直线的倾斜角与斜率、直线的方程(学案教师版)
直线的倾斜角和斜率--教案二:第一课时

直线的倾斜角和斜率--教案二:第一课时●教学目标(一)教学知识点1.“直线的方程”与“方程的直线”的概念.2.直线的倾斜角和斜率.3.斜率公式(二)能力训练要求1.了解“直线的方程”和“方程的直线”的概念.2.理解直线的倾斜角和斜率的定义.3.已知直线的倾斜角,会求直线的斜率.4.已知直线的斜率,会求直线的倾斜角.(三)德育渗透目标1.认识事物之间的相互联系.2.用联系的观点看问题.●教学重点直线的倾斜角和斜率概念.●教学难点斜率概念理解与斜率公式.●教学方法学导式本小节从一个具体的一次函数与它的图象入手,引入直线的方程与方程的直线概念,注重了由浅及深的学习规律,并体现了由特殊到一般的研究方法.引导学生认识到之所以引入直线在平面直角坐标系中的倾斜角和斜率概念,是由于进一步研究直线方程的需要.在直线倾斜角和斜率学习过程中,要引导学生注重导求倾斜角与斜率的相互联系,以及它们与三角函数知识的联系.在对倾斜角及斜率这两个概念进行辨析时,应以倾斜角与斜率的相互变化作为突破口.●教具准备投影片三张第一张:“直线的方程”与“方程的直线”概念(记作§7.1.1 A)第二张:斜率公式推导过程(记作§7.1.1 B)第三张:本节例题(记作§7.1.1 C)●教学过程Ⅰ.课题导入[师]在初中,我们已经学习过一次函数,并接触过一次函数的图象,现在,请同学们作一下回顾,一次函数的图象有何特点?[生]一次函数形如y=kx+b,它的图象是一条直线.[师]如果我们现在对于一给定函数y=2x+1,如何作出它的图象.[生]由于两点确定一条直线,所以在直线上任找两点即可.[师]这两点与函数式y=2x+1有何关系?[生]这两点就是满足函数式的两对x,y值.[师]好,这一同学回答的完全正确.从上述作图过程可以看出,满足函数式y=2x+1的每一对x,y的值都是函数y=2x+1的图象上的点,也就是一条直线上的点;同样,这条直线上的每一点的坐标都满足函数式y=2x+1.因此,我们可以得到这样一个结论:一般地,一次函数y=kx+b 的图象是一条直线,它是以满足y =kx +b 的每一对x 、y 的值为坐标的点构成的.由于函数式y =kx +b 也可以看作二元一次方程.所以我们可以说,这个方程的解和直线上的点也存在这样的对应关系.[师]有了上述基础,我们也就不难理解“直线的方程”和“方程的直线”的基本概念. Ⅱ.讲授新课1.直线方程的概念:(给出投影片§7.1.1 A)以一个方程的解为坐标的点都是某条直线上的点,反过来,这条直线上的点的坐标都是这个方程的解,这时,这个方程就叫做这条直线的方程,这条直线叫做这个方程的直线.[师]在平面直角坐标系中研究直线时,就是利用直线与方程的这种关系,建立直线的方程的概念,并通过方程来研究直线的有关问题.为此,我们先研究直线的倾斜角和斜率.下面,请同学们通过自学了解直线的倾斜角与斜率的有关概念,并注意它们的变化范围.2.直线的倾斜角与斜率:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为α,那么α就叫做直线的倾斜角.当直线和x 轴平行或重合时,我们规定直线的倾斜角为0°.[师]因此,根据定义,我们可以得到倾斜角的取值范围是0°≤α<180°.倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率,常用k 表示. 为使大家巩固倾斜角和斜率的概念,我们来看下面的概念辨析题.关于直线的倾斜角和斜率,下列哪些说法是正确的.A.任一条直线都有倾斜角,也都有斜率;B.直线的倾斜角越大,它的斜率就越大;C.平行于x 轴的直线的倾斜角是0或π;D.两直线的倾斜角相等,它们的斜率也相等.E.直线斜率的范围是(-∞,+∞).[生]上述说法中,E 正确,其余均错误,原因如下:A.与x 轴垂直的直线倾斜角为2π,但斜率不存在;B.举反例说明,120°>30°,但ta n120°=-3<tan30°=33;C.平行于x 轴的直线的倾斜角为0;D.如果两直线的倾斜角都是2π,但斜率不存在,也就谈不上相等.[师]通过上面的练习,我们可以总结出如下几点(板书)说明:①当直线和x 轴平行或重合时,我们规定直线的倾斜角为0°;②直线倾斜角的取值范围是0°≤α<180°;③倾斜角是90°的直线没有斜率.[师]下面我们对于“两点确定一条直线”这一事实,研究怎样用两点的坐标来表示直线的斜率.3.斜率公式:经过两点P 1(x 1,y 1),P 2(x 2,y 2)的直线的斜率公式:k =1212x x y y --(x 1≠x 2) (给出投影片§7.1.1 B)推导:设直线P 1P 2的倾斜角是α,斜率是k ,向量21P P 的方向是向上的(如上图所示).向量21P P 的坐标是(x 2-x 1,y 2-y 1).过原点作向量21P P OP =,则点P 的坐标是(x 2-x 1,y 2-y 1),而且直线OP 的倾斜角也是α,根据正切函数的定义,tan α=1 212x x y y --(x 1≠x 2)即k =1212x x y y --(x 1≠x 2)同样,当向量12P P 的方向向上时也有同样的结论.[师]下面通过例题讲评逐步熟悉斜率公式.4.例题讲解:[例1]如图,直线l 1的倾斜角α1=30°,直线l 1⊥l 2,求l 1、l 2的斜率.分析:对于直线l 1的斜率,可通过计算tan30°直接获得,而直线l 2的斜率则需要先求出倾斜角α2,而根据平面几何知识,α2=α1+90°,然后再求tan α2即可.解:l 1的斜率k 1=tan α1=tan30°=33,∵l 2的倾斜角α2=90°+30°=120°,∴l 2的斜率k 2=tan120°=tan (180°-60°)=-tan60°=-3.评述:此题要求学生掌握已知直线的倾斜角求斜率,其中涉及到三角函数的诱导公式及特殊角正切值的确定.[例2]直线经过点A (sin70°,cos70°),B (cos 40°,sin 40°),则直线l 的倾斜角为( )A.20°B.40°C.50°或70°D.120°参考公式:sin α-sin β=2cos 2βα+sin 2βα-,cos α-cos β=-2sin 2βα+si n2βα-. 分析:若想求出l 的倾斜角,则应先由斜率公式求出l 的斜率.思路较为明确,但关键在于运用斜率公式后三角函数的变形.考虑到这一点,题目给出两个参考公式,但仍对学生解题的灵活性有一定要求,其中,若想利用参考公式,需要对分子、分母进行函数名的统一、希望给予学生一定的启示.解:设l 的倾斜角为α,则tan α=?-??-?40cos 70sin 40sin 70cos 3)10sin(30sin 2)10sin(30cos 240cos 20cos 40sin 20sin -=?-?-?-?=?-??-?=又α∈[0,π]∴α=120°故选D.[师]接下来,我们通过练习来熟悉已知直线的倾斜角求斜率,并明确倾斜角变化时,斜率的变化情况.Ⅲ.课堂练习1.已知直线的倾斜角,求直线的斜率:(1)α=0°;(2)α=60°(3)α=90°;(4)α=43π 分析:通过此题训练,意在使学生熟悉特殊角的斜率.解:(1)∵tan0°=0∴倾斜角为0°的直线斜率为0;(2)∵tan60°=3∴倾斜角为60°的直线斜率为3;(3)∵tan90°不存在∴倾斜角为90°的直线斜率不存在;(4)∵tan43π=tan (π-4π)=-tan 4π=-1,∴倾斜角为43π的直线斜率为-1. 2.已知直线的倾斜角的取值范围,利用正切函数的性质,讨论直线斜率及其绝对值的变化情况:(1)0°<α<90°解:作出y =tan α在(0°,90°)区间内的函数图象;由图象观察可知:当α∈(0°,90°),y =tan α>0,并且随着α的增大,y 不断增大,|y |也不断增大.所以,当α∈(0°,90°)时,随着倾斜角α的不断增大,直线斜率不断增大,直线斜率的绝对值也不断增大.(2)90°<α<180°解:作出y =tan α在(90°,180°)区间内的函数图象,由图象观察可知:当α∈(90°,180°),y =tan α<0,并且随着α的增大,y=tan α不断增大,|y |不断减小.所以当α∈(90°,180°)时,随着倾斜角α的不断增大,直线的斜率不断增大,但直线斜率的绝对值不断减小.[师]针对此题结论,虽然有当α∈(0°,90°),随着α增大直线斜率不断增大;当α∈(90°,180°),随着α增大直线斜率不断增大,但是当α∈(0°,90°)∪(90°,180°)时,随着α的增大直线斜率不断增大却是一错误结论.原因在于正切函数y =tan α在区间(0,90°)内为单调增函数,在区间(90°,180°)内也是单调增函数,但在(0°,90°)∪(90°,180°)区间内,却不具有单调性.Ⅳ.课时小结通过本节学习,要求大家掌握已知直线的倾斜角求斜率,理解斜率公式的推导,为下一节斜率公式的应用打好基础.Ⅴ.课后作业(一)课本P 37习题7.11.在同一坐标平面内,画出下列方程的直线:l 1:2x +3y -6=0 l 3:2x +3y +6=0l 2:2x -3y +6=02.已知直线的倾斜角,求直线的斜率:(1)α=30°;(2)α=45°;(3)α=65π;(4)α=32π;(5)α=89°;(6)α=2. 解:(1)∵tan30°=3 3,∴直线斜率为33;(2)∵tan 45°=1,∴直线的斜率为1;(3)∴tan 65π=-tan 6π=-33,∴直线斜率为-33;(4)∵tan 32π=-tan 3π=-3,∴直线斜率为-3;(5)∵tan 89°=57.29,∴直线的斜率为57.29. (6)∵tan2=-2.184,∴直线的斜率为-2.184.(二)1.预习内容:斜率公式2.预习提纲:尝试总结斜率公式的特点. ●板书设计。
《直线的倾斜角与斜率》优质课比赛说课教案2018版

直线的倾斜角与斜率一、内容分析本节是人教版数学必修2 第三章《直线与方程》第一节直线的倾斜角与斜率的第一课时——3.1.1 倾斜角与斜率. 它是高中平面解析几何内容的开始,起着承上启下的重要作用. 本课时的学习不仅为研究直线方程、两直线的位置关系、点到直线的距离等本章的后续内容打下基础,而且也为以后进一步学习其他数学知识奠定思想和方法的基础. 直线的倾斜角是这一章所有概念的基础,而这一章的概念核心是斜率,理解二者之间的关系将是学此章的关键. 过两点的直线的斜率公式要讲透两点,其一是斜率的表象是一种比值,要让学生理解这种表达式,为两条直线垂直时斜率有何关系、导数的概念作好铺垫;其二是斜率的本质是与所取的点无关.二、目标分析1.知识与技能:使学生正确理解倾斜角与斜率的概念,理解二者之间的关系,会求过两点的直线的斜率;2.过程与方法:通过对倾斜角与斜率的探讨,培养学生分类讨论的思想,体验“坐标法”,感受数形结合思想;3.情感、态度与价值观:在探索倾斜角与斜率的关系过程中,明确倾斜角的变化对斜率的影响,并在其中体验严谨的治学态度.三、学生情况分析学生已经学习了一次函数(直线),对直线的倾斜角会具有直观的认同感;三角函数为解决斜率的引入和斜率公式的推导提供了知识的支持. “直线的倾斜角和斜率” 一节是解析几何的入门课,学生对几何的认识仅仅停留在初中所学的直观图形的感性阶段,因此教学时要从学生最熟悉的图形和事例入手,去研究刻画直线性质的量——倾斜角与斜率,将会让学生学会用代数方法研究几何图形的性质.四、教学重难点分析重点:倾斜角、斜率的概念,过两点的直线斜率公式.难点:倾斜角概念形成,斜率概念的理解.倾斜角概念的形成对学生来说有点困难. 为了突破这个难点,在教学过程中引导学生观察过一点的不同直线的区别,从中形成倾斜角的概念.对斜率概念的理解是本节的难点,为什么要用倾斜角的正切定义斜率对学生来说也有一定困难. 教学中通过日常生活的例子,充分利用学生已有的知识——坡度概念,引导学生把这个同样用来刻画倾斜程度的量与倾斜角联系起来,并通过坡度的计算方法,引入斜率的概念.五、教学条件分析考虑到学生的知识水平和理解能力,借助计算机工具和现实生活中的相关实物图片,从激励学生探究入手,讲解和演示相结合,可以更有效地实现教学目标. 因此教学地点选择多媒体教室.学生在课前要复习一次函数以及正切函数图象与性质等有关知识,并对本节内容进行预习,教师要准备好多媒体课件.六、教学过程设计(一)课题引入在平面直角坐标系内,画出几条相对于x 轴位置关系不同的几条直线,引导学生观察思考,它们有何不同?确定一条直线的位置需要哪些条件呢?【设计意图】学生在教师“问题串”的引导下去思考,引出本节的课题.(二)探究新知1. 倾斜角概念探究1:如图1,对于平面直角坐标系内的一直线I,你认为它的位置由哪些条件确定呢?师生活动:教师可以固定直线上某一点旋转直线,引导学生发现:经过一点可以作无数条直线,即过一点不能确定一条直线的位置y k/ \/ ■ 0 \ > 0A / 图1/ \ ® 2 【设计意图】明确探究方向:探索确定直线位置的几何要素.探究2:如图2,在平面直角坐标系中,过点 P i 的不同直线的区别在哪里?师生活动:学生思考,必要时教师可以提示学生观察直线相对于 x 轴的倾斜 程度•【设计意图】引导学生发现过定点的不同直线,其倾斜程度不同•从而发现直线上一点和直线的倾斜程度能确定一条直线•探究3:在直角坐标系中,任何一条直线与 x 轴都有一个相对倾斜度,怎么 描述直线的倾斜程度呢?师生活动:教师板书倾斜角的概念,展示几个倾斜角不同的直线,让学生找 出其倾斜角•【设计意图】探索描述直线的倾斜程度的几何要素,由此引出倾斜角的概念.2. 斜率的概念探究4:在日常生活中,我们有没有碰到过表示倾斜程度的量?师生活动:引导学生在生活中举例,比如,山坡,楼梯等,展示图3和图4.图3图4【设计意图】结合学生的生活经验寻找表示直线倾斜程度的量.让学生体会数学概念来自于日常生活.探究5:日常生活中,我们经常能够用“升高量与前进量的比”表示倾斜面的“坡度” •如果使用“倾斜角”的概念,你认为“坡度”和“倾斜角”有什么关系?由此你认为还可以用怎样的量来刻画直线的倾斜程度?师生活动:教师展示图5,学生思考讨论,教师引导总结并板书斜率概念.【设计意图】探索描述直线的倾斜程度的代数表示,由此引出斜率概念.探究6:是否每条直线都有斜率?倾斜角不同,斜率是否相同?由此可以得到怎样结论?师生活动:根据斜率和倾斜角的关系式,结合图6探究用斜率表示直线的倾斜程度时应该注意的地方•比如:倾斜角为90°的直线没有斜率;倾斜角不是90°的直线都有斜率,倾斜角不同,斜率也不同•【设计意图】沟通数形关系,加深概念理解,明确可以用斜率表示直线的倾斜程度•3.倾斜角和斜率的变化关系探究7:结合图7所示的“几何画板”课件,探究直线的倾斜角和斜率的变化关系.师生活动:教师或学生操作演示“几何画板”课件,观察直线的倾斜角和斜率的变化情况,完成相关问题.探究1:直线的斜率、倾斜角的变化关系点击“点B 运动”的动画按钮,观察直线 00的位置,以及它的斜率和倾斜角的变化。
高三数学上学期 解析几何 1直线的倾斜角与斜率教学案(无答案) 教学案

直线的倾斜角与斜率【教学目标】直线的斜率,掌握过两点的直线的斜率公式,掌握直线的斜率与倾斜角之间的关系【教学重点】直线的倾斜角和斜率的概念,两点的直线斜率的计算公式.【教学难点】直线的斜率和倾斜角之间关系的理解,并求斜率和倾斜角的范围.【教学过程】一、知识梳理: 1.直线的斜率(1)斜率的定义:已知两点),(),,(2211y x Q y x P ,如果21x x ≠,那么直线PQ 的斜率为______=k ;如果21x x =,那么直线PQ 的斜率___________. (2)直线的斜率与直线的方向的对应关系:(1)定义:在平面直角坐标系中,对于一条与x 轴相交的直线,把x 轴所在的直线绕着交点按逆时针方向旋转到和直线重合时所转过的最小正角称为这条直线的倾斜角,并规定:当直线l 与x 轴平行或重合时,它的倾斜角为 ;倾斜角的范围为 .3.斜率k 与倾斜角α的关系:二、基础自测:1.直线l 经过原点和点(-1,-1),则它的倾斜角是 .2.若直线的方程是(m 2-2m -3)x +(2m 2+m -1)y =m +5(m ∈R ),其倾斜角为45°,则实数m 的值为 . 3.经过两点(,2),(,21)A m B m m --的直线的倾斜角为60•,则m 的值为 .4.直线x sin α-y +1=0(R ∈α)的倾斜角的取值范围是 .三、典型例题: 反思:例1.(1)已知两点)6,4(),2,1(B A ,则直线AB 斜率为_________;(2)已知直线l 的倾斜角为120,则l 的斜率为__________.【变式拓展】(1)已知两点)2,(),2,1(+a a B A ,求直线AB 斜率;(2)已知直线l 倾斜角的正弦值是23,求l 的斜率.例2.已知直线l 的倾斜角⎪⎭⎫⎢⎣⎡∈3,6ππα,求l 的斜率的取值范围.【变式拓展】(1)已知直线l 的倾斜角⎪⎭⎫⎝⎛⋃⎪⎭⎫⎢⎣⎡∈65,22,4ππππα,求l 的斜率的取值范围;(2)已知直线l 的斜率k 存在,且⎥⎦⎤⎢⎣⎡∈3,33k ,求l 的倾斜角的取值范围.例3.已知直线l 过)3,1(-P ,且与以)3,3(),2,2(--B A 为端点的线段相交,求l 的倾斜角和斜率的取值范围.【变式拓展】已知两点A (0,1),B (1,0),若直线y =k (x +1)与线段AB 总有公共点, 则k 的取值范围是________.四、课堂反馈:1.直线l 经过A (2,1),B (1,m 2)(m ∈R )两点.则直线l 的倾斜角的取值范围为 . 2.已知直线PQ 的斜率为-3,将直线绕点P 顺时针旋转60°所得的直线的斜率是 . 3.已知点A (-1,-5),B (3,-2),直线l 的倾斜角是直线AB 的倾斜角的2倍, 则直线l 的斜率为 .4.(1)若直线l 与直线y =1,x =7分别交于点P ,Q ,且线段PQ 的中点坐标为(1,-1),则直线l 的斜率为 .(2)直线x cos α+3y +2=0的倾斜角的范围是 .五、课后作业: 学生姓名:___________ 1.经过两点(,6),(1,3)A m B m -的直线的斜率是14,则m 的值为 . 2.直线x +3y +1=0的倾斜角是________.3.若直线l 的斜率为k ,倾斜角为α,而α∈⎣⎢⎡⎭⎪⎫π6,π4∪⎣⎢⎡⎭⎪⎫2π3,π则k 的取值范围是________.4.直线l :x sin 30°+y cos 150°+1=0的斜率是________. 5.已知A (3,5),B (4,7),C (-1,x )三点共线,则x = .6.(1)直线2x cos α-y -3=0(α∈[π6,π3])的倾斜角的取值范围 .(2)已知直线l 的斜率k 存在,且11k -≤≤,则l 的倾斜角α∈ .7.若过点P (1-a,1+a )与Q (3,2a )的直线的倾斜角为钝角,则实数a 的取值范围是 . 8.函数y =a sin x -b cos x 的一条对称轴为x =π4,则直线l :ax -by +c =0的倾斜角为________.9.已知点A (2,3),B (-5,2),若直线l 过点P (-1,6),且与线段AB 相交, 求直线l 倾斜角的取值范围.10.已知线段PQ 两端点的坐标分别为(1,1),(2,2)-,若直线:0l x my m ++=与线段PQ 有交点,求实数m 的取值范围.11.已知曲线14+=xe y 上任意一点P 处的切线的倾斜角为α,求α的取值范围.12.某实验室某一天的温度(单位:C ︒)随时间t (单位:h )的变化近似满足函数关系:()9sin1212f t t t ππ=-,[)0,24t ∈.(1)求实验室这一天里,温度降低的时间段;(2)若要求实验室温度不高于10C ︒,则在哪段时间实验室需要降温?。
2021届高考数学一轮复习第8章平面解析几何第1讲直线的倾斜角斜率与直线的方程创新教学案含解析

第八章平面解析几何第1讲直线的倾斜角、斜率与直线的方程[考纲解读] 1.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式,并能根据两条直线的斜率判断这两条直线的平行或垂直关系.(重点)2.掌握直线方程的几种形式(点斜式、两点式及一般式等),并了解斜截式与一次函数的关系.(难点)[考向预测] 从近三年高考情况来看,本讲是命题的热点,但很少独立命题.预测2021年高考对本讲内容将考查:①直线倾斜角与斜率的关系、斜率公式;②直线平行与垂直的判定或应用,求直线的方程.试题常以客观题形式考查,难度不大。
1。
直线的斜率(1)当α≠90°时,tanα表示直线l的斜率,用k表示,即错误!k =tanα。
当α=90°时,直线l的斜率k不存在.(2)斜率公式给定两点P1(x1,y1),P2(x2,y2)(x1≠x2),经过P1,P2两点的直线的斜率公式为错误!k=错误!.2.直线方程的五种形式名称已知条件方程适用范围点斜式斜率k与点(x1,y1)错误!y-y1=k(x-x1)直线不垂直于x轴斜截式斜率k与直线在y轴上的截距b错误!y=kx+b直线不垂直于x轴两点式两点(x1,y1),(x2,y2)错误!错误!=错误!(x1≠x2,y1≠y2)直线不垂直于x轴和y轴截距式直线在x轴、y轴上的截距分别为a,b错误!错误!+错误!=1(a≠0,b≠0)直线不垂直于x轴和y轴,且不过原点一般式—错误!Ax+By+C=0(A2+B2≠0)任何情况1.概念辨析(1)直线的斜率为tanα,则其倾斜角为α。
( )(2)斜率相等的两直线的倾斜角不一定相等.( )(3)经过点P(x0,y0)的直线都可以用方程y-y0=k(x-x0)表示.( )(4)经过任意两个不同的点P1(x1,y1),P2(x2,y2)的直线都可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)表示.()答案(1)×(2)×(3)×(4)√2.小题热身(1)直线l经过原点和点(-1,-1),则直线l的倾斜角是( )A.45° B.135°C.135°或225° D.60°答案A解析由已知,得直线l的斜率k=错误!=1,所以直线l的倾斜角是45°.(2)在平面直角坐标系中,直线错误!x+y-3=0的倾斜角是()A.错误!B。
《直线的倾斜角和斜率》教案(公开课)

《直线的倾斜角和斜率》教案(公开课)直线的倾斜角和斜率直线的斜率和倾斜角是数学中的重要概念,它们帮助我们理解和描述直线的特性。
本文将介绍直线的倾斜角和斜率的概念,并提供一些实例来帮助读者更好地理解。
1. 斜率的定义和计算方法斜率是直线上的两个点之间纵坐标变化量与横坐标变化量的比值。
用数学符号表示,斜率可以表示为:m = (y₂ - y₁)/(x₂ - x₁)其中,(x₁, y₁)和(x₂, y₂)是直线上的两个点。
例如,有一条直线上的两个点分别为A(1, 2)和B(4, 5),我们可以计算这条直线的斜率:m = (5 - 2)/(4 - 1)= 3/3= 1所以,这条直线的斜率为1。
2. 斜率的特性斜率可以帮助我们判断直线的特性,如下所示:- 当斜率为正数时,直线是向上倾斜的。
斜率越大,直线的倾斜程度越大。
- 当斜率为负数时,直线是向下倾斜的。
斜率越小,直线的倾斜程度越大。
- 当斜率为0时,直线是水平的。
- 当斜率不存在(除数为0)时,直线是垂直的。
通过计算直线的斜率,我们可以快速了解直线的倾斜情况,并对其特性进行分析。
3. 倾斜角的定义和计算方法倾斜角是直线与水平线之间的夹角,用数学符号表示为θ。
对于任意一条直线,可以通过其斜率来计算倾斜角。
倾斜角的计算方法如下:- 当直线向上倾斜时,倾斜角为θ = arctan(m)。
- 当直线向下倾斜时,倾斜角为θ = arctan(m) + π。
- 当直线是水平的时,倾斜角为θ = 0。
- 当直线是垂直的时,倾斜角不存在。
4. 实例分析让我们通过几个实例来进一步理解直线的倾斜角和斜率。
实例一:有一条直线通过点A(-2, 1)和B(4, 9)。
计算直线的斜率和倾斜角。
通过斜率的计算公式,我们可以得到直线的斜率:m = (9 - 1)/(4 - (-2))= 8/6= 4/3接下来,我们可以计算直线的倾斜角:θ = arctan(4/3)实例二:有一条直线通过点C(3, 2)和D(3, 8)。
2022数学第八章平面解析几何第一节直线的倾斜角与斜率直线的方程教师文档教案文

第一节直线的倾斜角与斜率、直线的方程授课提示:对应学生用书第150页[基础梳理]1.直线的倾斜角(1)定义:(2)范围:直线的倾斜角α的取值范围是:[0,π).2条件公式直线的倾斜角θ,且θ≠90°k=tan__θ直线过点A(x1,y1),B(x2,y2) 且x1≠x2k=y1-y2 x1-x23.条件两直线位置关系斜率的关系两条不重合的直线l1,l2,斜率分别为k1,k2平行k1=k2k1与k2都不存在垂直k1k2=-1k1与k2一个为零、另一个不存在4。
直线方程的五种形式名称已知条件方程适用范围点斜式斜率k与点(x1,y1)y-y1=k(x-x1)不含直线x=x1斜截式斜率k与直线在y轴上的截距by=kx+b不含垂直于x轴的直线两点式两点(x1,y1),(x2,y2)错误!=错误!(x1≠x2,y1≠y2)不含直线x=x1(x1=x2)和直线y=y1(y1=y2)截距式直线在x轴、y轴上的截距分别为a,b错误!+错误!=1(a≠0,b≠0)不含垂直于坐标轴和过原点的直线一般式Ax+By+C=0(A2+B2≠0)平面直角坐标系内的直线都适用5.线段的中点坐标公式若点P1,P2的坐标分别为(x1,y1),(x2,y2),线段P1,P2的中点M的坐标为(x,y),则错误!此公式为线段P1P2的中点坐标公式.1.斜率与倾斜角的两个关注点(1)倾斜角α的范围是[0,π),斜率与倾斜角的函数关系为k =tan α,图像为:(2)当倾斜角为90˚时,直线垂直于x轴,斜率不存在.2.直线A1x+B1y+C1=0与A2x+B2y+C2=0垂直的充要条件为A1A2+B1B2=0。
[四基自测]1.(基础点:根据两点求斜率)过点M(-2,m),N(m,4)的直线的斜率等于1,则m的值为()A.1B.4C.1或3 D.1或4答案:A2.(基础点:直线的倾斜角与斜率的关系)直线x+错误!y+1=0的倾斜角是()A.错误!B.错误!C。
《直线的倾斜角和斜率》说课稿(附教学设计)

《直线的倾斜角和斜率》说课稿一、教材分析1、教材分析本节课是人教版数学必修第一节直线的倾斜角和斜率的第一课时,是高中解析几何内容的开始。
直线倾斜角和斜率是解析几何的重要概念之一,是刻画直线倾斜程度的几何要素与代数表示,是平面直角坐标系内以坐标法(解析法)的方式来研究直线及其几何性质(如直线位置关系、交点坐标、点到直线距离等)的基础。
通过该内容的学习,帮助学生初步了解直角坐标平面内几何要素代数化的过程,初步渗透解析几何的基本思想和基本研究方法。
直线倾斜角是描述直线倾斜程度的几何要素,课本结合具体图形,在探索确定直线位置的几何要素中给出直线倾斜角概念。
直线的倾斜角和斜率都描述了直线的倾斜程度,倾斜角用几何位置关系刻画,斜率从数量关系刻画,二者的联系桥梁是正切函数值,并且可以用直线上两个点的坐标表示。
建立斜率公式的过程,体现了坐标法的基本思想:把几何问题代数化,通过代数运算研究几何图形的性质。
本课涉及两个概念——倾斜角和斜率。
倾斜角是几何概念,它主要起过渡作用,是联系新旧知识的纽带,研究斜率、直线的平行、垂直的解析表示等问题时都要用这个概念;斜率概念,不仅其建立过程很好地体现了解析法,而且它在建立直线方程、通过直线方程研究几何问题时也起核心作用,这是因为在直角坐标系下,确定直线的最本质条件是直线上的一个点及其斜率,其他形式都可以化归到这两个条件上来。
2、教学的目标定位在此之前,学生已经对直线有了直观的认识,如:两点确定一条直线,它具有平直性,并向两方无限延伸等。
但是这只是定性的研究,用这种方法,并不能具体刻画或描述一条直线。
在初中阶段,学生也认识了一次函数的图象是一条直线,但研究途径是先有数量关系(一次函数表达式),后建立其直观表示:直线。
在解析几何中,我们是先有图形(或曲线),然后根据图形(或曲线)的几何特征确定图形(或曲线)的代数表达式——方程。
因此,本节课的主要目的就是让学生在已有知识的基础上,将直线放入平面直角系,利用代数方法对它进行研究,从中体会解析几何的一些重要的数学思想。
高二数学直线的倾斜角和斜率2(教师版)

学科教师辅导讲义【课堂小练】一.选择题:1.下列命题正确的是( )(A )若直线的斜率存在,则必有倾斜角α与它对应 (B )若直线的倾斜角存在,则必有斜率与它对应 (C )直线的斜率为k ,则这条直线的倾斜角为arctan k (D )直线的倾斜角为α,则这条直线的斜率为tanα 2.过点M (–2, a ), N (a , 4)的直线的斜率为–21,则a 等于( ) (A )–8 (B )10 (C )2 (D )4 3.过点A (2, b )和点B (3, –2)的直线的倾斜角为43π,则b 的值是( ) (A )–1 (B )1 (C )–5 (D )54.如图,若图中直线l 1, l 2, l 3的斜率分别为k 1, k 2, k 3,则( ) (A )k 1<k 2<k 3 (B )k 3<k 1<k 2 (C )k 3<k 2<k 1 (D )k 1<k 3<k 25.已知点M (cosα, sinα), N (cosβ, sinβ),若直线MN 的倾斜角为θ,0<α<π<β<2π, 则θ等于( )(A )21(π+α+β) (B )21(α+β) (C )21(α+β–π) (D )21(β–α) 6.若直线l 的斜率为k =–ab(ab >0),则直线l 的倾斜角为( )(A )arctan a b (B )arctan(–a b ) (C )π–arctan a b (D )π+arctan ab【参考答案】1—6、ABABCC. 二.填空题:7.已知三点A (2, –3), B (4, 3), C (5,2m)在同一直线上,则m 的值为 . 8.已知y 轴上的点B 与点A (–3, 1)连线所成直线的倾斜角为120°,则点B 的坐标为 . 9.若α为直线的倾斜角,则sin(4π–α)的取值范围是 10.已知A (–2, 3), B (3, 2),过点P (0, –2)的直线l 与线段AB 没有公共点,则直线l 的斜率的取值范围是 .【参考作案】7、 12. 8、(0,-2). 9、2[1,].2- 10、54(,).23-三.解答题11.求经过两点A (2, –1)和B (a , –2)的直线l 的倾斜角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九章平面解析几何第1讲直线的倾斜角与斜率、直线的方程班级__________ 姓名_________ 【概念自查】一.判断正误(正确的打“√”,错误的打“×”,并举反例)(1)直线的倾斜角越大,其斜率就越大.()(2)直线的斜率为tanα,则其倾斜角为α.()(3)斜率相等的两直线的倾斜角不一定相等.()(4)经过点P(x0,y0)的直线都可以用方程y-y0=k(x-x0)表示.()(5)经过任意两个不同的点P1(x1,y1),P2(x2,y2)的直线都可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)表示.() 【知识梳理】参考《优化方案》P1451.直线的倾斜角与直线的斜率(1)直线倾斜角的定义:当直线l与x轴相交时,取x轴作为基准,x轴正向与直线l向上方向之间所成的角α。
注:当直线l与x轴平行或重合时,规定它的倾斜角为0°(2)直线l倾斜角α的范围是.(3)直线的倾斜角α与斜率k的关系:①.②.(数形结合来解释)2.直线方程的五种形式例1 (1)直线x sin α+y +2=0的倾斜角的取值范围是( )A.[)0,πB.⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫3π4,πC.⎣⎡⎦⎤0,π4D.⎣⎡⎦⎤0,π4∪⎝⎛⎭⎫π2,π(2)直线l 过点P (1,0),且与以A (2,1),B (0,3)为端点的线段有公共点, 则直线l 斜率的取值范围为 .【解析】 (1)设直线的倾斜角为θ,则有tan θ=-sin α.因为sin α∈[-1,1],所以-1≤tan θ≤1,又θ∈[0,π),所以0≤θ≤π4或3π4≤θ<π,故选B .(2)如图,因为k AP =1-02-1=1,k BP =3-00-1=-3,所以直线l 的斜率k ∈(]-∞,-3∪[)1,+∞. 【答案】 (1)B (2)(]-∞,-3∪[)1,+∞【考点突破】考点2 求直线的方程例2 根据所给条件求直线的方程: (1)直线过点(-4,0),倾斜角的正弦值为1010; (2)直线过点(-3,4),且在两坐标轴上的截距之和为12; (3)直线过点(5,10),且与原点的距离为5.【解】 (1)由题设知,该直线的斜率存在,故可采用点斜式. 设倾斜角为α,则sin α=1010(0≤α<π), 从而cos α=±31010,则k =tan α=±13.故所求直线方程为y =±13(x +4),即x +3y +4=0或x -3y +4=0.(2)由题设知纵横截距不为0,设直线方程为x a +y12-a =1,又直线过点(-3,4),从而-3a +412-a =1,解得a =-4或a =9.故所求直线方程为4x -y +16=0或x +3y -9=0. (3)当斜率不存在时,所求直线方程为x -5=0满足题意;当斜率存在时,设其为k ,则所求直线方程为y -10=k (x -5),即kx -y +10-5k =0.由点线距离公式,得|10-5k |k 2+1=5,解得k =34.故所求直线方程为3x -4y +25=0.综上,所求直线方程为x -5=0或3x -4y +25=0.【考点突破】 考点3 直线方程的综合问题例3 已知O 为坐标原点,过点()1,0M 的直线l 与抛物线C :22(0)y px p =>交于A ,B 两点,且3OA OB u u u r u u u r⋅=-. 求抛物线C 的方程;例4 已知实数x ,y 满足y =x 2-2x +2(-1≤x ≤1),试求y +3x +2的最大值和最小值.【解】 如图,作出y =x 2-2x +2(-1≤x ≤1)的图象(曲线段AB ),则y +3x +2表示定点P (-2,-3)和曲线段AB 上任一点(x ,y )的连线的斜率k ,连接P A ,PB ,则k P A ≤k ≤k PB .易得A (1,1),B (-1,5),所以k P A =1-(-3)1-(-2)=43,k PB =5-(-3)-1-(-2)=8,所以43≤k ≤8,故y +3x +2的最大值是8,最小值是43.1.倾斜角为120°,在x 轴上的截距为-1的直线方程是( ) A.3x -y +1=0 B.3x -y -3=0 C.3x +y -3=0D.3x +y +3=03x +y +3=0.2.直线ax +by +c =0同时要经过第一、第二、第四象限,则a ,b ,c 应满足( ) A .ab >0,bc <0 B .ab >0,bc >0 C .ab <0,bc >0D .ab <0,bc <0解析:选A.由于直线ax +by +c =0经过第一、二、四象限,所以直线存在斜率,将方程变形为y =-ab x-c b .易知-a b <0且-cb>0,故ab >0,bc <0. 3.两直线x m -y n =a 与x n -ym=a (其中a 为不为零的常数)的图象可能是( )解析:选B.直线方程x m -y n =a 可化为y =n m x -na ,直线x n -y m =a 可化为y =mn x -ma ,由此可知两条直线的斜率同号.4.(2019·广东惠州质检)直线l 经过点A (1,2),在x 轴上的截距的取值范围是(-3,3),则其斜率k 的取值范围是( )A .-1<k <15B .-1<k <12C .k >15或k <-1D .k <-1或k >12解析:选D.设直线的斜率为k ,则直线方程为y -2=k (x -1),直线在x 轴上的截距为1-2k .令-3<1-2k <3,解不等式得k <-1或k >12.5.直线x -2y +b =0与两坐标轴所围成的三角形的面积不大于1,那么b 的取值范围是( ) A .[-2,2]B .(-∞,-2]∪[2,+∞)C .[-2,0)∪(0,2]D .(-∞,+∞)解析:选C.令x =0,得y =b2,令y =0,得x =-b ,所以所求三角形的面积为12⎪⎪⎪⎪b 2|-b |=14b 2,且b ≠0,14b 2≤1,所以b 2≤4,所以b 的取值范围是[-2,0)∪(0,2].6.过点A (-1,-3),斜率是直线y =3x 的斜率的-14的直线方程为________.解析:设所求直线的斜率为k ,依题意 k =-14×3=-34.又直线经过点A (-1,-3),因此所求直线方程为y +3=-34(x +1),即3x +4y +15=0. 答案:3x +4y +15=07.已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值是________. 解析:由题意可知a ≠0.当x =0时,y =a +2. 当y =0时,x =a +2a .所以a +2a =a +2,解得a =-2或a =1. 答案:-2或18.设点A (-1,0),B (1,0),直线2x +y -b =0与线段AB 相交,则b 的取值范围是________. 解析:b 为直线y =-2x +b 在y 轴上的截距,如图,当直线y =-2x +b 过点A (-1,0)和点B (1,0)时,b 分别取得最小值和最大值. 所以b 的取值范围是[-2,2]. 答案:[-2,2]9.已知直线l 与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线l 的方程: (1)过定点A (-3,4); (2)斜率为16.解:(1)设直线l 的方程为y =k (x +3)+4,它在x 轴,y 轴上的截距分别是-4k -3,3k +4,由已知,得(3k+4)×⎝⎛⎭⎫4k +3=±6,解得k 1=-23或k 2=-83. 故直线l 的方程为2x +3y -6=0或8x +3y +12=0.(2)设直线l 在y 轴上的截距为b ,则直线l 的方程是y =16x +b ,它在x 轴上的截距是-6b ,由已知,得|-6b ·b |=6, 所以b =±1.所以直线l 的方程为x -6y +6=0或x -6y -6=0.10.已知直线l 过点P (3,2),且与x 轴、y 轴的正半轴分别交于A 、B 两点,如图所示,求△ABO 的面积的最小值及此时直线l 的方程.【解】 法一:设直线l 的方程为x a +y b =1(a >0,b >0),将点P (3,2)代入得3a +2b=1≥26ab,得ab ≥24,从而S △AOB =12ab ≥12,当且仅当3a =2b 时等号成立,这时k =-b a =-23,从而所求直线l 的方程为2x +3y -12=0.所以△ABO 的面积的最小值为12,所求直线l 的方程为2x +3y -12=0. 法二:依题意知,直线l 的斜率k 存在且k <0, 可设直线l 的方程为y -2=k (x -3)(k <0), 则A ⎝⎛⎭⎫3-2k ,0,B (0,2-3k ), S △ABO =12(2-3k )⎝⎛⎭⎫3-2k =12⎣⎡⎦⎤12+(-9k )+4-k ≥12⎣⎢⎡⎦⎥⎤12+2(-9k )·4-k=12×(12+12)=12, 当且仅当-9k =4-k ,即k =-23时,等号成立.此时直线l 的方程为2x +3y -12=0.所以△ABO 的面积的最小值为12,所求直线l 的方程为2x +3y -12=0.。