对数函数的概念精品教案
对数函数的概念优秀教学设计

对数函数的概念优秀教学设计对数函数的概念一、概念介绍对数函数是高中数学中的重要概念之一,它是指以某个正数为底数,另一个正数为真数的对数值。
通常用log表示,其中底数可以是任何正实数,但不能等于1。
对于同一个底数,不同的真数所得到的对数值不同。
二、常见符号在学习对数函数时,需要掌握一些常见符号:1. log:表示以10为底的对数函数。
2. ln:表示以e(自然常数)为底的对数函数。
3. a:表示底数。
4. x:表示真数。
5. y:表示对数值。
三、基本性质在学习对数函数时,需要掌握其基本性质:1. 对于任意正实数a和b(a≠1),有loga(ab)=loga(a)+loga(b)。
2. 对于任意正实数a和b(a≠1),有loga(bn)=nloga(b)。
3. 对于任意正实数a和b(a≠1),有loga(b)=ln(b)/ln(a)。
四、教学设计1. 导入环节教师可以通过提问引导学生回忆一些相关知识点,如指数组成、指幂运算等。
然后再让学生思考如何表示一个数的大小,引出对数函数的概念。
2. 概念讲解教师可以通过实例讲解对数函数的概念,例如:log2(8)=3,表示以2为底,8的对数值为3。
同时,教师还可以引导学生体会不同底数、不同真数所得到的对数值的差异。
3. 符号讲解教师可以通过实例讲解常见符号的含义和使用方法,并鼓励学生在课下多进行练习。
4. 基本性质讲解教师可以通过实例讲解对数函数的基本性质,并鼓励学生在课下多进行练习。
5. 综合应用教师可以设计一些综合应用题目,引导学生运用对数函数求解实际问题。
例如:甲、乙两人开始从A地出发,向B地行驶。
甲每小时行驶50公里,乙每小时行驶60公里。
已知甲比乙晚1小时到达B地,请问A、B两地之间的距离是多少?(答案:300公里)6. 总结归纳教师可以通过提问、小结等方式检查学生对于对数函数概念、符号和基本性质等方面的掌握情况,并鼓励学生在课下多进行练习。
五、教学效果评价教师可以通过作业、小测验等方式检查学生对于对数函数概念、符号和基本性质等方面的掌握情况,并及时给予反馈和指导。
对数及对数函数教案8篇

写教案能帮助教师更好地安排课堂教学时间,教案要结合实际的教学进度和学生的学习能力,才能更好地帮助学生提高学习效果,下面是范文社小编为您分享的对数及对数函数教案8篇,感谢您的参阅。
对数及对数函数教案篇1【学习目标】一、过程目标1通过师生之间、学生与学生之间的互相交流,培养学生的数学交流能力和与人合作的精神。
2通过对对数函数的学习,树立相互联系、相互转化的观点,渗透数形结合的数学思想。
3通过对对数函数有关性质的研究,培养学生观察、分析、归纳的思维能力。
二、识技能目标1理解对数函数的概念,能正确描绘对数函数的图象,感受研究对数函数的意义。
2掌握对数函数的性质,并能初步应用对数的性质解决简单问题。
三、情感目标1通过学习对数函数的概念、图象和性质,使学生体会知识之间的有机联系,激发学生的.学习兴趣。
2在教学过程中,通过对数函数有关性质的研究,培养观察、分析、归纳的思维能力以及数学交流能力,增强学习的积极性,同时培养学生倾听、接受别人意见的优良品质。
教学重点难点:1对数函数的定义、图象和性质。
2对数函数性质的初步应用。
教学工具:多媒体学前准备】对照指数函数试研究对数函数的定义、图象和性质。
对数及对数函数教案篇2对数函数及其性质教学设计1.教学方法建构主义学习观,强调以学生为中心,学生在教师指导下对知识的主动建构。
它既强调学习者的认知主体作用,又不忽视教师的指导作用。
高中一年级的学生正值身心发展的过渡时期,思维活跃,具有一定的独立性,喜欢新鲜事物,敢于大胆发表自己的见解,不过思维还不是很成熟.在目标分析的基础上,根据建构主义学习观,及学生的认知特点,我拟采用“探究式”教学方法。
将一节课的核心内容通过四个活动的形式引导学生对知识进行主动建构。
其理论依据为建构主义学习理论。
它很好地体现了“学生为主体,教师为主导,问题为主线,思维为主攻”的“四为主”的教学思想。
2.学法指导新课程强调“以学生发展为核心”,强调培养学生的自主探索能力与合作学习能力。
高一数学教案:对数函数2篇

高一数学教案:对数函数高一数学教案:对数函数精选2篇(一)教学目标:1. 了解对数函数的定义和性质。
2. 掌握对数函数的图像和性质。
3. 能够解决与对数函数相关的问题。
4. 培养学生的数学思维和解决问题的能力。
教学重点:1. 对数函数的定义和性质。
2. 对数函数的图像和性质。
教学难点:1. 对数函数的图像和性质。
2. 解决与对数函数相关的问题。
教学方法:1. 归纳法:通过观察和总结,引出对数函数的定义和性质。
2. 演绎法:通过例题分析,引导学生掌握对数函数的图像和性质。
3. 实例法:通过练习实例,训练学生解决与对数函数相关的问题的能力。
教学过程:Step 1:引入对数函数引导学生回顾指数函数的定义和性质,简要介绍对数函数与指数函数的关系。
Step 2:对数的定义通过观察指数运算的性质,引出对数运算的定义和性质。
例如:a^x = b 等价于 x = log_a bStep 3:对数函数的定义和性质介绍对数函数的定义和性质,包括:- 对数函数的定义:y = log_a x,其中 a > 0 且 a ≠ 1。
- 对数函数的性质:对数函数的定义域为 x > 0,值域为实数集,函数图像在直线 y = x 上,且经过点 (1, 0)。
Step 4:对数函数的图像通过例题和计算,了解对数函数的图像特点,包括:- 当 0 < a < 1 时,对数函数是递减函数,图像从正向下方弯曲。
- 当 a > 1 时,对数函数是递增函数,图像从负向上方弯曲。
- 当 a = 1 时,对数函数是常函数 y = 0。
Step 5:对数函数的性质通过例题和计算,掌握对数函数的性质,包括:- 对数函数与指数函数互为反函数,即 log_a(a^x) = x 和 a^(log_a x) = x。
- 对数函数的性质 log_a(x * y) = log_a x + log_a y,log_a(x / y) = log_a x - log_a y,log_a(x^n) = n * log_a x。
《对数函数》教学设计(精品)

《对数函数》教学设计(精品)对数函数教学设计(精品)1. 引言对数函数是高中数学教学中重要的内容之一。
它不仅在数学领域有广泛的应用,而且在其他学科中也扮演着重要的角色。
本教学设计旨在帮助学生全面理解和掌握对数函数的基本概念、性质和应用。
2. 研究目标- 了解对数函数的定义和基本性质- 掌握对数函数的图像、变换和反函数- 熟练运用对数函数解决实际问题3. 教学内容3.1 对数函数的定义和基本性质- 介绍对数函数的定义和符号表示方法- 阐述对数函数的基本性质,如对数函数的定义域、值域和增减性质等3.2 对数函数的图像和变换- 绘制对数函数的基本图像,解释图像的特点和变化规律- 引导学生分析对数函数的平移、伸缩、翻转等变换方式3.3 对数函数的反函数- 介绍对数函数与指数函数的关系- 推导对数函数的反函数,并解释反函数的性质和图像3.4 对数函数的应用- 阐述对数函数在实际问题中的应用,如指数增长、财务管理和科学计算等- 引导学生运用对数函数解决实际问题,并进行相关练和讨论4. 教学策略- 采用启发式教学方法,引导学生积极思考和发现对数函数的性质和规律- 结合具体实例和案例分析,加深学生对对数函数的理解和应用能力- 利用多媒体技术辅助教学,展示对数函数的图像和实际应用场景- 组织小组活动和讨论,促进学生合作研究和问题解决能力5. 教学评估- 设计对数函数的练和测验,测试学生对于对数函数概念和性质的理解程度- 观察学生在实际问题中运用对数函数解决能力的表现- 利用小组合作评价学生在讨论和合作研究中的参与和贡献程度6. 教学资源- 教科书:XXX- 多媒体教学软件:XXX- 实际应用案例:XXX7. 教学总结通过本次教学,学生将全面了解对数函数的定义、性质和应用,提升对数函数的理解和解决实际问题的能力。
同时,学生将培养合作研究和问题解决的能力,为后续数学研究打下良好基础。
以上为《对数函数》教学设计(精品)的纲要,具体教学细节可以根据实际情况进行调整和补充。
51对数函数的概念教案

《§5.1对数函数的概念》教案教学目标:1.通过具体实例,直观了解对数函数模型所刻画的数量关系。
2.通过对指数函数的研究,利用对数的概念,初步理解y=log2x是一个对数函数。
3.把函数y=㏒2 x 推广到y=㏒ax (a>0,a≠1) ,初步了解对数函数的概念。
体会对数函数是一类重要的函数模型。
4.通过对函数x=log2 y与y=log2 x 的图像关系的研究,探索对数函数的定义域和值域。
5.了解指数函数与对数函数y=㏒ax (a>0,a≠1)互为反函数。
教学重点与难点1.理解对数函数的概念。
2.体会函数与函数y=㏒ax (a>0,a≠1) 图像间的变换关系,以及它们之间互为反函数的关系。
3.对数函数的定义域与值域的理解。
教学过程一.实例分析§1中,我们了解到细胞分裂的次数与细胞个数之间的关系可以用正整数指数函数表示。
当y(即细胞个数)达到1万,或10万,求分裂的次数,则可得到分裂次数x和细胞个数y之间的函数关系y=㏒2 x.二.提出问题:对于一般的指数函数中的两个变量,能不能把y当作自变量,使得x是y的函数?师生活动:探索研究1、观察指数函数的图像,回答问题:(1)对于x的每一个确定的值,y都有唯一确定的值和它对应;(2)当时,。
就是说,指数函数反映了数集R与数集{y | y > 0 }之间存在一一对应的关系。
(3)对于任意的y∈(0,+∞),在R中都有唯一确定的数x满足_________ .(4)如果把y当作自变量,那么x 就是______ 的函数,由对数的定义可知,这个函数就是______________.2、习惯上,自变量用x表示,所以把函数x=㏒2y 写成y=㏒2x,那么函数、x=㏒2y 、y=㏒2x 之间有何关系呢?(1) 由对数定义可知,对数式x=㏒2y 是指数函数式的另一种表达形式,其本质相同,对数式中的真数y就是指数函数式中的函数值y,而对数x是指数函数中的指数x,故它们的图像是同一条曲线。
高一数学对数函数教案5篇

高一数学对数函数教案5篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如职场文书、书信函件、教学范文、演讲致辞、心得体会、学生作文、合同范本、规章制度、工作报告、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of practical materials for everyone, such as workplace documents, correspondence, teaching samples, speeches, insights, student essays, contract templates, rules and regulations, work reports, and other materials. If you want to learn about different data formats and writing methods, please pay attention!高一数学对数函数教案5篇高一数学对数函数教案1教学目标1.使学生理解函数单调性的概念,并能判断一些简单函数在给定区间上的单调性.2.通过函数单调性概念的教学,培养学生分析问题、认识问题的能力.通过例题培养学生利用定义进行推理的逻辑思维能力.3.通过本节课的教学,渗透数形结合的数学思想,对学生进行辩证唯物主义的教育.教学重点与难点教学重点:函数单调性的概念.教学难点:函数单调性的判定.教学过程设计一、引入新课师:请同学们观察下面两组在相应区间上的函数,然后指出这两组函数之间在性质上的主要区别是什么?(用投影幻灯给出两组函数的图象.)第一组:第二组:生:第一组函数,函数值y随X的增大而增大;第二组函数,函数值y随X的增大而减小.师:(手执投影棒使之沿曲线移动)对.他(她)答得很好,这正是两组函数的主要区别.当X变大时,第一组函数的函数值都变大,而第二组函数的函数值都变小.虽然在每一组函数中,函数值变大或变小的方式并不相同,但每一组函数却具有一种共同的性质.我们在学习一次函数、二次函数、反比例函数以及幂函数时,就曾经根据函数的图象研究过函数的函数值随自变量的变大而变大或变小的性质.而这些研究结论是直观地由图象得到的.在函数的集合中,有很多函数具有这种性质,因此我们有必要对函数这种性质作更进一步的一般性的讨论和研究,这就是我们今天这一节课的内容.(点明本节课的内容,既是曾经有所认识的,又是新的知识,引起学生的注意.)二、对概念的分析(板书课题:)师:请同学们打开课本第51页,请XX同学把增函数、减函数、单调区间的定义朗读一遍.(学生朗读.)师:好,请坐.通过刚才阅读增函数和减函数的定义,请同学们思考一个问题:这种定义方法和我们刚才所讨论的函数值y随自变量X的增大而增大或减小是否一致?如果一致,定义中是怎样描述的?生:我认为是一致的.定义中的“当X1<X2时,都有f(X(1)<f(X(2)”描述了y随X的增大而增大;“当X1<X2时,都有f(X(1)>f(X(2)”描述了y随X的增大而减少.师:说得非常正确.定义中用了两个简单的不等关系“X1<X2”和“f(X(1)<f(X(2)或f(X(1)>f(X(2)”,它刻划了函数的单调递增或单调递减的性质.这就是数学的魅力!(通过教师的情绪感染学生,激发学生学习数学的兴趣.)师:现在请同学们和我一起来看刚才的两组图中的第一个函数y=f1X)和y=f2(X)的图象,体会这种魅力.(指图说明.)师:图中y=f1X)对于区间[a,b]上的任意X1.X2.当X1<X2时,都有f1X(1)<f1X)因此y=f1X)在区间[a,b]上是单调递增的,区间[a,b]是函数y=f1X)的单调增区间;而图中y=f2(X)对于区间[a,b]上的任意X1.X2.当X1<X2时,都有f2(X(1)>f2(X(2)因此y=f2(X)在区间[a,b]上是单调递减的,区间[a,b]是函数y=f2(X)的单调减区间.(教师指图说明分析定义,使学生把函数单调性的定义与直观图象结合起来,使新旧知识融为一体,加深对概念的理解.渗透数形结合分析问题的数学思想方法.)师:因此我们可以说,增函数就其本质而言是在相应区间上较大的自变量对应。
对数函数教学设计(精选10篇)

对数函数教学设计对数函数教学设计(精选10篇)作为一名教学工作者,时常需要用到教学设计,教学设计是一个系统设计并实现学习目标的过程,它遵循学习效果最优的原则吗,是课件开发质量高低的关键所在。
我们该怎么去写教学设计呢?以下是小编为大家收集的对数函数教学设计,仅供参考,欢迎大家阅读。
对数函数教学设计篇1教学目标:使学生掌握对数形式复合函数的单调性的判断及证明方法,掌握对数形式复合函数的奇偶性的判断及证明方法,培养学生的数学应用意识;认识事物之间的内在联系及相互转化,用联系的观点分析问题、解决问题.教学重点:复合函数单调性、奇偶性的讨论方法.教学难点:复合函数单调性、奇偶性的讨论方法.教学过程:[例1]设loga23 <1,则实数a的取值范围是A.0<a<23B. 23 <a<1C.0<a<23 或a>1D.a>23解:由loga23 <1=logaa得(1)当0<a<1时,由y=logax是减函数,得:0<a<23(2)当a>1时,由y=logax是增函数,得:a>23 ,∴a>1综合(1)(2)得:0<a<23 或a>1 答案:C[例2]三个数60.7,0.76,log0.76的大小顺序是A.0.76<log0.76<60.7B.0.76<60.7<log0.76C.log0.76<60.7<0.76D.log0.76<0.76<60.7解:由于60.7>1,0<0.76<1,log0.76<0 答案:D[例3]设0<x<1,a>0且a≠1,试比较|loga(1-x)|与|loga(1+x)|的大小解法一:作差法|loga(1-x)|-|loga(1+x)|=| lg(1-x)lga |-| lg(1+x)lga | =1|lga| (|lg(1-x)|-|lg(1+x)|)∵0<x<1,∴0<1-x<1<1+x∴上式=-1|lga| [(lg(1-x)+lg(1+x)]=-1|lga| lg(1-x2)由0<x<1,得lg(1-x2)<0,∴-1|lga| lg(1-x2)>0,∴|loga(1-x)|>|loga(1+x)|解法二:作商法lg(1+x)lg(1-x) =|log(1-x)(1+x)|∵0<x<1 ∴0<1-x<1+x∴|log(1-x)(1+x)|=-log(1-x)(1+x)=log(1-x)11+x由0<x<1 ∴1+x>1,0<1-x2<1∴0<(1-x)(1+x)<1 ∴11+x >1-x>0∴0<log(1-x) 11+x <log(1-x)(1-x)=1∴|loga(1-x)|>|loga(1+x)|解法三:平方后比较大小∵loga2(1-x)-loga2(1+x)=[loga(1-x)+loga(1+x)][loga (1-x)-loga(1+x)]=loga(1-x2)loga1-x1+x =1|lg2a| lg(1-x2)lg1-x1+x∵0<x<1,∴0<1-x2<1,0<1-x1+x <1∴lg(1-x2)<0,lg1-x1+x <0∴loga2(1-x)>loga2(1+x)即|loga(1-x)|>|loga(1+x)|解法四:分类讨论去掉绝对值当a>1时,|loga(1-x)|-|loga(1+x)|=-loga(1-x)-loga(1+x)=-loga(1-x2)∵0<1-x<1<1+x,∴0<1-x2<1∴loga(1-x2)<0,∴-loga(1-x2)>0当0<a<1时,由0<x<1,则有loga(1-x)>0,loga(1+x)<0∴|loga(1-x)|-|loga(1+x)|=|loga(1-x)+loga(1+x)|=loga(1-x2)>0∴当a>0且a≠1时,总有|loga(1-x)|>|loga(1+x)|[例4]已知函数f(x)=lg[(a2-1)x2+(a+1)x+1],若f(x)的定义域为R,求实数a的取值范围解:依题意(a2-1)x2+(a+1)x+1>0对一切x∈R恒成立.当a2-1≠0时,其充要条件是:a2-1>0△=(a+1)2-4(a2-1)<0 解得a<-1或a>53 又a=-1,f(x)=0满足题意,a=1不合题意.所以a的取值范围是:(-∞,-1]∪(53 ,+∞)[例5]已知f(x)=1+logx3,g(x)=2logx2,比较f(x)与g(x)的大小解:易知f(x)、g(x)的定义域均是:(0,1)∪(1,+∞)f(x)-g(x)=1+logx3-2logx2=logx(34 x).①当x>1时,若34 x>1,则x>43 ,这时f(x)>g(x).若34 x<1,则1<x<43 ,这时f(x)<g(x)②当0<x<1时,0<34 x<1,logx34 x>0,这时f(x)>g(x)故由(1)、(2)可知:当x∈(0,1)∪(43 ,+∞)时,f(x)>g(x)当x∈(1,43 )时,f(x)<g(x)[例6]解方程:2 (9x-1-5)= [4(3x-1-2)]解:原方程可化为(9x-1-5)= [4(3x-1-2)]∴9x-1-5=4(3x-1-2) 即9x-1-43x-1+3=0∴(3x-1-1)(3x-1-3)=0 ∴3x-1=1或3x-1=3∴x=1或x=2 经检验x=1是增根∴x=2是原方程的根.[例7]解方程log2(2-x-1) (2-x+1-2)=-2解:原方程可化为:log2(2-x-1)(-1)log2[2(2-x-1)]=-2即:log2(2-x-1)[log2(2-x-1)+1]=2令t=log2(2-x-1),则t2+t-2=0解之得t=-2或t=1∴log2(2-x-1)=-2或log2(2-x-1)=1解之得:x=-log254 或x=-log23对数函数教学设计篇2一、说教材1、地位和作用本章学习是在学生完成函数的第一阶段学习(初中)的基础上,进行第二阶段的函数学习。
对数函数的概念教案

对数函数的概念教案教学内容:对数函数的概念教学目标:1. 理解对数函数的定义和特点。
2. 掌握对数函数的图像和性质。
3. 能够解决与对数函数相关的问题。
教学步骤:步骤一:引入对数函数的概念1. 首先让学生回顾指数函数的概念和性质。
2. 提出一个问题:如何求解指数方程$x^a=b$,其中$a$和$b$为已知的实数。
3. 引出对数函数的概念:对数函数是指数函数的逆运算,它可以表示为$\log_a{b}=x$,其中$a$为底数,$b$为底数为$a$的指数的真数,$x$为对数值。
4. 说明对数函数和指数函数之间的关系,即$\log_a{b}=x$等价于$a^x=b$。
5. 强调对数函数的定义域为正实数集,值域为实数集。
步骤二:对数函数的图像和性质1. 给出对数函数$y=\log_a{x}$的图像,其中$a>0$且$a\neq1$。
2. 分析对数函数的特点:(可以使用图像来帮助分析)a. 对数函数的图像在$x$轴的正半轴上,从左向右递增。
b. 对数函数的图像在$a=1$时不存在。
c. 对数函数的图像关于直线$y=x$对称。
d. 对数函数在$a>1$时是增函数,在$0<a<1$时是减函数。
步骤三:解决与对数函数相关的问题1. 给出一些与对数函数相关的问题,例如解对数方程、求对数函数的定义域和值域等。
2. 引导学生通过对数函数的性质和定义进行问题的求解。
步骤四:练习和总结1. 给学生一些练习题,测试他们对对数函数的掌握情况。
2. 结合学生的解题经验,总结对数函数的概念、图像和性质。
教学资源:1. PowerPoint演示文稿或黑板。
2. 课堂练习题。
评估方式:1. 课堂参与度和回答问题的质量。
2. 课后布置的作业完成情况。
3. 小测或考试。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题: 对数函数的定义
教学目标:
知识与技能:通过具体实例,直观了解对数函数模型所刻画的数量关系,初
步理解对数函数的概念,体会对数函数是一类重要的函数模
型;
过程与方法:能借助计算器或计算机画出具体对数函数的图象,探索并了解
对数函数的单调性与特殊点;
情感态度价值观:通过比较、对照的方法,引导学生结合图象类比指数函
数,探索研究对数函数的性质,培养学生数形结合的思想方
法,学会研究函数性质的方法.
教学重点:掌握对数函数的图象和性质.
教学难点:对数函数的定义,对数函数的图象和性质及应用.
教学过程:
一、 创设问题情景
1.(知识方法准备)
○
1 学习指数函数时,对其性质研究了哪些内容,采取怎样的方法? 设计意图:结合指数函数,让学生熟知对于函数性质的研究内容,熟练研究函数性质的方法——借助图象研究性质.
○
2 对数的定义及其对底数的限制. 设计意图:为讲解对数函数时对底数的限制做准备.
2.(引例)
教材P 81引例
P 的取
值,通过对应关系P t 2
15730log =,生物死亡年数t 都有唯一的值与之对应,从而t 是P 的函数” .(进而引入对数函数的概念)
二、 新结论的探究
(一)对数函数的概念
1.定义:函数0(log >=a x y a ,且)1≠a 叫做对数函数(logarithmic function )
其中x 是自变量,函数的定义域是(0,+∞).
注意:○
1 对数函数的定义与指数函数类似,都是形式定义,注意辨别.如:x y 2log 2=,5log 5x y = 都不是对数函数,而只能称其为对数型函数.
○
2 对数函数对底数的限制:0(>a ,且)1≠a . 巩固练习:(教材P 68例2、3)
三、探索开发新结论
对数函数的图象和性质
问题:你能类比前面讨论指数函数性质的思路,提出研究对数函数性质的内容和方法吗?
研究方法:画出函数的图象,结合图象研究函数的性质.
研究内容:定义域、值域、特殊点、单调性、最大(小)值、奇偶性. 探索研究:
○
1 在同一坐标系中画出下列对数函数的图象;(可用描点法,也可借助科学计算器或计算机)
(1) x y 2log =
(2) x y 2
1log =
(3) x y 3log =
(4) x y 3
1log =
○
2 类比指数函数图象和性质的研究,研究对数函数的性质并填写如下表格:
图象特征
函数性质 1a > 1a 0<<
1a > 1a 0<< 函数图象都在y 轴右侧
函数的定义域为(0,+∞) 图象关于原点和y 轴不对称
非奇非偶函数 向y 轴正负方向无限延伸
函数的值域为R 函数图象都过定点(1,1)
11=α 自左向右看, 图象逐渐上升 自左向右看,
图象逐渐下降
增函数 减函数 第一象限的图象纵坐标都大第一象限的图
象纵坐标都大0log ,1>>x x a 0log ,10><<x x a
验证开发新结论:思考底数a 是如何影响函数x y a log =的.(学生独立思考,师生共同总结)
规律:在第一象限内,自左向右,图象对应的对数函数的底数逐渐变大.
(五)典型例题
例1.(教材P 83例7).例1 求下列函数的定义域:(其中a>0,a ≠1)
(1) y=log a x 2 (2)y=log a
(4-x) 解:()102 x ()042 x -
00 x x 或∴ x ∴ 4
说明:本例主要考察学生对对数函数定义中底数和定义域的限制,加深对对数函数的理解.
练习1 求函数y=log a (9-x 2)的定义域
例2 比较下列各组数中两个值的大小:
(1) log 23.4 , log 28.5 ⑵ log 0.31.8 , log 0.32.7
⑶ log a 5.1 , log a 5.9 ( a >0 , 且a ≠1 )
说明:本例主要考察学生利用对数函数的单调性“比较两个数的大小”的方法,熟悉对数函数的性质,渗透应用函数的观点解决问题的思想方法.
注意:本例应着重强调利用对数函数的单调性比较两个对数值的大小的方法,规范解题格式.
巩固练习:练习2: 比较下列各题中两个值的大小:
⑴ log 106 log 108 ⑵ log 0.56 log 0.54
⑶ log 0.10.5 log 0.10.6 ⑷ log 1.50.6 log 1.50.4
练习3:已知下列不等式,比较正数m ,n 的大小:
(1) log 3 m < log 3 n (2) log 0.3 m > log 0.3 n
(3) log a m < log a n (0<a<1)
(4) log a m > log a n (a>1)
.
六、课时小结
本小节的目的要求是掌握对数函数的概念、图象和性质.在理解对数函数的定义的基础上,掌握对数函数的图象和性质是本小节的重点.
七、课后作业
1.必做题:教材P86习题2.2(A组)第7、8、9、12题.
2.选做题:教材P86习题2.2(B组)第5题.
八、板书设计。