STM32视频教程 智芯STM32开发板全套资料
RoboMaster电控入门(1)STM32开发环境搭建

RoboMaster电控⼊门(1)STM32开发环境搭建STM32介绍开发⽅式介绍stm32是半导体⼚商ST(意法半导体)⽣产的基于Arm Cortex的单⽚机系列,⽬前被⼴泛应⽤于⼯业,物联⽹,科创竞赛等。
⽬前国内⼤学⽣机器⼈竞赛Robomaster和Robocon主要使⽤的是stm32f4系列单⽚机,该系列基于Cortex-M4内核,具有较⾼的性能,CPU⼯作频率可以达到168MHz,基本可以满⾜⽐赛中所有的控制需求。
stm32的主流开发⽅式包括寄存器开发,标准库开发,HAL库(LL库)开发。
寄存器开发即直接控制32的寄存器,⼯程运⾏效率⾼,但是开发难度⼤,可读性与可移植性差;标准库开发即使⽤ST官⽅开源的⼀套标准固件库进⾏开发,这套固件库对⼀系列寄存器操作进⾏了封装,降低了开发难度,提⾼了可读性和可移植性,但⽬前ST已经将推⼴的重⼼从标准库转移到了HAL库(LL库)上,虽然还是有许多⼯程在使⽤标准库进⾏开发,但⽆论是软件还是⽂档的更新速度,标准库都已经⽆法和后者⽐拟了;HAL库(LL库)开发是ST开源的⼜⼀套新的库,与标准固件库的最⼤区别是,HAL库(LL库)⽀持ST开发的⼀款图形化⼯程配置软件STM32CubeMX,使⽤该软件可以⼤⼤提升开发效率和⼯程移植性,尽管由于HAL库采⽤了更加复杂的封装,降低了⼯程的运⾏效率,但是由于stm32本⾝强⼤的性能,中⼩型的⼯程依然能够流畅的运⾏。
⽬前越来越多的⽤户开始使⽤HAL库(LL库)进⾏开发;本系列教程采⽤的开发⽅式为HAL库(LL库)开发(以下简称HAL库开发),同时也是Robomaster中许多队伍选择的开发⽅式。
HAL库开发环境包括代码编辑&编译器(Keil MDK,IAR等)下载器驱动(JLink&STLink)STM32CubeMX开发环境下载地址keil mdk5安装全家桶cubemx安装全家桶安装教程下载完以上两个压缩包之后再阅读后续内容安装步骤如下——Keil安装JLink,STLink驱动安装STM32CubeMX安装1.Keil安装⾸先,解压keil mdk5安装全家桶压缩包,点开之后看到如下内容——⾸先点击MDK-523.exe进⾏MDK的安装,安装过程可以参考0-如何安装keil5.pdf需要注意的是在选择安装路径的页⾯,⼀定要保证⾃⼰的路径中不含有中⽂(注意不要含有中⽂!!下⽂中的软件同理,这是⼀个常识,不要在安装路径中带有中⽂!!)⼀直点击next,等待安装完成即可,跳出该页⾯可以直接关闭安装完成后可以在桌⾯或者是引导菜单中看到这个绿油油的图标,说明keil已经安装完成。
芯达STM32入门系列教程之三《如何使用J-Flash调试》

STM32入门系列教程如何使用J-Flash调试Revision0.01(2010-04-12)对初学者来说,要进行STM32的程序下载调试,一般有三种方法:(1)使用SEGGER J-Flash(J-Link)下载程序到闪存中运行;(2)使用串口ISP来下载HEX文件到CPU中运行;(3)J-Link+MDK组合,来在线调试程序(可下载、调试)。
本文档讲述如何在芯达STM32开发板上使用SEGGER J-Flash下载HEX文件。
而其他两种方法,我们将在文档《如何使用MDK+J-Link调试》、以及《如何使用STM32-ISP下载调试》中详细说明。
先来解释SEGGER。
实际上,大家更为熟悉的ARM仿真器J-Link,就是由SEGGER公司开发的。
J-Link是SEGGER为支持仿真ARM内核芯片推出的JTAG 仿真器。
不管什么CPU的仿真器,都需要安装其相应的驱动后才能使用。
J-Link也不例外,它的驱动软件可以去官方网站:下载最新版本。
这里使用的驱动软件版本是V4.08l,该驱动的安装非常简单,请参考文档《如何安装J-Link驱动软件》。
安装完毕,会出现如下两个图标:现在开始我们的工作吧!步骤一先进行设备连接操作。
芯达STM开发板的JTAG口(开发板面朝上,最顶端有一个JTAG20pin的插口),与J-Link V8仿真器的输出排线连接,J-Link另一头的USB插口则插在电脑的USB口上。
这时,J-Link的指示灯开始闪烁,并保持“点亮”的状态。
注意:大家购买J-Link仿真器的时候,JTAG接口要求是标准的20pin的2.54间距的针座。
否则需要转接卡进行JTAG接口的转换。
步骤二进入PC的桌面,点击上图左边的图标:J-Flash ARM V4.081,出现如下界面:步骤三我们先来进行project设置,保存后会自动识别该配置。
不进行project设置,则在后续步骤进行连接connect开发板的时候,会提示找不到flash 设备下载,导致无法连接,如下所示:点击“Options”,再点击“Project settings”,如下图所示:步骤四在弹出的窗口中进行设置。
智嵌 STM32F407开发板基本型V1.0实验例程操作手册

北京智嵌物联网电子技术有限公司 I智嵌 STM32F407开发板基本型V1.0实验例程操作手册版本号:A拟制人:赵工时 间 :2014年12月27日目录1本文档编写目的 (1)2实验例程操作说明 (1)2.1LED闪烁实验 (1)2.2KEY_LED实验 (1)2.3RS232通讯实验 (1)2.4RS485通讯实验 (2)2.5CAN1通讯实验 (3)2.6I2C实验—读写24c04 (3)2.7SPI通讯实验--读写SST25016B (5)2.8CPU温度测量实验 (5)2.9CRC实验 (5)2.10DAC例程实验 (6)2.11DS18B20温度测量实验 (6)2.12EXIT例程实验 (6)2.13RNG随机数发生器例程实验 (7)2.14RTC时钟例程实验 (7)2.15独立看门狗例程实验 (8)2.1616通道ADC采集实验 (9)2.17U盘读写实验 (10)2.18SD卡FatFS文件系统实验 (11)2.19USB数据存储实验-PC机通过USB读写SD卡实验 (13)2.20基于OLED的RFID_RC522读写IC卡实验 (14)2.21OLED显示实验 (16)2.22TCP服务器收发数据实验 (16)2.23动态IP实验 (18)2.24HTTP网页服务器实验 (20)2.25 2.4G无线模块NRF24l01通信实验 (22)2.26基于LCD的RFID_RC522读写IC卡实验 (22)2.27SNTP协议实验_网络授时_RTC实验 (24)2.28UDP客户端发送数据实验 (27)2.29UDP服务器收发数据实验 (28)2.30TCP客户端收发数据实验 (30)2.31HTTP网页拍照例程 (33)2.32其他实验例程 (34)1本文档编写目的本手册是针对智嵌 STM32F407开发板基本型V1.0的例程而编写的,包括每个实验例程的实验原理、实验步骤、注意事项等。
STM32F103C8T6中文资料_引脚图_最小系统

Contents STM32F103x8,STM32F103xB Contents1Introduction (9)2Description (9)2.1Device overview (10)2.2Full compatibility throughout the family (13)2.3Overview (14)2.3.1ARM®Cortex™-M3core with embedded Flash and SRAM (14)2.3.2Embedded Flash memory (14)2.3.3CRC(cyclic redundancy check)calculation unit (14)2.3.4Embedded SRAM (14)2.3.5Nested vectored interrupt controller(NVIC) (14)2.3.6External interrupt/event controller(EXTI) (15)2.3.7Clocks and startup (15)2.3.8Boot modes (15)2.3.9Power supply schemes (15)2.3.10Power supply supervisor (15)2.3.11Voltage regulator (16)2.3.12Low-power modes (16)2.3.13DMA (17)2.3.14RTC(real-time clock)and backup registers (17)2.3.15Timers and watchdogs (17)2.3.16I²C bus (19)2.3.17Universal synchronous/asynchronous receiver transmitter(USART)..192.3.18Serial peripheral interface(SPI) (19)2.3.19Controller area network(CAN) (19)2.3.20Universal serial bus(USB) (19)2.3.21GPIOs(general-purpose inputs/outputs) (20)2.3.22ADC(analog-to-digital converter) (20)2.3.23T emperature sensor (20)2.3.24Serial wire JTAG debug port(SWJ-DP) (20)3Pinouts and pin description (21)4Memory mapping (34)2/105DocID13587Rev16STM32F103x8,STM32F103xB Contents5Electrical characteristics (35)5.1Parameter conditions (35)5.1.1Minimum and maximum values (35)5.1.2Typical values (35)5.1.3Typical curves (35)5.1.4Loading capacitor (35)5.1.5Pin input voltage (35)5.1.6Power supply scheme (36)5.1.7Current consumption measurement (37)5.2Absolute maximum ratings (37)5.3Operating conditions (38)5.3.1General operating conditions (38)5.3.2Operating conditions at power-up/power-down (39)5.3.3Embedded reset and power control block characteristics (40)5.3.4Embedded reference voltage (41)5.3.5Supply current characteristics (41)5.3.6External clock source characteristics (51)5.3.7Internal clock source characteristics (55)5.3.8PLL characteristics (57)5.3.9Memory characteristics (57)5.3.10EMC characteristics (58)5.3.11Absolute maximum ratings(electrical sensitivity) (60)5.3.12I/O current injection characteristics (61)5.3.13I/O port characteristics (62)5.3.14NRST pin characteristics (68)5.3.15TIM timer characteristics (69)5.3.16Communications interfaces (70)5.3.17CAN(controller area network)interface (75)5.3.1812-bit ADC characteristics (76)5.3.19T emperature sensor characteristics (80)6Package characteristics (81)6.1Package mechanical data (81)6.2Thermal characteristics (93)6.2.1Reference document (93)6.2.2Selecting the product temperature range (94)DocID13587Rev163/105Contents STM32F103x8,STM32F103xB7Ordering information scheme (96)8Revision history (97)4/105DocID13587Rev16STM32F103x8,STM32F103xB List of tables List of tablesT able1.Device summary (1)T able2.STM32F103xx medium-density device features and peripheral counts (10)T able3.STM32F103xx family (13)T able4.Timer feature comparison (17)T able5.Medium-density STM32F103xx pin definitions (28)T able6.Voltage characteristics (37)T able7.Current characteristics (38)T able8.Thermal characteristics (38)T able9.General operating conditions (38)T able10.Operating conditions at power-up/power-down (39)T able11.Embedded reset and power control block characteristics (40)T able12.Embedded internal reference voltage (41)T able13.Maximum current consumption in Run mode,code with data processingrunning from Flash (42)T able14.Maximum current consumption in Run mode,code with data processingrunning from RAM (42)T able15.Maximum current consumption in Sleep mode,code running from Flash or RAM (44)T able16.Typical and maximum current consumptions in Stop and Standby modes (45)T able17.Typical current consumption in Run mode,code with data processingrunning from Flash (48)T able18.Typical current consumption in Sleep mode,code running from Flash orRAM (49)T able19.Peripheral current consumption (50)T able20.High-speed external user clock characteristics (51)T able21.Low-speed external user clock characteristics (51)T able22.HSE4-16MHz oscillator characteristics (53)T able23.LSE oscillator characteristics(f LSE=32.768kHz) (54)T able24.HSI oscillator characteristics (55)T able25.LSI oscillator characteristics (56)T able26.Low-power mode wakeup timings (57)T able27.PLL characteristics (57)T able28.Flash memory characteristics (57)T able29.Flash memory endurance and data retention (58)T able30.EMS characteristics (59)T able31.EMI characteristics (59)T able32.ESD absolute maximum ratings (60)T able33.Electrical sensitivities (60)T able34.I/O current injection susceptibility (61)T able35.I/O static characteristics (62)T able36.Output voltage characteristics (66)T able37.I/O AC characteristics (67)T able38.NRST pin characteristics (68)T able39.TIMx characteristics (69)T able40.I2C characteristics (70)T able41.SCL frequency(f PCLK1=36MHz.,V DD_I2C=3.3V) (71)T able42.SPI characteristics (72)T B startup time (74)T B DC electrical characteristics (75)DocID13587Rev165/105List of tables STM32F103x8,STM32F103xBT B:Full-speed electrical characteristics (75)T able46.ADC characteristics (76)T able47.R AIN max for f ADC=14MHz (77)T able48.ADC accuracy-limited test conditions (77)T able49.ADC accuracy (78)T able50.TS characteristics (80)T able51.VFQFPN366x6mm,0.5mm pitch,package mechanical data (82)T able52.UFQFPN487x7mm,0.5mm pitch,package mechanical data (83)T able53.LFBGA100-10x10mm low profile fine pitch ball grid array packagemechanical data (85)T able54.LQPF100,14x14mm100-pin low-profile quad flat package mechanical data (87)T able55.UFBGA100-ultra fine pitch ball grid array,7x7mm,0.50mm pitch,packagemechanical data (88)T able56.LQFP64,10x10mm,64-pin low-profile quad flat package mechanical data (89)T able57.TFBGA64-8x8active ball array,5x5mm,0.5mm pitch,package mechanical data (90)T able58.LQFP48,7x7mm,48-pin low-profile quad flat package mechanical data (92)T able59.Package thermal characteristics (93)T able60.Ordering information scheme (96)T able61.Document revision history (97)6/105DocID13587Rev16STM32F103x8,STM32F103xB List of figures List of figuresFigure1.STM32F103xx performance line block diagram (11)Figure2.Clock tree (12)Figure3.STM32F103xx performance line LFBGA100ballout (21)Figure4.STM32F103xx performance line LQFP100pinout (22)Figure5.STM32F103xx performance line UFBGA100pinout (23)Figure6.STM32F103xx performance line LQFP64pinout (24)Figure7.STM32F103xx performance line TFBGA64ballout (25)Figure8.STM32F103xx performance line LQFP48pinout (26)Figure9.STM32F103xx performance line UFQFPN48pinout (26)Figure10.STM32F103xx performance line VFQFPN36pinout (27)Figure11.Memory map (34)Figure12.Pin loading conditions (36)Figure13.Pin input voltage (36)Figure14.Power supply scheme (36)Figure15.Current consumption measurement scheme (37)Figure16.Typical current consumption in Run mode versus frequency(at3.6V)-code with data processing running from RAM,peripherals enabled (43)Figure17.Typical current consumption in Run mode versus frequency(at3.6V)-code with data processing running from RAM,peripherals disabled (43)Figure18.Typical current consumption on V BAT with RTC on versus temperature at differentV BAT values (45)Figure19.Typical current consumption in Stop mode with regulator in Run mode versustemperature at V DD=3.3V and3.6V (46)Figure20.Typical current consumption in Stop mode with regulator in Low-power mode versustemperature at V DD=3.3V and3.6V (46)Figure21.Typical current consumption in Standby mode versus temperature atV DD=3.3V and3.6V (47)Figure22.High-speed external clock source AC timing diagram (52)Figure23.Low-speed external clock source AC timing diagram (52)Figure24.Typical application with an8MHz crystal (53)Figure25.Typical application with a32.768kHz crystal (55)Figure26.Standard I/O input characteristics-CMOS port (64)Figure27.Standard I/O input characteristics-TTL port (64)Figure28.5V tolerant I/O input characteristics-CMOS port (65)Figure29.5V tolerant I/O input characteristics-TTL port (65)Figure30.I/O AC characteristics definition (68)Figure31.Recommended NRST pin protection (69)Figure32.I2C bus AC waveforms and measurement circuit (71)Figure33.SPI timing diagram-slave mode and CPHA=0 (73)Figure34.SPI timing diagram-slave mode and CPHA=1(1) (73)Figure35.SPI timing diagram-master mode(1) (74)B timings:definition of data signal rise and fall time (75)Figure37.ADC accuracy characteristics (78)Figure38.Typical connection diagram using the ADC (79)Figure39.Power supply and reference decoupling(V REF+not connected to V DDA) (79)Figure40.Power supply and reference decoupling(V REF+connected to V DDA) (80)Figure41.VFQFPN366x6mm,0.5mm pitch,package outline(1) (82)Figure42.VFQFPN36recommended footprint(dimensions in mm)(1)(2) (82)DocID13587Rev167/105List of figures STM32F103x8,STM32F103xBFigure43.UFQFPN487x7mm,0.5mm pitch,package outline (83)Figure44.UFQFPN48recommended footprint (84)Figure45.LFBGA100-10x10mm low profile fine pitch ball grid array packageoutline (85)Figure46.Recommended PCB design rules(0.80/0.75mm pitch BGA) (86)Figure47.LQFP100,14x14mm100-pin low-profile quad flat package outline (87)Figure48.LQFP100recommended footprint(1) (87)Figure49.UFBGA100-ultra fine pitch ball grid array,7x7mm,0.50mm pitch,package outline (88)Figure50.LQFP64,10x10mm,64-pin low-profile quad flat package outline (89)Figure51.LQFP64recommended footprint(1) (89)Figure52.TFBGA64-8x8active ball array,5x5mm,0.5mm pitch,package outline (90)Figure53.Recommended PCB design rules for pads(0.5mm pitch BGA) (91)Figure54.LQFP48,7x7mm,48-pin low-profile quad flat package outline (92)Figure55.LQFP48recommended footprint(1) (92)Figure56.LQFP100P D max vs.T A (95)8/105DocID13587Rev16STM32F103x8,STM32F103xB Introduction 1IntroductionThis datasheet provides the ordering information and mechanical device characteristics ofthe STM32F103x8and STM32F103xB medium-density performance line microcontrollers.For more details on the whole STMicroelectronics STM32F103xx family,please refer toSection2.2:Full compatibility throughout the family.The medium-density STM32F103xx datasheet should be read in conjunction with the low-,medium-and high-density STM32F10xxx reference manual.The reference and Flash programming manuals are both available from theSTMicroelectronics website .For information on the Cortex™-M3core please refer to the Cortex™-M3T echnicalReference Manual,available from the website at the following address:/help/index.jsp?topic=/com.arm.doc.ddi0337e/2DescriptionThe STM32F103xx medium-density performance line family incorporates the high-performance ARM Cortex™-M332-bit RISC core operating at a72MHz frequency,high-speed embedded memories(Flash memory up to128Kbytes and SRAM up to20Kbytes),and an extensive range of enhanced I/Os and peripherals connected to two APB buses.Alldevices offer two12-bit ADCs,three general purpose16-bit timers plus one PWM timer,aswell as standard and advanced communication interfaces:up to two I2Cs and SPIs,threeUSART s,an USB and a CAN.The devices operate from a2.0to3.6V power supply.They are available in both the–40to+85°C temperature range and the–40to+105°C extended temperature range.Acomprehensive set of power-saving mode allows the design of low-power applications.The STM32F103xx medium-density performance line family includes devices in six differentpackage types:from36pins to100pins.Depending on the device chosen,different sets ofperipherals are included,the description below gives an overview of the complete range ofperipherals proposed in this family.These features make the STM32F103xx medium-density performance line microcontrollerfamily suitable for a wide range of applications such as motor drives,application control,medical and handheld equipment,PC and gaming peripherals,GPS platforms,industrialapplications,PLCs,inverters,printers,scanners,alarm systems,video intercoms,andHVACs.DocID13587Rev169/105TimersCommunicationDescription STM32F103x8,STM32F103xB 2.1Device overviewTable2.STM32F103xx medium-density device features and peripheral1.On the TFBGA64package only15channels are available(one analog input pin has been replaced by‘Vref+’).10/105DocID13587Rev16Peripheral STM32F103Tx STM32F103Cx STM32F103Rx STM32F103Vx Flash-Kbytes64128641286412864128SRAM-Kbytes20202020 General-purpose3333Advanced-control1111SPI12222I C1222USART2333USB1111CAN1111 GPIOs2637518012-bit synchronized ADCNumber of channels210channels210channels2(1)16channels216channels CPU frequency72MHzOperating voltage 2.0to3.6VOperating temperaturesAmbient temperatures:-40to+85°C/-40to+105°C(see Table9)Junction temperature:-40to+125°C(see Table9)Packages VFQFPN36LQFP48,UFQFPN48LQFP64,TFBGA64LQFP100,LFBGA100,UFBGA100f l a s ho b lI n t e r f a c eB u s M a t r i xA HB :F m a x =48/72M H zA PB 2:F m a x =48/72M H zA PB 1:F m a x =24/36M H zpbusPCLK2 HCLK CLOCK RTC AWUTAMPER -RTCSTM32F103x8, STM32F103xBDescriptionFigure 1. STM32F103xx performance line block diagramTRACECLKTRACED[0:3] as ASNJTRSTTRSTJTDIJTCK/SWCLK JTMS/SWDIOJTDO as AFTPIUTrace/trigSW/JTAGCortex -M3 CPUIbusF max : 7 2M Hz DbusTraceControlle rFlash 128 KB64 bitPOWERVOLT. REG. 3.3V TO 1.8V@VDDV DD = 2 to 3.6VV SSNVICSystemSRAM20 KB@VDDGP DMA7 channelsPCLK1 FCLKPLL &MANAGTXTAL OSC4-16 MHzOSC_INOSC_OUTRC 8 MHzNRST @VDDASUPPLYSUPERVISIONRC 40 kHz @VDDA@VBATIWDG Standby interfaceV BATVDDA VSSA 80AF PA[15:0] PB[15:0]POR / PDRPVDEXTIWAKEUPGPIOAGPIOBRstIntAHB2 AHB2APB2 APB1XTAL 32 kHzBackup reg Backu p i nterf ace TIM2 TIM3OSC32_IN OSC32_OUT4 Channels 4 ChannelsPC[15:0]GPIOCTIM 44 ChannelsPD[15:0]GPIOD PE[15:0] GPIOEUSART2USART3RX,TX, CTS, RTS,CK, SmartCard as AFRX,TX, CTS, RTS, CK, SmartCard as AF4 Channels3 compl. ChannelsETR and BKINMOSI,MISO, SCK,NSS as AFRX,TX, CTS, RTS,TIM1SPI12x(8x16bit)SPI2I2C1 I2C2MOSI,MISO,SCK,NSS as AFSCL,SDA,SMBA as AFSCL,SDA as AFSmartCard as AFUSART1@VDDAbxCANUSBDP/CAN_TXUSB 2.0 FSUSBDM/CAN_RX16AF V REF+ V REF -12bit ADC1 IF12bit ADC2 IFSRAM 512BWWDGTemp sensorai14390d1. T A = –40 °C to +105 °C (junction temperature up to 125 °C).2. AF = alternate function on I/O port pin.DocID13587 Rev 1611/105peripheralsIf (APB2 prescaler =1) x1 ADC /2, 4, 6, 8 ADCCLKDescriptionSTM32F103x8, STM32F103xBFigure 2. Clock treeFLITFCLKto Flash programming interface8 MHz HSI RCHSIUSBPrescaler 48 MHzUSBCLKto USB interface/2/1, 1.572 MHz maxClockHCLKto AHB bus, core, memory and DMA PLLSRCSWPLLMUL/8Enable (3 bits)to Cortex System timerFCLK Cortex..., x16 x2, x3, x4 PLLHSIPLLCLK HSESYSCLK72 MHz max AHB Prescaler /1, 2..512 APB1Prescaler/1, 2, 4, 8, 16free running clock36 MHz max PCLK1to APB1Peripheral Clock Enable (13 bits)TIM2,3, 4to TIM2, 3and 4CSSIf (APB1 prescaler =1) x1 TIMXCLKelse x2 Peripheral ClockEnable (3 bits)OSC_OUTOSC_IN4-16 MHzHSE OSCPLLXTPRE/2APB2Prescaler/1, 2, 4, 8, 16TIM1 timer 72 MHz maxPeripheral ClockEnable (11 bits) PCLK2peripherals to APB2to TIM1 TIM1CLK else x2 Peripheral ClockOSC32_INOSC32_OUTLSE OSC32.768 kHz/128LSERTCCLKto RTCPrescaler Enable (1 bit) to ADCRTCSEL[1:0]LSI RCLSIto Independent Watchdog (IWDG)40 kHzIWDGCLKLegend:HSE = high -speed external clock signalHSI = high -speed internal clock signalMCOMainClock Output/2PLLCLKHSI LSI = low -speed internal clock signal LSE = low -speed external clock signalHSESYSCLKMCOai149031. When the HSI is used as a PLL clock input, the maximum system clock frequency that can be achieved is 64 MHz.2. For the USB function to be available, both HSE and PLL must be enabled, with USBCLK running at 48 MHz.3. To have an ADC conversion time of 1 µs, APB2 must be at 14 MHz, 28 MHz or 56 MHz.12/105DocID13587 Rev 16STM32F103x8, STM32F103xBDescription2.2 Full compatibility throughout the familyThe STM32F103xx is a complete family whose members are fully pin -to -pin, software and feature compatible. In the reference manual, the STM32F103x4 and STM32F103x6 are identified as low -density devices, the STM32F103x8 and STM32F103xB are referred to as medium -density devices, and the STM32F103xC, STM32F103xD and STM32F103xE are referred to as high -density devices.Low - and high -density devices are an extension of the STM32F103x8/B devices, they are specified in the STM32F103x4/6 and STM32F103xC/D/E datasheets, respectively. Low - density devices feature lower Flash memory and RAM capacities, less timers and peripherals. High -density devices have higher Flash memory and RAM capacities, and additional peripherals like SDIO, FSMC, I 2S and DAC, while remaining fully compatible with the other members of the STM32F103xx family .The STM32F103x4, STM32F103x6, STM32F103xC, STM32F103xD and STM32F103xE are a drop -in replacement for STM32F103x8/B medium -density devices, allowing the user to try different memory densities and providing a greater degree of freedom during the development cycle.Moreover, the STM32F103xx performance line family is fully compatible with all existing STM32F101xx access line and STM32F102xx USB access line devices.1.For orderable part numbers that do not show the A internal code after the temperature range code (6 or 7),the reference datasheet for electrical characteristics is that of the STM32F103x8/B medium -density devices.DocID13587 Rev 16 13/105PinoutLow -density devicesMedium -density devices High -density devices 16 KB Flash 32 KB Flash (1) 64 KB Flash 128 KB Flash 256 KB Flash 384 KB Flash 512 KB Flash6 KB RAM 10 KB RAM 20 KB RAM 20 KB RAM 48 KB RAM 64 KB RAM 64 KB RAM144 5 × USART s 4 × 16-bit timers, 2 × basic timers2 3 × SPIs, 2 × I Ss, 2 × I2Cs USB, CAN, 2 × PWM timers 3 × ADCs, 2 × DACs, 1 × SDIOFSMC (100 and 144 pins) 100 3 × USART s 3 × 16-bit timers 2 2 × SPIs, 2 × I Cs, USB, CAN, 1 × PWM timer2 × ADCs 64 2 × USART s 2 × 16-bit timers 2 1 × SPI, 1 × I C, USB, CAN, 1 × PWM timer 2 × ADCs 48 36Description STM32F103x8,STM32F103xB 2.3Overview2.3.1ARM®Cortex™-M3core with embedded Flash and SRAMThe ARM Cortex™-M3processor is the latest generation of ARM processors for embeddedsystems.It has been developed to provide a low-cost platform that meets the needs of MCUimplementation,with a reduced pin count and low-power consumption,while deliveringoutstanding computational performance and an advanced system response to interrupts.The ARM Cortex™-M332-bit RISC processor features exceptional code-efficiency,delivering the high-performance expected from an ARM core in the memory size usuallyassociated with8-and16-bit devices.The STM32F103xx performance line family having an embedded ARM core,is thereforecompatible with all ARM tools and software.Figure1shows the general block diagram of the device family.2.3.2Embedded Flash memory64or128Kbytes of embedded Flash is available for storing programs and data.2.3.3CRC(cyclic redundancy check)calculation unitThe CRC(cyclic redundancy check)calculation unit is used to get a CRC code from a32-bitdata word and a fixed generator polynomial.Among other applications,CRC-based techniques are used to verify data transmission orstorage integrity.In the scope of the EN/IEC60335-1standard,they offer a means ofverifying the Flash memory integrity.The CRC calculation unit helps compute a signature ofthe software during runtime,to be compared with a reference signature generated at link-time and stored at a given memory location.2.3.4Embedded SRAMTwenty Kbytes of embedded SRAM accessed(read/write)at CPU clock speed with0waitstates.2.3.5Nested vectored interrupt controller(NVIC)The STM32F103xx performance line embeds a nested vectored interrupt controller able tohandle up to43maskable interrupt channels(not including the16interrupt lines ofCortex™-M3)and16priority levels.•Closely coupled NVIC gives low-latency interrupt processing•Interrupt entry vector table address passed directly to the core•Closely coupled NVIC core interface•Allows early processing of interrupts•Processing of late arriving higher priority interrupts•Support for tail-chaining•Processor state automatically saved•Interrupt entry restored on interrupt exit with no instruction overhead14/105DocID13587Rev16万联芯城专注电子元器件配单服务,只售原装现货库存,万联芯城电子元器件全国供应,专为终端生产,研发企业提供现货物料,价格优势明显,BOM配单采购可节省逐个搜索购买环节,只需提交BOM物料清单,商城即可为您报价,解决客户采购烦恼,为客户节省采购成本,点击进入万联芯城。
STM32f103C8T6入门学习记录

STM32自学笔记作者:忙碌的小姚新浪微博:@忙碌的小姚新浪博客:/mlxiaoyao222目录STM32 自学笔记 (1)第一章 (3)我与STM32 的那些日子 (3)第二章 (4)使用固件库建立一个工程 (4)1、了解STM32F103的固件库 (4)2、创建第一个工程 (4)3、接下来就是管理工程文件了 (9)4、编写main.c 和文件路径 (10)第三章 (14)STM32点亮第一个LED 使用keil for ARM MDK 软件仿真 (14)1、Main.c 函数代码: (14)2、代码分析: (15)3、软件仿真介绍: (16)第四章 (19)串口的使用 (19)1、为什么要用串口? (19)2、STM32跟PC机(也就是电脑)如何连接 (19)3、代码分析 (20)4、仿真及调试 (23)5、串口接收数据 (25)第五章 (27)通用定时器的使用 (27)1、STM32F103内部定时器有哪些? (27)2、如何进行程序编写 (27)3仿真结果观察 (30)4对第四章串口的补充 (31)5工程代码 (35)第一章我与STM32 的那些日子STM32这块板子是在阿莫上跟一个老师买的,砍了半天100块钱。
包括一个Jlink v8仿真器(好像65块左右),和一块STM32系统板。
那已是一年前的事了。
那时我刚大三,刚学了半年51,于是想学点更高级的。
但我好像属于三分钟热度的这种人,买回来学了一个星期,就学不动了,寄存器操作,固件库的使用根本就没明白是怎么一回事,之后就没有然后了。
现在看到那块板子,总有一种说不出的滋味,要是当时能咬牙切齿努力学习,说不定现在也不会安静地坐在电脑前一字一句敲打这篇激励性文章了。
对于STM32我没用任何基础,唯一有的也只是一年前学的那一个星期,不过那已不重要了,我现在仍是一个小白。
作为一个初学者,也许是坐井观天,看的是片面的,可能有很多观点是错误的,希望读者朋友能勇于指出来。
STM32-开发入门教程.doc

STM32 开发入门教程(一 ) 开发环境建立及其应用入门准备:我们常用的STM32开发编译环境为和 IAR公司的EWARM.Keil 公司的MDK(Microcontroller Development Kit)在这里我们提供了比较稳定的新版本编译软件下载: MDK4.10限于篇幅 , 在我们的教程里面将先以MDK下的一个例子来介绍如何使用式应用开发 .MDK 进行嵌入MDK 安装与配置 :基于MDK下的开发中基本的过程:(1)创建工程 ;(2)配置工程 ;(3)用 C/C++ 或者汇编语言编写源文件 ;(4)编译目标应用程序(5)修改源程序中的错误(6)测试链接应用程序----------------------------------------------------------------(1)创建一个工程 :在 uVision 3 主界面中选择 "Project" -> "New uVision Project" 菜单项 , 打开一个标准对话框选择好你电脑中的保存目录后名字叫 "NewProject" 的工程, 输入一个你的工程名字后点确认..我们的工程中建了一个从设备库中选择目标芯片选中STMicrocontroller, 我们的MINI-STM32下对应的芯片:开发板使用的是STM32F103V8T6, 因此ARM 32-bit Cortex-M3 Microcontroller, 72MHz, 64kB Flash, 20kB SRAM, PLL, Embedded Internal RC 8MHz and 32kHz, Real-Time Clock, Nested Interrupt Controller, Power Saving Modes, JTAG and SWD,3 Synch. 16-bit Timers with Input Capture, Output Compare and PWM, 16-bit 6-ch Advanced Timer, 2 16-bit Watchdog Timers, SysTick Timer,2 SPI, 2 I2C,3 USART, USB 2.0 Full Speed Interface, CAN 2.0B Active, 2 12-bit 16-ch A/D Converter, Fast I/O Ports选择完芯片型号后会提示是否在目标工程中加入CPU的相关的启动代码,如下图所示启动代码是用来初始化目标设备的配置,完成运行的系统初始化工作,因此我们选择" " ,这会使系统的启动代码编写工作量大大减少.. 是----------------------------------------------------------------(2)配置工程 :选择菜单中"Project" -> "Option for Target"或者选择快捷菜单中的图标:因为 MINI-STM32开发板上使用的就是8M 的晶振且是使用的片内的RAM 和 ROM 因此"taget"下我们都可以使用默认的配置;在"Output"菜单下我们需要选中"Creat Hex File"来生成编译好的工程代码,此工程可以通过仿真器或者串口ISP烧录进开发板中.注: ISP 烧录过程我们将在入门教程二中给大家介绍."Listing" "User"菜单中我们保持默认即可."C/C++"菜单为我们常用的菜单,这里简单的介绍下他们的具体功能:PreProcesser Symbols 中的 Define, Undefine菜单表示是工程的宏定义中的变量,我们将在今后的教程中详细介绍这个功能.Optimization为优化选项 , Level0为不优化,这种模式最适合调试,因为不会优化掉代码, 基本每个用到的变量都可以打断点 . Level3 为优化等级最高 , 最适合生产过程中下载到芯片中的代码 .Include Path为工程中的包含路径,一般需将.h文件或者库文件的地址配置进去."Asm" 和 "Link"将在今后的高级教程中介绍."Debug" 为我们调试使用的配置选项, "Use Simulator" 为使用软件仿真. 这里根据大家手里的仿真器来选择配置环境.如果你使用的是Ulink,那么就选择"Ulink 就选择 " Cotex M3 Jlink",如果你使用的是就选择 "ST-Link Debug". Cotex Debug",如果你选择的是JLINK,ST公司出的简易仿真器ST-Link ,那么那么你注意 : main 右边当中的选项"Run to main{}"函数 ,如果没有选上就会进入初始地址选项如果勾上就表示仿真时进入了就会进入到,你需要自己打断点运行到你的主程序main处.当插上仿真器后选择上面右图中的Setting后会跳出一个仿真器的配置菜单.左边会自动识别出你的仿真器的信息.如下图为ULINK2 的信息 :对于 SWJ 选项为三线制调试右下方有两个选项:, 将在后面的高级教程中介绍."Verify Code Download" : "Download to flash":表示下载后校验数据表示当仿真的时候先将目标代码下载到Flash 中 .Trace 菜单为跟踪配置, 可以实时的将一些变量使用曲线的形式实时表示出来, 我们将在今后的高级教程中介绍这一项功能注意 :市面上目前的盗版Ulink2 能. .不支持这项功能, 正版的支持, Jlink 也不支持这项功"Flash Download"菜单用来配置使用仿真器程序下载的配置选项芯片配套的选项.如果你是使用的别人模板下修改为你的工程果不正确将不能将你的代码下载到芯片中. ,,大家务必选择好和你这个选项请注意一下, 如配置好 "Debug"后,那么如果你使用的是仿真器仿真择正确的仿真器进行配置. "Utilities"可以不用配置.,在你已经正确得将目标板和仿真器建立了物理连接后, 请选(二 ) ISP 在线下载程序ISP :in system programming简介 :ISP:用写入器将code 烧入 , 不过 , 芯片可以在目标板上, 不用取出来 , 在设计目标板的时候就将接口设计在上面, 所以叫 " 在系统编程 ", 即不用脱离系统;应用场合 : 1,ISP 程序升级需要到现场解决 , 不过好一点的是不必拆机器了 ; ISP 的实现一般需要很少的外部电路辅助实现,通常可利用单片机的串行口接到计算机的 RS232口,通过专门设计的固件程序来编程内部存储器。
STM32-深入浅出(新手必看)

STM32-深入浅出(新手必看)STM32学前班教程之一:为什么是它经过几天的学习,基本掌握了STM32的调试环境和一些基本知识。
想拿出来与大家共享,笨教程本着最大限度简化删减STM32入门的过程的思想,会把我的整个入门前的工作推荐给大家。
就算是给网上的众多教程、笔记的一种补充吧,所以叫学前班教程。
其中涉及产品一律隐去来源和品牌,以防广告之嫌。
全部汉字内容为个人笔记。
所有相关参考资料也全部列出。
:lol教程会分几篇,因为太长啦。
今天先来说说为什么是它——我选择STM32的原因。
我对未来的规划是以功能性为主的,在功能和面积之间做以平衡是我的首要选择,而把运算放在第二位,这根我的专业有关系。
里面的运算其实并不复杂,在入门阶段想尽量减少所接触的东西。
不过说实话,对DSP的外设并和开发环境不满意,这是为什么STM32一出就转向的原因。
下面是我自己做过的两块DSP28的全功能最小系统板,在做这两块板子的过程中发现要想尽力缩小DSP的面积实在不容易(目前只能达到50mm×45mm,这还是没有其他器件的情况下),尤其是双电源的供电方式和1.9V的电源让人很头疼。
后来因为一个项目,接触了LPC2148并做了一块板子,发现小型的ARM7在外设够用的情况下其实很不错,于是开始搜集相关芯片资料,也同时对小面积的AVR和51都进行了大致的比较,这个时候发现了CortexM3的STM32,比2148拥有更丰富和灵活的外设,性能几乎是2148两倍(按照MIPS值计算)。
正好2148我还没上手,就直接转了这款STM32F103。
与2811相比较(核心1.8V供电情况下),135MHz×1MIPS。
现在用STM32F103,72MHz×1.25MIPS,性能是DSP的66%,STM32F103R型(64管脚)芯片面积只有2811的51%,STM32F103C型(48管脚)面积是2811的25%,最大功耗是DSP的20%,单片价格是DSP的30%。
红牛开发板stm32f103zet6用户手册

红牛开发板用户手册 CopyRight@20091.概述红牛STM32开发板是以意法半导体 (ST)公司推出的基于ARM Cortex-M3系列最高配置芯片STM32F103ZE为核心组成。
板上资源:●CPU:STM32F103ZET6;(LQFP144脚,片上集成512K flash、64KRAM、12Bit ADC、DAC、PWM、CAN、USB、SDIO、FSMC等资源)●板上外扩512K SRAM, 2M NOR FLASH (板上支持最大1024kSRAM,16M的NOR FLASH)满足大容量数据采集、处理及分析要求●板上外扩128M或256M NAND FLASH(标配128M)满足彩屏上丰富的图片存储、数据表格存储,文件管理等应用● 搭配2.8寸TFT真彩触摸屏模块或3.2寸TFT真彩触摸屏模块(由用户选择),FSMC控制,彩屏模块上配置RSM1843(ADS7843、TSC2046脚对脚兼容)触摸控制器芯片,支持一个SD卡(SPI方式)可用于存储图片,支持一个AT45DBxxx 的DATA FLASH(可用于存储汉字库)● 一路CAN通信接口,驱动器芯片SN65VHD230● 两路RS232接口● 一路RS485通信接口● 一个SD卡座SDIO控制方式● 一个I2C存储器接口,标配24LC02(EEPROM)● 一个SPI存储器接口,标配AT45DB161D(DATA FLASH)● 一路ADC调节电位器输入● 三路ADC输入接线端子引出● 两路PWM输出接线端子引出● 两路DAC输出接线端子引出● 一个蜂鸣器、五个用户LED灯、一个电源指示灯,一个USB通信指示灯,● 四个用户按键,一个系统复位按键● 电源选择跳线,支持外接5V 电源供电,USB 供电或JLINK 供电 ● 板子规格尺寸:13CM X 10CM● 所有I/O 口通过2.54MM 标准间距引出,方便二次开发板上的全部硬件特性能快速帮助你评估STM32F103ZE 所有外设(USB 、motor control,、CAN,、SPI 、MicroSD card 、smartcard 、USART 、NOR Flash 、NAND flash 、 SRAM )和开发你自己的应用项目。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
视频下载地址:
第00讲智芯一号开发板硬件介绍和软件的安装方法:/file/20155941第01讲绪论(上):/file/20155942
第01讲绪论(下):/file/20155943
第02讲STM32最小系统:/file/20159819
第03讲系统时钟初始化函数与延时函数的实现:/file/20159820
第04讲GPIO的工作原理与配置方法:/file/20159821
第05讲点亮第一个LED(直接存在寄存器):/file/20159822
第06讲软件仿真:/file/20159823
第07讲点亮第一个LED(上)(库函数):/file/20167862
第07讲点亮第一个LED(下)(库函数):/file/20168792
第08讲按键输入(直接操作存寄存器):/file/20166818
第09讲按键输入(库函数):/file/20166819
第10讲STM32的中断(上):/file/20170166
第10讲STM32的中断(下):/file/20170167
第10讲STM32的中断(中):/file/20204175
第11讲外部中断(直接操作寄存器):/file/20204176
第12讲外部中断(库函数):/file/20198720
第13讲彩屏的工作原理:/file/20198721
第14讲彩屏的GUI函数:/file/20198722
第15讲彩屏的GUI(库函数):/file/20198723
第16讲串口的工作原理:/file/20201012
第17讲串口通信程序(库函数):/file/20204174
第18讲LabVIEW(一):/file/20201869
第19讲LabVIEW(二) :/file/20204173
第20讲LabView(三):/file/20207918
第21讲LabVIEW(四):/file/20207921
第22讲LabVIEW(五):/file/20207923
第23讲LabVIEW(六):/file/20207924
第24讲定时器的工作原理:/file/20210307
第25讲ADC的工作原理:/file/20211591
第26讲ADC的工作原理(库函数):/file/20210308
第27讲内部温度传感器的原理:/file/20211035
第28讲内部温度传感器(库函数):/file/20212909
第29讲DS18B20的工作原理:/file/20214967
第30讲DS18B20的工作原理(库函数):/file/20212910
第31讲DMA的工作原理:/file/20214969
第32讲DMA的工作原理(库函数):/file/20214971
第33讲RTC和BKP的工作原理与配置:/file/20214973
第34讲RTC的工作原理(库函数):/file/20214975
第35讲STM32低功耗的工作原理:/file/20214977
第36讲STM32的低功耗的工作原理(库函数):/file/20214979
第37讲红外遥控的工作原理:/file/20216279
第38讲PS2的工作原理:/file/20215431
第39讲I2C的工作原理:/file/20212859
第41讲STM32的SPI的工作原理(库函数):/file/20203539
第42讲汉字的显示原理:/file/20154843
第43讲PWM的工作原理:/file/20205881
第44讲PWM的工作原理(库函数):/file/20206838
第45讲独立看门狗的原理:/file/20207767
第46讲独立看门狗的工作原理(库函数):/file/20155736
光盘资料:智芯STM32开发板资料光盘(上):/d/CWLNWSFNJELX。