正余弦函数的图象
合集下载
正弦函数、余弦函数图像与性质

x
0
sinx 0
1 1+sinx y
2
1
o
2
-1
2
1 2
2
3
2
2
0
-1
0
1
0
1
步骤:
y=1+sinx,x[0, 2]
1.列表 2.描点 3.连线
3
2
x
2 y=sinx,x[0, 2]
正弦、余弦函数的图象
例2 画出函数y= - cosx,x[0, 2]的简图:
x
0
2
3
2
2
cosx 1
0
-1
0
1
- cosx -1
(
((((((,,0,00),)0,),(003)2))(32,(-312,(1)32,)1((3,)3(21(23(323)2,2,1-,1,-),-1-)11)))
2 ,0) x
2 ,0)
( 2 ,0) ( 2 ,0) ( 2 ,0) ( 2 ,0) ( 2 ,0) ( 2 ,0)
正弦、余弦函数的图象
y
五点画图法
1
(
2
,1)
( 2 ,1)
( ,0)
( 2 ,0)
五点法——
2
(
(0,0)o
(0,0)
2
(0,0)
-1
(0,0)
(0,0) (0,0) (0,0) (0,0) (0,0)
2 ,1)
(
( 2 ,1)
(
2
,1)
( 2 ,1)
( 2 ,1)
( (
2
2
,1) ,1)
,0) 3
(
正弦余弦正切函数图象

2
1-
643 34 6
y 3 1 3 3 1 3 0
3
3
o
1 -
2
-
3
2
x
2
(2) 描点
2-
(3) 连线
正切函数图像: ytanx,
y
xxR,且 xk2,kZ
思考:
2
正切函数 ytanx
1
图像是否有渐近线?
3 2
2
o
1 2
3 2
x
渐近线方程:
2
xk,(kZ)
2
二、三角函数图象的性质
上平移一个
单位得到的
.●
2
x
y=sinx
(2)按五个关键点列表
x
0
2
3 2
2
cosx 1 0 -1 0 1
-cosx
.y
1
o
-1 ●
-1 0 1 0 -y1= -cosx和
y=cosx 关
. y= cosx x [0,2 ] 于X轴对称 ●
.●
2
.
.3●
2
2
●
x
y= - cosx x [0, 2]
y=cosx
左移
2
y=cosx y=sinx
余弦曲线
返回目录
二、正弦函数的“五点画图法”
(0,0)、( , 1)、( ,0)、( 3 ,-1)、 (2 ,0)
2
2
y
1
●
●
0Hale Waihona Puke 2-1●3
2
●
●
2
x
y
●
1
●
0
2
-1
1-
643 34 6
y 3 1 3 3 1 3 0
3
3
o
1 -
2
-
3
2
x
2
(2) 描点
2-
(3) 连线
正切函数图像: ytanx,
y
xxR,且 xk2,kZ
思考:
2
正切函数 ytanx
1
图像是否有渐近线?
3 2
2
o
1 2
3 2
x
渐近线方程:
2
xk,(kZ)
2
二、三角函数图象的性质
上平移一个
单位得到的
.●
2
x
y=sinx
(2)按五个关键点列表
x
0
2
3 2
2
cosx 1 0 -1 0 1
-cosx
.y
1
o
-1 ●
-1 0 1 0 -y1= -cosx和
y=cosx 关
. y= cosx x [0,2 ] 于X轴对称 ●
.●
2
.
.3●
2
2
●
x
y= - cosx x [0, 2]
y=cosx
左移
2
y=cosx y=sinx
余弦曲线
返回目录
二、正弦函数的“五点画图法”
(0,0)、( , 1)、( ,0)、( 3 ,-1)、 (2 ,0)
2
2
y
1
●
●
0Hale Waihona Puke 2-1●3
2
●
●
2
x
y
●
1
●
0
2
-1
新教材人教A版5.4.1正弦函数余弦函数的图象课件(44张)

【解题策略】 “五点法”画函数y=Asin x+b(A≠0)在[0,2π]上的简图的步骤 (1)列表
(2)描点:在平面直角坐标系中描出下列五个点:(0,y1),(
2
,
y 3) ,
(π,y3),(
3 2
,
y
4 ) ,(2π,y5).
(3)连线:用光滑的曲线将描出的五个点连接起来.
【跟踪训练】 请补充完整下面用“五点法”作出y=-sin x(0≤x≤2π)图象的列表.
(ⅰ)画出正弦曲线在[0,2π]上的图象的五个关键点(0,0),__2____,
(π,0),_(_32_ _, _ _1 )_,(2π,0),用光滑的曲线连接;
(ⅱ)将所得图象向左、向右平行移动(每次2π个单位长度).
(3)本质:正弦曲线是正弦函数的图形表示,是正弦函数的一种直观表示.
(4)应用:根据正弦曲线,能帮助学生更直观地认识正弦函数,进而根据正弦
5.4.1 正弦函数、余弦函数的 图象
必备知识·自主学习
(1)正弦曲线 正弦函数y=sin x,x∈R的图象叫正弦曲线.
(2)正弦函数图象的画法 ①几何法: (ⅰ)利用正弦线画出y=sin x,x∈[0,2π]的图象;
(ⅱ)将图象向左、向右平行移动(每次2π个单位长度).
②“五点法”:
( ,1 )
x∈[0,2π]与y=sin x,x∈[2π,4π]的图象 ( )
A.重合
B.形状相同,位置不同
C.关于y轴对称
D.形状不同,位置不同
【解析】选B.根据正弦曲线的作法可知函数y=sin x,x∈[0,2π]与y=
sin x,x∈[2π,4π]的图象只是位置不同,形状相同.
4.如图是下列哪个函数的图象 ( ) A.y=1+sin x,x∈[0,2π] B.y=1+2sin x,x∈[0,2π] C.y=1-sin x,x∈[0,2π] D.y=1-2sin x,x∈[0,2π] 【解析】选C.把 ( , 这0 ) 一点代入选项检验,即可排除A、B、D.
4.8正弦、余弦函数的图象

2 ,1)
(
( 2 ,1)
(
2
,1)
( 2 ,1)
( 2 ,1)
( (
2
2
,1) ,1)
,0) 3
(
2
( ,0) 2
(
((((((,,0,00),)0,),(003)2))(32,(-312,(1)32,)1((3,)3(21(23(323)2,2,1-,1,-),-1-)11)))
2 ,0) x
-
o
6
3
2
2 3
5 6
7 6
4 3
3 2
5 3
11 6
2
x
-
-
-1 -
l
24-3-99
正弦、余弦函数的图象
三角函数
三角函数线
正弦函数 sin=MP 正弦线 MP
余弦函数 cos=OM 余弦线 OM
正切函数 tan=AT 正切线 AT
y PT
注意:三角
-1
O
M A(1,0) x
函数线是有
向线段!
正弦、余弦函数的图象
-
-
-
-
o1
M-1 1A
o
6
3
2
2 3
5 6
7 6
4 3
3 2
5 3
11 6
2
x
-1 -
y
Q1
1-
Q2
-
o1 M2 M1-1
-
o
6
3
2
2 3
5 6
7 6
4 3
3 2
5 3
11 6
2
x
-
-
-1 -
正弦函数、余弦函数的图像(完整)

(
3 2
,1)
(1) 列表(列出对图象形状起关键作用的五点坐标)
(2) 描点(定出五个关键点)
(3) 连y线(用光滑的曲线顺次连结五个点)
图象的最高点
1-
-
(0,1) (2 ,1)
与x轴的交点
-
-1
o
6
2
3
2 3
5
7
6
6
4 3
3 5
2
3
11 6
2
x
(
2
,0)
(
3 2
,0)
-1 -
图象的最低点 ( ,1)
三角函数
三角函数线
正弦函数 余弦函数 正切函数
sin=MP
正弦线MP cos=OM 余弦线OM tan=AT 正切线AT
y PT
-1
O
M A(1,0) x
正弦函数的图象
问题:如何作出正弦函数的图象?
途径:利用单位圆中正弦线来解决。
描图:用光滑曲线
y
B
1
将这些正弦线的 终点连结起来
A
O1
O
2
4
5
2
x
4
5 6 x
正弦、余弦函数的图象
如何由正弦函数图像得y 到余弦函数图像?
1
-4 -3
-2
- o
-1
2
3
4
5 6 x
正弦函数的图象
y=cosx=sin(x+ ), xR
2
余弦函数的图象
y
1
正弦曲 线
形状完全一样 只是位置不同
余弦曲 线
-4 -3
-2
- o
-1
§1.4.1正弦函数、余弦函数的图象

学习目标
1.了解正弦函数、余弦函数的图象.(重点) 2.会用五点法画正弦函数、余弦函数的图象.(难点、易错点) 3.能利用正、余弦函数的图象解决简单问题.(重点)
问题:如何作出正弦函数 y=sinx 的图象? 途径:利用单位圆中正弦线(表示正弦)来解决。 回顾知识 sinα、cosα、tanα的几何表示.
● ● ● ● ● ●
●
x
思考:如何画函数y =sinx(x∈R)的图象?
y=sinx x[0,2] sin(x+2k)=sinx, kZ y
y=sinx xR
向左、向右平行移动(每次 2π 个单位长度)
1
4
3
2
1
o
2
3
4
x
正弦函数y=sinx, xR的图象叫正弦曲线.
利用正弦、余弦函数的图像解不等式
3 例4、求解不等式 sin x ³ . > 2 y
y sin x
P2
1
P1
y =
3 2
O
3
p 2
2 3
π
3p 2
2π x
-1
2 (2k , 2k )k Z 3 3
1 练习、写出使 sinx≥2(x∈R)成立的 x 的取值集合.
三、作余弦函数 y=cosx (x∈R) 的图象
思考:如何将余弦函数用诱导公式写成正弦函数?
π sin( x) y cosx 2
注:余弦曲线的图象可以通过将正弦曲线 π 向左平移 2个单位长度而得到。余弦函数 的图象叫做余弦曲线。
正弦、余弦函数的图象
y
1 -4 -3 -2 -
o
-1
2
1.了解正弦函数、余弦函数的图象.(重点) 2.会用五点法画正弦函数、余弦函数的图象.(难点、易错点) 3.能利用正、余弦函数的图象解决简单问题.(重点)
问题:如何作出正弦函数 y=sinx 的图象? 途径:利用单位圆中正弦线(表示正弦)来解决。 回顾知识 sinα、cosα、tanα的几何表示.
● ● ● ● ● ●
●
x
思考:如何画函数y =sinx(x∈R)的图象?
y=sinx x[0,2] sin(x+2k)=sinx, kZ y
y=sinx xR
向左、向右平行移动(每次 2π 个单位长度)
1
4
3
2
1
o
2
3
4
x
正弦函数y=sinx, xR的图象叫正弦曲线.
利用正弦、余弦函数的图像解不等式
3 例4、求解不等式 sin x ³ . > 2 y
y sin x
P2
1
P1
y =
3 2
O
3
p 2
2 3
π
3p 2
2π x
-1
2 (2k , 2k )k Z 3 3
1 练习、写出使 sinx≥2(x∈R)成立的 x 的取值集合.
三、作余弦函数 y=cosx (x∈R) 的图象
思考:如何将余弦函数用诱导公式写成正弦函数?
π sin( x) y cosx 2
注:余弦曲线的图象可以通过将正弦曲线 π 向左平移 2个单位长度而得到。余弦函数 的图象叫做余弦曲线。
正弦、余弦函数的图象
y
1 -4 -3 -2 -
o
-1
2
正弦函数、余弦函数的图象 课件
〔跟踪练习1〕用“五点法”画出下列函数在区间[0,2π]上的简图. (1)y=2-sinx;(2)y=cosx-1.
[解析] (1)按五个关键点列表:
x
0
π 2
π
3π 2
2π
sinx
0
1
0
-1
0
2-sinx
2
1
2
3
2
描点并将它们用光滑的曲线连接起来(如图(1)).
(2)按五个关键点列表:
x
0
π 2
利用正、余弦函数的图象解三角不等式
典例 3 画出正弦函数 y=sinx(x∈R)的简图,并根据图象写出 y≥12时 x 的 集合.
[思路分析] (1)作出 y=sinx,与 y=12的图象.(2)确定 sinx=12的 x 值.(3)确 定 sinx>12的解集.
[解析] 用“五点法”作出 y=sinx 的简图.
〔跟踪练习2〕关于三角函数的图象,有下列说法: ①y=sin|x|与y=sinx的图象关于y轴对称; ②y=cos(-x)与y=cos|x|的图象相同; ③y=|sinx|与y=sin(-x)的图象关于x轴对称; ④y=cosx与y=cos(-x)的图象关于y轴对称; 其中正确说法的序号是__②__④____.
〔跟踪练习 4〕函数 y=sinx 与 y=12x 的图象在(-π2,π2)上的交点有
A.4 个
B.3 个
C.2 个
D.1 个
( D)
π
3π 2
2π
cosx
1
0
-1
0
1
cosx-1
0
-1
-2
-1Βιβλιοθήκη 0描点并将它们用光滑的曲线连接起来(如图(2)).
《正弦函数、余弦函数的图象》三角函数精美版课件
用“五点法”作三角函数的图象
分析:构造三角不等式→画函数图象→求函数定义域
函 数
正弦函数
余弦函数
解析式
y=sin x
y=cos x
定义域
R
R
(5)作函数图象最基本的方法是什么?如果用描点法作正弦函数
y=sin x在[0,2π]内的图象,可取哪些点?
提示:作函数图象最基本的方法是描点法;用描点法作正弦函数
审题视角该方程无法用求根公式求解,且只要求得到方程根的个数,而函数y=sin x和y=lg x是基本初等函数,其图象容易画出,因此可采用数
x,cos x看作是关于变量x的函数?
形结合的方法:在同一平面直角坐标系中画出两个函数的图象,观察它们交点的个数,即得方程根的个数.
解析:因为y=cos(x+3π)=-cos x,所以其图象与余弦函数y=cos x的图象关于原点和x轴都对称.
(1)列表:
3
x
0
π
2π
2
2
sin x(或 cos x)
0(或 1) 1(或 0) 0(或-1) -1(或 0) 0(或 1)
y
y1
y2
y3
y4
(2)描点:在平面直角坐标系中描出下列五个点:
(0,y1),
π
,
2 2
,(π,y3),
3π
,
2 4
,(2π,y5).
(3)连线:用光滑的曲线将描出的五个点连接起来.
利用三角函数线解sin x>a(或cos x>a)的方法
(3)确定sin x>a(或cos x>a)的解集.
审题视角该方程无法用求根公式求解,且只要求得到方程根的个数,而函数y=sin x和y=lg x是基本初等函数,其图象容易画出,因此可采用数
分析:构造三角不等式→画函数图象→求函数定义域
函 数
正弦函数
余弦函数
解析式
y=sin x
y=cos x
定义域
R
R
(5)作函数图象最基本的方法是什么?如果用描点法作正弦函数
y=sin x在[0,2π]内的图象,可取哪些点?
提示:作函数图象最基本的方法是描点法;用描点法作正弦函数
审题视角该方程无法用求根公式求解,且只要求得到方程根的个数,而函数y=sin x和y=lg x是基本初等函数,其图象容易画出,因此可采用数
x,cos x看作是关于变量x的函数?
形结合的方法:在同一平面直角坐标系中画出两个函数的图象,观察它们交点的个数,即得方程根的个数.
解析:因为y=cos(x+3π)=-cos x,所以其图象与余弦函数y=cos x的图象关于原点和x轴都对称.
(1)列表:
3
x
0
π
2π
2
2
sin x(或 cos x)
0(或 1) 1(或 0) 0(或-1) -1(或 0) 0(或 1)
y
y1
y2
y3
y4
(2)描点:在平面直角坐标系中描出下列五个点:
(0,y1),
π
,
2 2
,(π,y3),
3π
,
2 4
,(2π,y5).
(3)连线:用光滑的曲线将描出的五个点连接起来.
利用三角函数线解sin x>a(或cos x>a)的方法
(3)确定sin x>a(或cos x>a)的解集.
审题视角该方程无法用求根公式求解,且只要求得到方程根的个数,而函数y=sin x和y=lg x是基本初等函数,其图象容易画出,因此可采用数
1.4.1 正弦、余弦函数图象
2
o -1
2
3 ] 2 2
3 2
2
x
y= cosx,x[ ,
3 例:求满足sin x 的x的范围。 2 y
1 -4 -3 -2 -
o
-1
2
3
4
5
6
x
3 练习:求满足cos x 的x的范围。 2
y
1 -4 -3 -2 -
o
-1
2
3
4
5
6
x
思考 : 下列各等式能否成立 ? 为什么? (1) 2 cos x 3 (2) sin x 0.5
2
-
y
1
-4
-3
-2
o
-1
2
3
4
5
6
x
正弦函数、余弦函数的值域:[-1,1]
你能画出函数y=|sinx|,x∈[0,2π ] 的图象吗?
y 1
O -1
π
1.4.1 正弦、余弦函数的图象
X
三角函数线:
正弦函数 余弦函数
注意:三角函数线是有 向线段!
sin=MP cos=OM tan=AT
正弦线MP 余弦线OM 正切线AT
正切函数
y
P
-1
T
O
M
A(1,0)
x
问题1:如何利用三角函数线作出正弦函数图象?
连线:用光滑曲线 将这些正弦线的 终点连结起来
y 1
2
0,
2
,
3 , , 2 2
y=cosx,x[0, 2]
o -1
2
3 2
2
x
o -1
2
3 ] 2 2
3 2
2
x
y= cosx,x[ ,
3 例:求满足sin x 的x的范围。 2 y
1 -4 -3 -2 -
o
-1
2
3
4
5
6
x
3 练习:求满足cos x 的x的范围。 2
y
1 -4 -3 -2 -
o
-1
2
3
4
5
6
x
思考 : 下列各等式能否成立 ? 为什么? (1) 2 cos x 3 (2) sin x 0.5
2
-
y
1
-4
-3
-2
o
-1
2
3
4
5
6
x
正弦函数、余弦函数的值域:[-1,1]
你能画出函数y=|sinx|,x∈[0,2π ] 的图象吗?
y 1
O -1
π
1.4.1 正弦、余弦函数的图象
X
三角函数线:
正弦函数 余弦函数
注意:三角函数线是有 向线段!
sin=MP cos=OM tan=AT
正弦线MP 余弦线OM 正切线AT
正切函数
y
P
-1
T
O
M
A(1,0)
x
问题1:如何利用三角函数线作出正弦函数图象?
连线:用光滑曲线 将这些正弦线的 终点连结起来
y 1
2
0,
2
,
3 , , 2 2
y=cosx,x[0, 2]
o -1
2
3 2
2
x
5.4.1正弦函数、余弦函数的图象(共36张PPT)
作直线 y=12,根据特殊角的正弦值,可知该直线与 y=sin x,x∈[0,2π] 图象的交点横坐标为π6和56π;作直线 y= 23,该直线与 y=sin x,x∈[0,2π] 图象的交点横坐标为π3和23π,则不等式的解集为π6,π3∪23π,56π.
1.函数 y=sin(-x),x∈[0,2π]的简图是
第五章 三角函数
5.4 三角函数的图象与性质 5.4.1 正弦函数、余弦函数的图象
数学
01
预习案 自主学习
02
探究案 讲练互动
03
测评案 达标反馈
04
应用案 巩固提升
教材考点
学习目标
了解利用正弦线作正弦函数图象
正弦函数、余弦函 的方法,
数的图象 会用“五点法”画正弦函数、余
弦函数的图象
正、余弦函数图象 会用正弦函数、余弦函数的图象
解析:选 A.由“五点法”知五个关键点分别为(0,0),π2,1,(π,0),32π,-1, (2π,0),故选 A.
3.函数 y=cos x,x∈R 图象的一条对称轴是
A.x 轴
B.y 轴
C.直线 x=π2 答案:B
D.直线 x=32π
()
4.请补充完整下面用“五点法”作出函数 y=-sin x(0≤x≤2π)的图象时的 列表.
的简单应用 解简单问题
核心素养 数学抽象、
直观想象
直观想象
问题导学 预习教材 P196-P200,并思考以下问题: 1.如何把 y=sin x,x∈[0,2π]的图象变换为 y=sin x,x∈R 的图象? 2.正、余弦函数图象五个关键点分别是什么?
正弦函数、余弦函数的图象
函数
y=sin x
图象
1.函数 y=sin(-x),x∈[0,2π]的简图是
第五章 三角函数
5.4 三角函数的图象与性质 5.4.1 正弦函数、余弦函数的图象
数学
01
预习案 自主学习
02
探究案 讲练互动
03
测评案 达标反馈
04
应用案 巩固提升
教材考点
学习目标
了解利用正弦线作正弦函数图象
正弦函数、余弦函 的方法,
数的图象 会用“五点法”画正弦函数、余
弦函数的图象
正、余弦函数图象 会用正弦函数、余弦函数的图象
解析:选 A.由“五点法”知五个关键点分别为(0,0),π2,1,(π,0),32π,-1, (2π,0),故选 A.
3.函数 y=cos x,x∈R 图象的一条对称轴是
A.x 轴
B.y 轴
C.直线 x=π2 答案:B
D.直线 x=32π
()
4.请补充完整下面用“五点法”作出函数 y=-sin x(0≤x≤2π)的图象时的 列表.
的简单应用 解简单问题
核心素养 数学抽象、
直观想象
直观想象
问题导学 预习教材 P196-P200,并思考以下问题: 1.如何把 y=sin x,x∈[0,2π]的图象变换为 y=sin x,x∈R 的图象? 2.正、余弦函数图象五个关键点分别是什么?
正弦函数、余弦函数的图象
函数
y=sin x
图象
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-4 -3
-2
(0,11)
3
( 2 ,1)
-
(-o12 ,0)
( 2 ,0)
2
( ,-1)
3
线
4
5 6 x
正弦、余弦函数的图象
练习:在同一坐标系内,用五点法分别画出函数
y= sinx,x[0, 2] 和 y= cosx,x[ , 3 ]的简图:
22
x
02
20
csionsx
10
01
向左平y 移 个单位长度 22
2 ,0) x
2 ,0)
( 2 ,0) ( 2 ,0) ( 2 ,0) ( 2 ,0) ( 2 ,0) ( 2 ,0)
正弦、余弦函数的图象
y
1
-4 -3
-2
- o
-1
2
3
4
5 6 x
正弦函数的图象 y=cosx=sin(x+ ), xR
2
正弦曲 线
形状完全一样 只是位置不同
余弦函数的图象
y
余弦曲
1.列表 2.描点 3.连线
3
2
x
2
2 y=sinx,x[0, 2]
正弦、余弦函数的图象
例2 画出函数y= - cosx,x[0, 2]的简图:
x
0
2
3
2
2
cosx
1
0
-1
0
1
- cosx -1
0
1
0
-1
y 1
o
2
2
-1
y=cosx,x[0, 2]
3
2
2
x
y= - cosx,x[0, 2]
正弦、余弦函数的图象
ห้องสมุดไป่ตู้
2
3
2
23 2
-01
0-1
10
1 y=sinx,x[0, 2]
o
2
2
3
2
-1
y=
cosx,x[
2
,
3 2
]
2
x
正弦、余弦函数的图象
例1 画出函数y=1+sinx,x[0, 2]的简图:
x
0
sinx
0
1+sinx 1
y
2
1
o
2
-1
3
2
2
2
1
0
-1
0
2
1
0
1
y=1+sinx,x[0, 2]
步骤:
几何画法
小 1. 正弦曲线、余弦曲线 五点法 结
2.注意与诱导公式、三角函数线等知识的联系
y
1
y=cosx,x[0, 2]
o
2
2
-1
3
2
x
2
y=sinx,x[0, 2]
二、正弦 y函 sinx数 的性质
1、定义域 2、值域
xR
y1,1
3、对应法x则 yf(x)sixn
4、单调性
在x2k2,2k2上是增函数;
5、最值 6、奇偶性
当 当 在x xx 2 2 k k 2k 2 22时 时 ,2ky y, , m m i3a n 2 x 11 上是减函数;
f(x)si nx)(sixn f(x)奇函数
7、周期性
f(x2k)six n2 (k)sixnf(x) 最小正 2 周期为
四、余弦 y函 cox数 s的性质
1、定义域 2、值域
xR
y1,1
3、对应法x则 yf(x)coxs
4、单调性 在 x2k,2k上是增函数;
5、最值
在 x2k,2k2上是减函数 当 x2k时ym , a x 1
当 x 2 k时 y m , i n1
6、奇偶性
f(x)coxs) (co x sf(x)偶函数
7、周期性
f(x2k)six n2 (k)sixnf(x) 最小正 2 周期为
(0,0) (0,0) (0,0) (0,0) (0,0)
2
(
,1)
2
,1)
( ,0)
( ,0)
3 2
(2
,1)
( 2 ,1)
(
(
,0),0(3)2(3
( ,0)
( (
(
2
2
2,1),1) ,1)
( ,0) ( ,0) ( ,0)
(
2
(
,-1)
3
2(
2,(13 2,)1((3,)3(21(23(323)2,2,1-,1,-),-1-)11)))
正弦、余弦函数的图象
钢都中学 胡亮
X
正弦、余弦函数的图象
三角函数
三角函数线
正弦函数 余弦函数 正切函数
sin=MP
正弦线MP cos=OM 余弦线OM tan=AT 正切线AT
y PT
-1
O
M A(1,0) x
注意:三角 函数线是有 向线段!
正弦、余弦函数的图象
问题:如何作出正弦、余弦函数的图象?
途径:利用单位圆中正弦、余弦线来解决。
描图:用光滑曲线
y
B
1
将这些正弦线的 终点连结起来
A
O1
O
2
4
5
2
x
3
3
3
3
-1
y=sinx
x[0,2]
终边相同角的三角函数值相等 即: sin(x+2k)=sinx, kZ
f(x2k)f(x)利用图象平移
y=sinx xR
正弦、余弦函数的图象
y 1
o
2
2
-1
y=sinx x[0,2]
y
y=sinx xR
1
-4 -3
-2
- o
-1
3
2
x
2
正弦曲 线
2
3
4
5 6 x
正弦、余弦函数的图象
如何作出正弦函数的图象(在精确度要求不太高时)?
y
五点画图法
1
(2
,1)
( 2 ,1)
( ,0)
( 2 ,0)
五点法——
2
(
(0,0)o
(0,0)
2
(0,0)
-1
(0,0)