------196. Summery& Advantage and disadvantage-----------------------------------------------197. Report----------------------------------------------------------------------------------------208. Appendix------------------------------------------------------------------------------------21 Appendix 1(main MATLAB programs) ------------------------------------------------21 Appendix 2(outcome and graph) --------------------------------------------------------34The world market is fluctuating swiftly now. As the most important limited energy, oil is much accounted of cars owners and dealer. We are required to make a gas-buying plan which relates to the price of gasoline, the volume of tank, the distance that consumer drives per week, the data from EIA and the influence of other events in order to help drivers to save money.We should use the data of 2011 to build up two models that discuss two situations: 100miles/week or 200miles/week and use the data of 2012 to test the models to prove the model is applicable. In the model, consumer only has three choices to purchase gas each week, including no gas, half a tank and full tank. At the end, we should not only build two models but also write a simple but educational report that can attract consumer to follow this model.1.Assumptiona)Assume the consumer always buy gasoline according to the rule of minimumcost.b)Ignore the difference of the gasoline weight.c)Ignore the oil wear on the way to gas stations.d)Assume the tank is empty at the beginning of the following models.e)Apply the past data of crude oil price to predict the future price ofgasoline.(The crude oil price can affect the gasoline price and we ignore thehysteresis effect on prices of crude oil towards prices of gasoline.)2.Definitions of Variables and Modelst stands for the sequence number of week in any time.(t stands for the current week. (t-1) stands for the last week. (t+1) stands for the next week.c t: Price of crude oil of the current week.g t: Price of gasoline of the t th week.P t: The volume of oil of the t th week.G t+1: Predicted price of gasoline of the (t+1)th week.α,β: The coefficient of the g t and c t in the model.d: The variable of decision of buying gasoline.(d=1/2 stands for buying a half tank gasoline)2.1 Model for the prediction of gasoline price in the subsequent weekWhether to buy half a tank oil or full tank oil depends on the short-term forecast about the gasoline prices. Time series analysis is a frequently-used method to expect the gasoline price trend. It can be expressed as:G t+1=α1g t+α2g t−1+α3g t−2+α4g t−3+…αn+1g t−n+ε ----Equation ①ε is a parameter that reflects the influence towards the trend of gasoline price in relation to several aspects such as weather data, economic data, world events and so on.Due to the prices of crude oil can influence the future prices of gasoline; we will adopt the past prices of crude oil into the model for gasoline price forecast.G t+1=(α1g t+α2g t−1+α3g t−2+α4g t−3+⋯αn+1g t−n)+(β1g t+β2g t−1+β3g t−2+β4g t−3+⋯βn+1g t−n)+ε----Equation ②We will use the 2011 data set to calculate the all coefficients and the best delay periods n.2.2 The Model of oil price next two weeks and four weeksWe mainly depend on the prediction of change of gasoline price in order to make decision that the consumer should buy half a tank or full tank gas. When consumer drives 100miles/week, he can drive whether 400miles most if he buys full tank gas or 200miles most if he buys half a tank gas. When consumer drives 200miles/week, full tank gas can be used two weeks most or half a tank can be used one week most. Thus, we should consider the gasoline price trend in four weeks in future.Equation ②can also be rewritten asG t+1=(α1g t+β1g t)+(α2g t−1+β2g t−1)+(α3g t−2+β3g t−2)+⋯+(αn+1g t−n+βn+1g t−n)+ε ----Equation ③If we define y t=α1g t+β1g t,y t−1=α2g t−1+β2g t−1, y t−2=α3g t−2+β3g t−2……, and so on.Equation ③can change toG t+1=y t+y t−1+y t−2+⋯+y t−n+ε ----Equation ④We use y(t−1,t)denote the average price from week (t-1) to week (t), which is.y(t−1,t)=y t−1+y t2Accordingly, the average price from week (t-3) to week (t) isy(t−3,t)=y t−3+y t−2+y t−1+y t.4Apply Time series analysis, we can get the average price from week (t+1) to week (t+2) by Equation ④,G(t+1,t+2)=y(t−1,t)+y(t−3,t−2)+y(t−5,t−4), ----Equation ⑤As well, the average price from week (t+1) to week (t+4) isG(t+1,t+4)=y(t−3,t)+y(t−7,t−4)+y(t−11,t−8). ----Equation ⑥2.3 Model for refuel decisionBy comparing the present gasoline price with the future price, we can decide whether to fill half or full tank.The process for decision can be shown through the following flow chart.Chart 1For the consumer, the best decision is to get gasoline with the lowest prices. Because a tank of gasoline can run 2 or 4 week, so we should choose a time point that the price is lowest by comparison of the gas prices at present, 2 weeks and 4 weeks later separately. The refuel decision also depends on how many free spaces in the tank because we can only choose half or full tank each time. If the free spaces are less than 1/2, we can refuel nothing even if we think the price is the lowest at that time.2.3.1 Decision Model for consumer who drives 100 miles per week.We assume the oil tank is empty at the beginning time(t=0). There are four cases for a consumer to choose a best refuel time when the tank is empty.i.g t>G t+4and g t>G t+2, which means the present gasoline price is higherthan that either two weeks or four weeks later. It is economic to fill halftank under such condition. ii. g t <Gt +4 and g t <G t +2, which means the present gasoline price is lower than that either two weeks or four weeks later. It is economic to fill fulltank under such condition. iii. Gt +4>g t >G t +2, which means the present gasoline price is higher than that two weeks later but lower than that four weeks later. It is economic to fillhalf tank under such condition. iv. Gt +4<g t <G t +2, which means the present gasoline price is higher than that four weeks later but lower than that two weeks later. It is economic to fillfull tank under such condition.If other time, we should consider both the gasoline price and the oil volume in the tank to pick up a best refuel time. In summary, the decision model for running 100 miles a week ist 2t 4t 2t 4t 2t 4t 2t 4t 11111411111ˆˆ(1)1((1)&max(,))24442011111ˆˆˆˆ1/2((1)&G G G (&))(0(1G G )&)4424411ˆˆˆ(1)0&(G 4G G (G &)t i t i t t t t i t i t t t t t t i t t d t or d t g d d t g or d t g d t g or ++++----+++-++<--<<--<>⎧⎪=<--<<<--<<<⎨⎪⎩--=><∑∑∑∑∑t 2G ˆ)t g +<----Equation ⑦d i is the decision variable, d i =1 means we fill full tank, d i =1/2 means we fill half tank. 11(1)4t i tdt ---∑represents the residual gasoline volume in the tank. The method of prices comparison was analyzed in the beginning part of 2.3.1.2.3.2 Decision Model for consumer who drives 200 miles per week.Because even full tank can run only two weeks, the consumer must refuel during every two weeks. There are two cases to decide whether to buy half or full tank when the tank is empty. This situation is much simpler than that of 100 miles a week. The process for decision can also be shown through the following flow chart.Chart 2The two cases for deciding buy half or full tank are: i. g t >Gt +1, which means the present gasoline price is higher than the next week. We will buy half tank because we can buy the cheaper gasoline inthe next week. ii. g t <Gt +1, which means the present gasoline price is lower than the next week. To buy full tank is economic under such situation.But we should consider both gasoline prices and free tank volume to decide our refueling plan. The Model is111t 11t 111(1)1220111ˆ1/20(1)((1)0&)22411ˆ(1&G )0G 2t i t t i t i t t t t t i t t d t d d t or d t g d t g ----++<--<⎧⎪=<--<--=>⎨⎪⎩--=<∑∑∑∑ ----Equation ⑧3. Train and Test Model by the 2011 datasetChart 33.1 Determine all the parameters in Equation ② from the 2011 dataset.Using the weekly gas data from the website and the weekly crude price data from , we can determine the best delay periods n and calculate all the parameters in Equation ②. For there are two crude oil price dataset (Weekly Cushing OK WTI Spot Price FOB and Weekly Europe Brent SpotPrice FOB), we use the average value as the crude oil price without loss of generality. We tried n =3, 4 and 5 respectively with 2011 dataset and received comparison graph of predicted value and actual value, including corresponding coefficient.(A ) n =3(the hysteretic period is 3)Graph 1 The fitted price and real price of gasoline in 2011(n=3)We find that the nearby effect coefficient of the price of crude oil and gasoline. This result is same as our anticipation.(B)n=4(the hysteretic period is 4)Graph 2 The fitted price and real price of gasoline in 2011(n=4)(C) n=5(the hysteretic period is 5)Graph 3 The fitted price and real price of gasoline in 2011(n=5)Via comparing the three figures above, we can easily found that the predictive validity of n=3(the hysteretic period is 3) is slightly better than that of n=4(the hysteretic period is 4) and n=5(the hysteretic period is 5) so we choose the model of n=3 to be the prediction model of gasoline price.G t+1=0.0398+1.6002g t+−0.7842g t−1+0.1207g t−2+ 0.4147g t−0.5107g t−1+0.1703g t−2+ε----Equation ⑨3.2 Test the Forecast Model of gasoline price by the dataset of gasoline price in 2012Next, we apply models in terms of different hysteretic periods(n=3,4,5 respectively), which are shown in Equation ②,to forecast the gasoline price which can be acquired currently in 2012 and get the graph of the forecast price and real price of gasoline:Graph 4 The real price and forecast price in 2012(n=3)Graph 5 The real price and forecast price in 2012(n=4)Graph 6 The real price and forecast price in 2012(n=5)Conserving the error of observation, predictive validity is best when n is 3, but the differences are not obvious when n=4 and n=5. However, a serious problem should be drawn to concerns: consumers determines how to fill the tank by using the trend of oil price. If the trend prediction is wrong (like predicting oil price will rise when it actually falls), consumers will lose. We use MATLAB software to calculate the amount of error time when we use the model of Equation ⑨to predict the price of gasoline in 2012. The graph below shows the result.It’s not difficult to find the prediction effect is the best when n is 3. Therefore, we determined to use Equation ⑨as the prediction model of oil price in 2012.G t+1=0.0398+1.6002g t+−0.7842g t−1+0.1207g t−2+ 0.4147g t−0.5107g t−1+0.1703g t−2+ε3.3 Calculating εSince political occurences, economic events and climatic changes can affect gasoline price, it is undeniable that a ε exists between predicted prices and real prices. We can use Equation ②to predict gasoline prices in 2011 and then compare them with real data. Through the difference between predicted data and real data, we can estimate the value of ε .The estimating process can be shown through the following flow chartChart 4We divide the international events into three types: extra serious event, major event and ordinary event according to the criteria of influence on gas prices. Then we evaluate the value: extra serious event is 3a, major event is 2a, and ordinary event is a. With inference to the comparison of the forecast price and real price in 2011, we find that large deviation of data exists at three time points: May 16,2011, Aug 08,2011 andOct 10,2011. After searching, we find that some important international events happened nearly at the three time points. We believe that these events which occurred by chance affect the international prices of gasoline so the predicted prices deviate from the actual prices. The table of events and the calculation of the value of a areTherefore, by generalizing several sets of particular data and events, we can estimate the value of a:a=26.84 ----Equation ⑩The calculating process is shown as the following graph.Since now we have obtained the approximate value of a, we can evaluate the future prices according to currently known gasoline prices and crude oil prices. To improve our model, we can look for factors resulting in some major turning point in the graph of gasoline prices. On the ground that the most influential factors on prices in 2012 are respectively graded, the difference between fact and prediction can be calculated.3.4 Test Decision Models of buying gasoline by the dataset of 2012First, we use Equation ⑨to calculate the gasoline price of next week and use Equation ⑤and Equation ⑥to calculate the gasoline price trend of next two to four weeks. On the basis above, we calculate the total cost, and thus receive schemes of buying gasoline of 100miles per week according to Equation ⑦and Equation ⑧. Using the same method, we can easily obtain the pattern when driving 200 miles per week. The result is presented below.We collect the important events which will affect the gasoline price in 2012 as well. Therefore, we calculate and adjust the predicted price of gasoline by Equation ⑩. We calculate the scheme of buying gasoline again. The result is below:3.4.1 100 miles per weekT2012 = 637.2400 (If the consumer drives 100 miles per week, the total cost inTable 53.4.2 200 miles per weekT2012 = 1283.5 (If the consumer drives 200 miles per week, the total cost in 2012 is 1283.5 USD). The scheme calculated by software is below:Table 6According to the result of calculating the buying-gasoline scheme from the model, we can know: when the gasoline price goes up, we should fill up the tank first and fill up again immediately after using half of gasoline. It is economical to always keep the tank full and also to fill the tank in advance in order to spend least on gasoline fee. However, when gasoline price goes down, we have to use up gasoline first and then fill up the tank. In another words, we need to delay the time of filling the tank in order to pay for the lowest price. In retrospect to our model, it is very easy to discover that the situation is consistent with life experience. However, there is a difference. The result is based on the calculation from the model, while experience is just a kind of intuition.3.4.3 Second Test for the Decision of buying gasolineSince the data in 2012 is historical data now, we use artificial calculation to get the optimal value of buying gasoline. The minimum fee of driving 100 miles per week is 635.7440 USD. The result of calculating the model is 637.44 USD. The minimum fee of driving 200 miles per week is 1253.5 USD. The result of calculating the model is 1283.5 USD. The values we calculate is close to the result of the model we build. It means our model prediction effect is good. (we mention the decision people made every week and the gas price in the future is unknown. We can only predict. It’s normal to have deviation. The buying-gasoline fee which is based on predicted calculation must be higher than the minimum buying-gasoline fee which is calculated when all the gas price data are known.)We use MATLAB again to calculate the total buying-gasoline fee when n=4 and n=5. When n=4,the total fee of driving 100 miles per week is 639.4560 USD and the total fee of driving 200 miles per week is 1285 USD. When n=5, the total fee of driving 100 miles per week is 639.5840 USD and the total fee of driving 200 miles per week is 1285.9 USD. The total fee are all higher the fee when n=3. It means it is best for us to take the average prediction model of 3 phases.4. The upper bound will change the Decision of buying gasoline.Assume the consumer has a mileage driven of x1miles per week. Then, we can use 200to indicate the period of consumption, for half of a tank can supply 200-mile x1driving. Here are two situations:<1.5①200x1>1.5②200x1In situation①, the consumer is more likely to apply the decision of 200-mile consumer’s; otherwise, it is wiser to adopt the decision of 100-mile consumer’s. Therefore, x1is a critical value that changes the decision if200=1.5x1x1=133.3.Thus, the mileage driven of 133.3 miles per week changes the buying decision.Then, we consider the full-tank buyers likewise. The 100-mile consumer buys half a tank once in four weeks; the 200-mile consumer buys half a tank once in two weeks. The midpoint of buying period is 3 weeks.Assume the consumer has a mileage driven of x2miles per week. Then, we can to illustrate the buying period, since a full tank contains 400 gallons. There use 400x2are still two situations:<3③400x2>3④400x2In situation③, the consumer needs the decision of 200-mile consumer’s to prevent the gasoline from running out; in the latter situation, it is wiser to tend to the decision of 100-mile consumer’s. Therefore, x2is a critical value that changes the decision if400=3x2x2=133.3We can find that x2=x1=133.3.To wrap up, there exists an upper bound on “mileage driven”, that 133.3 miles per week is the value to switch the decision for buying weekly gasoline. The following picture simplifies the process.Chart 45. An analysis of New Y ork City5.1 The main factors that will affect the gasoline price in New York CityBased on the models above, we decide to estimate the price of gasoline according to the data collected and real circumstances in several cities. Specifically, we choose New York City as a representative one.New York City stands in the North East in the United States, with the largest population throughout the country as 8.2 million. The total area of New York City is around 1300 km2, with the land area as 785.6 km2(303.3 mi2). One of the largest trading centers in the world, New York City has a high level of resident’s consumption. As a result, the level of the price of gasoline in New York City is higher than the average regular oil price of the United States. The price level of gasoline and its fluctuation are the main factors of buying decision.Another reasonable factor we expect is the distribution of gas stations. According to the latest report, there are approximately 1670 gas stations in the city area (However, after the impact of hurricane Sandy, about 90 gas stations have been temporarily out of use because of the devastation of Sandy, and there is still around 1580 stations remaining). From the information above, we can calculate the density of gas stations thatD(gasoline station)= t e amount of gas stationstotal land area =1670 stations303.3 mi2=5.506 stations per mi2This is a respectively high value compared with several other cities the United States. It also indicates that the average distance between gas stations is relatively small. The fact that we can neglect the distance for the cars to get to the station highlights the role of the fluctuation of the price of gasoline in New York City.Also, there are approximately 1.8 million residents of New York City hold the driving license. Because the exact amount of cars in New York City is hard to determine, we choose to analyze the distribution of possible consumers. Thus, we can directly estimate the density of consumers in New York City in a similar way as that of gas stations:D(gasoline consumers)= t e amount of consumerstotal land area = 1.8 million consumers303.3 mi2=5817consumers per mi2Chart 5In addition, we expect that the fluctuation of the price of crude oil plays a critical role of the buying decision. The media in New York City is well developed, so it is convenient for citizens to look for the data of the instant price of crude oil, then to estimate the price of gasoline for the coming week if the result of our model conforms to the assumption. We will include all of these considerations in our modification of the model, which we will discuss in the next few steps.For the analysis of New York City, we apply two different models to estimate the price and help consumers make the decision.5.2 Test Models with New York dataAmong the cities in US, we pick up New York as an typical example. The gas price data is downloaded from the website () and is used in the model described in Section 2 and 3.The gas price curves between the observed data and prediction data are compared in next Figure.Figure 6The gas price between the observed data and predicted data of New York is very similar to Figure 3 in US case.Since there is little difference between the National case and New York case, the purchase strategy is same. Following the same procedure, we can compare the gas cost between the historical result and predicted result.For the case of 100 miles per week, the total cost of observed data from Feb to Oct of 2012 in New York is 636.26USD, while the total cost of predicted data in the same period is 638.78USD, which is very close. It proves that our prediction model is good. For the case of 200 miles per week, the total cost of observed data from Feb to Oct of 2012 in New York is 1271.2USD, while the total cost of predicted data in the same period is 1277.6USD, which is very close. It proves that our prediction model is good also.5.3 The analysis of resultBy comparing, though density of gas stations and density of consumers of New York is a little higher than other places but it can’t lower the total buying-gas fee. Inanother words, density of gas stations and density of consumers are not the actual factors of affecting buying-gas fee.On the other hand, we find the gas fee in New York is a bit higher than the average fee in US. We can only analyze preliminary it is because of the higher goods price in New York. We need to add price factor into prediction model. We can’t improve deeper because of the limited time. The average CPI table of New York City and USA is below:Datas Statistics website(/xg_shells/ro2xg01.htm)6. Summery& Advantage and disadvantageTo reach the solution, we make graphs of crude oil and gasoline respectively and find the similarity between them. Since the conditions are limited that consumers can only drive 100miles per week or 200miles per week, we separate the problem into two parts according to the limitation. we use Time series analysis Method to predict the gasoline price of a future period by the data of several periods in the past. Then we take the influence of international events, economic events and weather changes and so on into consideration by adding a parameter. We give each factor a weight consequently and find the rules of the solution of 100miles per week and 200miles per week. Then we discuss the upper bound and clarify the definition of upper bound to solve the problem.According to comparison from many different aspects, we confirm that the model expressed byEquation ⑨is the best. On the basis of historical data and the decision model of buying gasoline(Equation ⑦and Equation ⑧), we calculate that the actual least cost of buying gasoline is 635.7440 USD if the consumer drives 100 miles per week (the result of our model is 637.24 USD) and the actual least cost of buying gasoline is 1253.5 USD(the result of our model is 1283.5 USD) if the consumer drives 100 miles per week. The result we predicted is similar to the actual result so the predictive validity of our model is finer.Disadvantages:1.The events which we predicted are difficult to quantize accurately. The turningpoint is difficult for us to predict accurately as well.2.We only choose two kinds of train of thought to develop models so we cannotevaluate other methods that we did not discuss in this paper. Other models which are built up by other train of thought are possible to be the optimal solution.。

The sweet spot-2010MCM paper.

The sweet spot-2010MCM paper.

List of Figures
Fig. 1 Mode Shapes for the Prismatic Wood Beam ............................................... 11 Fig. 2 Mode Shapes for the Prismatic Wood Beam ............................................... 11 Fig. 3 Mode Shapes for the Prismatic Aluminum Beam ....................................... 12 Fig. 4 Mode Shape Comparison between the Prismatic Hollow Aluminum Beam and Prismatic Wood Beam .......................................................................... 13 Fig. 5 Cork in a Bat .................................................................................................. 14 Fig. 6 Superposition of Wood Mode Shapes .......................................................... 14
Contents
Abstract............................................................................................................... 1 1 Introduction ................................................................................................... 3 1.1 Notation and Definitions ..................................................................... 3 1.2 Brief Explanations of the Sweet Spot ................................................. 4 1.3 Energy Model ....................................................................................... 5 1.4 General Assumptions ........................................................................... 5 2 Vibration Model ............................................................................................ 6 2.1 Outline of Vibration Model ............................................................... 6 2.2 The Partial Differential Equation...................................................... 6 3 Method Descriptions .................................................................................... 9 3.1 Simplification ....................................................................................... 9 3.2 Bending Mode Analysis .................................................................... 10 4 Results and Interpretations ......................................................................... 10 4.1 Why isn’t the sweet spot at the end of the bat? ............................... 10 4.2 How does the material work?............................................................ 12 4.3 Corking?............................................................................................. of Model ....................................................... 15 References ........................................................................................................ 15

05年美国大学生数学建模竞赛A题特等奖论文翻译

05年美国大学生数学建模竞赛A题特等奖论文翻译

在每一时刻流出水的体积等于裂口的面积乘以水的速率乘以时间:
h h Vwater leaeing = wbreach (

lake
s)
dam
water
leaving ttime
step
其中:V 是体积, w 是宽度, h 是高度, s 是速度, t 是时间。
我们假设该湖是一个大的直边贮槽,所以当水的高度确定时,其面积不改变。 这意味着,湖的高度等于体积除以面积
在南卡罗莱那州的中央,一个湖被一个 75 年的土坝抑制。如果大坝被地震破坏 将会发生什么事?这个担心是基于1886年发生在查尔斯顿的一场地震,科学家们 相信它里氏7.3级[联邦能源管理委员会2002]。断层线的位置几乎直接在穆雷湖 底(SCIway 2000;1997,1998年南CarolinaGeological调查)和在这个地区小地震 的频率迫使当局考虑这样一个灾难的后果。
)

1 2
ห้องสมุดไป่ตู้
λ
2
(u
n j +1

2u j
+
n
+
u
n j
)
这里的上层指数表示时间和较低的空间, λ 是时间与空间步长的大小的比值。
(我们的模型转换以距离和时间做模型的单位,因此每个步长为 1)。第二个条 件的作用是受潮尖峰,因为它看起来不同并补偿于在每个点的任一边上的点。
我们发现该模型对粗糙度参数 n 高度敏感(注意,这是只在通道中的有效粗 糙度)。当 n 很大(即使在大河流的标准值 0.03)。对水流 和洪水堆积的倾向有 较高的抗拒,这将导致过量的陡水深资料,而且往往使模型崩溃。幸运的是,我
我们的任务是预测沿着Saluda河从湖穆雷大坝到哥伦比亚的水位变化,如果 发生了1886年相同规模的地震破坏了大坝。特别是支流罗尔斯溪会回流多远和哥 伦比亚南卡罗来纳州的州议会大厦附近的水位会多高。

2014MCM-B优秀论文

2014MCM-B优秀论文

2014MCM-B-优秀论文美赛丛书目录(考虑)1. 问题2. 问题背景与问题分析3. 评价指标体系选哪些指标?理由何在?如何度量?4. 排名模型(权重模型)5. 时间因素处理6. 模型检验7. 问题综合分析与进一步研究8. 优秀论文A-26911-东南大学9. 优秀论文B - 30680-美国-北卡26160-重庆大学摘要:灰色与模糊评价模型,另外考虑了性别与时间因素。

AHP筛选特征因子,7个因子,灰色相关模型,模糊综合评价模型,灰色模型略强,时间因素对前十人选影响较小。

26160-重庆大学.pdf评价:除结果图外,乏善可陈,时间因素影响的结论有误。

26636-外经贸大学摘要:灰色相关模型,依据专家意见选择了四个评价指标:NCAA冠军,Pct,胜场数,教练报酬。

模糊相容矩阵确定各个评价指标的权值,结果与ESPN作比较。

最后讨论了时间因素,发现规律:“从前”的教练的胜率要远远高于“现在”的教练,但其他三个指标所受到的影响很小。

引入滑动平均方法,将时间因素纳入胜率计算模型中,这是本文的一个亮点。

Shannon熵用于评价稳定性。

讨论了参数敏感性。

便利与普适是我们模型的最大优点,但存在指标选择的主观性。

26636-外经贸.pdf评价:指标体系以及评价模型一般,有点投机,时间因素讨论、模型结果检验以及敏感性检验是亮点,结果对比表达清晰明了,可信度高。

缺假设与“conclusion”,是硬伤。

26911-东南大学三阶段全面评价模型,指标体系(胜率,稳定性,获得冠军数量,个人报酬,点击率,个人荣誉,职业联赛排名),谷歌趋势统计方法,线性拟合方法,加权和模型,AHP+最大熵模型,灰色相关分析,综合排名26911-东南大学.pdf评价:非常全面,思路很清晰,表达很简洁,值得效仿。

具体说:指标意义讨论充分;指标取值实用、合理;时间因素考虑到位;权重确定有技术含量;结果表达清晰;文章节奏把握好。

如果按更高标准衡量,第二种权重体系中GRA的作用不大显著。

美国数学建模比赛一等奖

美国数学建模比赛一等奖

Figure 1.Panoramic satellite map of Florida The picture was taken at the altitude of 879.7km, and we saved a copy of it as standard picture. Next, we chose 17 key points on the picture and connected each point by straight lines to form a close polygonal, which can roughly represent the border of the whole State (Red points and Green lines), shown in Figure 2:
Analysis of Florida's Topography
1. Classification of the Florida’s Terrain There are loads of people (nearly accounts for 70% of total population of the state) in the coastal lowlands, including those along the Atlantic Ocean and the Gulf of Mexico. The vast swampland locates on the southwest coast of the peninsula, which is usually known as „Everglades National Park‟, was once underwater. It came upon the sea- level and become the marshland because of long-time crustal movement during past millions of years. To the north of it there are mangrove forests and Okeechobee Lake. Besides, to the west of Jacksonville, there is another swampland covers the border of the Georgia and Florida State. The Central Highlands with average elevation of tens of meters are mainly formed by limestone. So as time goes by, there are many solution crevices among them, these solution crevices will become lakes and ponds easily after water logging. The Northwest Highlands lies to the west of the Suwannee River; however, the highest point of the highlands only has the elevation of 91 meters. 2008年MCM一等奖
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
For office use only T1 ________________ T2 ________________ T3 ________________ T4 ________________
Team Control Number
37075
Problem Chosen
C
For office use only F1 ________________ F2 ________________ F3 ________________ F4 ________________
2015 Mathematical Contest in Modeling (MCM) Summary Sheet
Organizational Churn: A Roll of the Dice?
Network science is essential in many interdisciplinary studies due to its potential to deal with complex systems. Since the organization of ICM forms a network structure, network science can be utilized to analyze dynamic processes within the company, e.g. the diffusion effects of organizational churn.
Ultimately, we incorporate methods from team science and approaches from multilayer networks in our context to combine Human Capital network with other network layers and discuss how to improve our estimation on organizational churn.
3
3.1 Constructing Human Capital Network . . .
In this paper, we construct a Human Capital network according to the hierarchical structure of ICM and create a simple yet effective model to capture the dynamic processes, which includes organizational churn, promotion and recruitment. For organizational churn, we propose and implement our probabilistic churn model inspired by Bayesian learning principles, which estimates and updates the likelihood of individual churn using the Beta-Binomial distribution. Then we develop three promotion measures based on working experience, inclination to churn, and closeness centrality. Moreover, we propose several means of controlling the recruitment rate from the HR manager's perspective, and further define some key concepts for evaluation, such as dissatisfaction and productivity.
Through extensive simulations, we show that our model is flexible enough to encompass most features of the current situation and yield convincing productivity and cost results. We further extend our model to scenarios with higher churn rates, and discover an interesting fact that higher churn rates lead to lower productivity-cost ratios. In an extreme case with no recruitment, we discover differentiated HR health degeneration among different offices over two years through introduces extra computational costs.
Organizational Churn: A Roll of the Dice?
Contents
1 Introduction
2
2 Fundamental Assumptions
2
3 Preliminaries
In summary, our model is powerful and reliable for various types of human capital dynamic processes. Nevertheless, there are some existing problems such as simulation
相关文档
最新文档