聚类分析的方法

合集下载

五种常用系统聚类分析方法及其比较

五种常用系统聚类分析方法及其比较

五种常用系统聚类分析方法及其比较胡雷芳一、系统聚类分析概述聚类分析是研究如何将对象按照多个方面的特征进行综合分类的一种统计方法[1]。

然而在以往的分类学中,人们主要靠经验和专业知识作定性分类处理,许多分类不可避免地带有主观性和任意性,不能揭示客观事物内在的本质差别和联系;或者人们只根据事物单方面的特征进行分类,这些分类虽然可以反映事物某些方面的区别,但却往往难以反映各类事物之间的综合差异。

聚类分析方法有效地解决了科学研究中多因素、多指标的分类问题[2]。

在目前的实际应用中,系统聚类法和K均值聚类法是聚类分析中最常用的两种方法。

其中,K均值聚类法虽计算速度快,但需要事先根据样本空间分布指定分类的数目,而当样本的变量数超过3个时,该方法的可行性就较差。

而系统聚类法(Hierarchicalclusteringmethods,也称层次聚类法)由于类与类之间的距离计算方法灵活多样,使其适应不同的要求。

该方法是目前实践中使用最多的。

这该方法的基本思想是:先将n个样本各自看成一类,并规定样本与样本之间的距离和类与类之间的距离。

开始时,因每个样本自成一类,类与类之间的距离与样本之间的距离是相同的。

然后,在所有的类中,选择距离最小的两个类合并成一个新类,并计算出所得新类和其它各类的距离;接着再将距离最近的两类合并,这样每次合并两类,直至将所有的样本都合并成一类为止。

这样一种连续并类的过程可用一种类似于树状结构的图形即聚类谱系图(俗称树状图)来表示,由聚类谱系图可清楚地看出全部样本的聚集过程,从而可做出对全部样本的分类[3]。

二、五种常用系统聚类分析方法系统聚类法在进行聚类的过程中,需要计算类与类之间的距离。

根据类与类之间的距离计算方法的不同,我们可以将系统聚类法分为单连接法、完全连接法、平均连接法、组平均连接法与离差平方和法等。

1.单连接法(Singlelinkage)单连接法又称最短距离法。

该方法首先将距离最近的样本归入一类,即合并的前两个样本是它们之间有最小距离和最大相似性;然后计算新类和单个样本间的距离作为单个样本和类中的样本间的最小距离,尚未合并的样本间的距离并未改变。

聚类分析

聚类分析

聚类分析聚类分析又称群分析,它是研究(样品或指标)分类问题的一种多元统计方法,所谓类,通俗地说,就是指相似元素的集合。

聚类分析内容非常丰富,按照分类对象的不同可分为样品分类(Q-型聚类分析)和指标或变量分类(R-型聚类分析);按照分类方法可分为系统聚类法和快速聚类法。

1. 系统聚类分析先将n 个样品各自看成一类,然后规定样品之间的“距离”和类与类之间的距离。

选择距离最近的两类合并成一个新类,计算新类和其它类(各当前类)的距离,再将距离最近的两类合并。

这样,每次合并减少一类,直至所有的样品都归成一类为止。

系统聚类法直观易懂。

1.1系统聚类法的基本步骤:第一,计算n 个样品两两间的距离 ,记作D= 。

第二,构造n 个类,每个类只包含一个样品。

第三,合并距离最近的两类为一新类。

第四,计算新类与各当前类的距离。

第五,重复步骤3、4,合并距离最近的两类为新类,直到所有的类并为一类为止。

第六,画聚类谱系图。

第七,确定类的个数和类。

1.2 系统聚类方法:1.2.1最短距离法1.2.2最长距离法1.2.3中间距离法1.2.4重心法1.2.5类平均法1.2.6离差平方和法(Ward 法)上述6种方法归类的基本步骤一致,只是类与类之间的距离有不同的定义。

最常用的就是最短距离法。

1.3 最短距离法以下用ij d 表示样品i X 与j X 之间距离,用ij D 表示类i G 与j G 之间的距离。

定义类i G 与j G 之间的距离为两类最近样品的距离,即ij G G G G ij d D j J i i ∈∈=,min设类p G 与q G 合并成一个新类记为r G ,则任一类k G 与r G 的距离是:ij G X G X kr d D j j i i ∈∈=,min ⎭⎬⎫⎩⎨⎧=∈∈∈∈ij G X G X ij G X G X d d q j k i p j k i ,,min ,min min {}kq kp D D ,min = 最短距离法聚类的步骤如下:ij d {}ij d(1)定义样品之间距离,计算样品两两距离,得一距离阵记为)0(D ,开始每个样品自成一类,显然这时ij ij d D =。

聚类分析方法

聚类分析方法

聚类分析方法聚类分析是一种常见的数据分析方法,它可以帮助我们将数据集中的对象按照它们的相似性分成不同的组,从而更好地理解数据的结构和特征。

在实际应用中,聚类分析方法被广泛应用于市场分割、社交网络分析、生物信息学、图像处理等领域。

本文将介绍几种常见的聚类分析方法,包括K均值聚类、层次聚类和密度聚类,并对它们的原理和应用进行简要阐述。

K均值聚类是一种基于距离的聚类方法,它将数据集分成K个簇,每个簇包含距离最近的K个中心点。

K均值聚类的原理是通过迭代计算每个样本点到中心点的距离,然后将样本点分配到距离最近的中心点所在的簇中。

这个过程一直迭代进行,直到簇的分配不再改变为止。

K均值聚类的优点是简单易懂,计算速度快,但是它对初始中心点的选择敏感,容易陷入局部最优解。

层次聚类是一种基于树形结构的聚类方法,它通过不断地将最相似的样本点或簇合并在一起,从而构建出一个层次化的聚类结构。

层次聚类可以分为凝聚型和分裂型两种方法。

凝聚型层次聚类是从下往上构建聚类结构,它首先将每个样本点看作一个独立的簇,然后根据它们的相似性逐步合并成更大的簇,直到所有样本点合并成一个簇为止。

分裂型层次聚类则是从上往下构建聚类结构,它首先将所有样本点看作一个簇,然后根据它们的差异逐步分裂成更小的簇,直到每个样本点都成为一个簇为止。

层次聚类的优点是不需要预先确定簇的个数,但是它的计算复杂度较高,不适合处理大规模数据集。

密度聚类是一种基于样本点密度的聚类方法,它将高密度的样本点划分为一个簇,并且可以发现任意形状的簇。

密度聚类的核心思想是通过计算每个样本点周围的密度来确定核心点,然后将核心点连接在一起形成簇。

密度聚类的优点是对噪声和离群点具有较好的鲁棒性,但是它对参数的选择比较敏感,需要合适的密度阈值来确定核心点。

总的来说,聚类分析方法是一种强大的数据分析工具,它可以帮助我们发现数据中的潜在结构和规律。

不同的聚类方法适用于不同类型的数据和应用场景,选择合适的聚类方法需要根据具体问题的特点来进行。

聚类分析方法概述及应用

聚类分析方法概述及应用

聚类分析方法概述及应用聚类分析是一种常用的数据分析方法,用于将相似的数据点聚集在一起,形成有意义的群组。

它可以帮助我们理解数据的内在结构和模式,揭示隐藏在数据背后的信息。

本文将对聚类分析方法进行概述,并探讨其在不同领域的应用。

一、聚类分析方法概述聚类分析方法有多种类型,其中最常用的是原型聚类、层次聚类和密度聚类。

1. 原型聚类原型聚类是一种利用原型向量(即代表一个簇的中心点)来表示和分类数据的方法。

最常见的原型聚类算法是K均值聚类,它通过迭代过程将数据分成K个簇。

2. 层次聚类层次聚类是一种基于树状结构的聚类方法,它将数据点逐步合并为越来越大的簇,直到所有数据点都合并为一个簇。

层次聚类可以分为凝聚型和分裂型两种。

3. 密度聚类密度聚类是一种基于数据点之间密度的聚类方法。

它通过计算每个数据点周围的密度,将密度较高的数据点归为一类,从而形成簇。

DBSCAN是最常用的密度聚类算法之一。

二、聚类分析的应用聚类分析方法在各个领域都有广泛的应用,以下是其中几个典型的应用示例:1. 市场细分聚类分析可帮助企业将潜在消费者细分为不同的市场群体,根据不同群体的需求进行针对性的市场推广。

例如,一家保险公司可以利用聚类分析将客户分为不同的风险类别,制定相应的保险套餐。

2. 医学研究在医学领域,聚类分析可用于帮助识别患者的疾病风险、预测疾病进展、选择最佳治疗方案等。

通过分析患者的基因数据、病历记录和临床表现等信息,医生可以将患者分为不同的疾病类型,为个体化治疗提供指导。

3. 社交网络分析社交网络中存在着庞大的用户群体和复杂的网络关系。

聚类分析可以帮助我们理解社交网络中的用户群体结构,发现潜在的兴趣群体和社区,并为个性化推荐、社交媒体营销等提供支持。

4. 图像分析聚类分析可以应用于图像分析领域,如图像压缩、图像分类等。

通过对图像中的像素点进行聚类,可以将相似的像素点合并为一个簇,从而实现图像的压缩和分类。

5. 网络安全对于网络安全领域来说,聚类分析可以帮助识别异常网络流量、发现潜在的攻击者并采取相应的安全防护措施。

聚类分析的方法

聚类分析的方法

聚类分析的方法一、系统聚类法系统聚类分析法就是利用一定的数学方法将样品或变量(所分析的项目)归并为若干不同的类别(以分类树形图表示),使得每一类别内的所有个体之间具有较密切的关系,而各类别之间的相互关系相对地比较疏远。

系统聚类分析最后得到一个反映个体间亲疏关系的自然谱系,它比较客观地描述了分类对象的各个体之间的差异和联系。

根据分类目的不同,系统聚类分析可分为两类:一类是对变量分类,称为R型分析;另一类是对样品分类,称为Q型分析。

系统聚类分析法基本步骤如下(许志友,1988)。

(一)数据的正规化和标准化由于监测时所得到的数值各变量之间相差较大,或因各变量所取的度量单位不同,使数值差别增大,如果不对原始数据进行变换处理,势必会突出监测数据中数值较大的一些变量的作用,而消弱数值较小的另一些变量的作用,克服这种弊病的办法是对原始数据正规化或标准化,得到的数据均与监测时所取的度量单位无关。

设原始监测数据为Xij (i=1,2,…,n;j=1,2,…,m;n为样品个数,m为变量个数),正规化或标准化处理后的数据为Zij (i=1,2,…,n;j=1,2,…,m)。

1. 正规化计算公式如下:(7-32)(i=1,2,…,n;j=1,2,…,m)2. 标准化计算公式如下:(7-33)(i=1,2,…,n;j=1,2,…,m)其中:(二)数据分类尺度计算为了对数据Zij进行分类,须对该数据进一步处理,以便从中确定出分类的尺度,下列出分类尺度计算的四种方法。

1.相关系数R两两变量间简单相关系数定义为:(7-34)(i,j=1,2,…,m)其中一般用于变量的分类(R型)。

有一1≤≤1且愈接近1时,则此两变量愈亲近,愈接近-1,则关系愈疏远。

2.相似系数相似系数的意义是,把每个样品看做m维空间中的一个向量,n个样品相当于m维空间中的n个向量。

第i个样品与第j个样品之间的相似系数是用两个向量之间的夹角余弦来定义,即:(7-35)(i,j=1,2,…,m)常用于样品间的分类(Q型)。

聚类分析的基本概念与方法

聚类分析的基本概念与方法

聚类分析的基本概念与方法聚类分析(Cluster Analysis)是一种将数据分组或分类的统计学方法,通过将相似的对象归为同一组,使得组内的对象之间更加相似,而不同组之间的对象则差异较大。

它是数据挖掘和机器学习领域中常用的技术之一,被广泛应用于市场分析、生物信息学、图像处理等领域。

一、聚类分析的基本概念聚类分析基于相似性的概念,即认为具有相似特征的对象更有可能属于同一类别。

在聚类分析中,每个对象都被视为一个数据点,而聚类则是将这些数据点分组。

基本概念包括以下几点:1. 数据点:数据集中的每个样本或对象都被看作是一个数据点,它具有多个特征或属性。

2. 相似性度量:聚类分析的关键是如何计算数据点之间的相似性或距离。

常用的相似性度量包括欧氏距离、曼哈顿距离、闵可夫斯基距离等。

3. 簇/类别:将相似的数据点归为一组,这个组被称为簇或类别。

簇内的数据点相似度较高,而不同簇之间的数据点相似度较低。

4. 聚类算法:聚类分析依赖于具体的算法来实现数据点的分组。

常见的聚类算法有K均值聚类、层次聚类、密度聚类等。

二、聚类分析的方法1. K均值聚类(K-means Clustering):K均值聚类是一种迭代的聚类方法,它将数据点分成K个簇,每个簇代表一个样本集。

算法的基本思想是通过最小化簇内数据点与簇中心之间的平方误差来确定最优的簇中心位置。

2. 层次聚类(Hierarchical Clustering):层次聚类是一种基于树状结构的聚类算法,它根据数据点之间的相似性逐步合并或分割簇。

层次聚类分为凝聚型和分裂型两种方法,其中凝聚型方法从单个数据点开始,逐步合并最相似的簇;分裂型方法从所有数据点开始,逐步分割最不相似的簇。

3. 密度聚类(Density-Based Clustering):密度聚类基于密度可达的概念,将具有足够高密度的数据点归为一簇。

核心思想是在数据空间中通过密度连通性来确定簇的边界,相对于K均值聚类和层次聚类,密度聚类能够有效处理不规则形状和噪声数据。

聚类分析方法

聚类分析方法
聚类分析是一种常用的数据挖掘方法,它可以将相似的数据点分组在一起。

在聚类分析中,数据被分为多个类别,每个类别都包含具有类似特征的数据点。

聚类分析方法有很多种,其中一种是K均值聚类。

K均值聚
类的目标是将数据点分为K个簇,使得每个数据点都属于与
其最近的质心所代表的簇。

首先,在聚类分析中,需要先选择一个初始的簇质心,然后迭代地将每个数据点分配到与其最近的质心所代表的簇中,然后更新簇质心的位置,直到达到收敛。

另一种常见的聚类分析方法是层次聚类。

层次聚类将数据点逐渐合并成一个个的簇,直到所有数据点都属于同一个簇。

层次聚类可以根据不同的相似性度量来合并簇,例如单链接、完全链接或平均链接等。

另外,谱聚类是一种基于图论的聚类方法,它利用数据点之间的相似性构建一个相似度矩阵,并将其转化为一个图。

然后,通过计算图的特征向量来对数据进行聚类分析。

聚类分析方法还有很多其他的变体和扩展,例如密度聚类、模糊聚类和网格聚类等。

这些方法可以根据具体的问题和数据类型来选择和应用。

总的来说,聚类分析方法是一种无监督学习的方法,可以用于发现数据中的内在结构和模式。

它在很多领域都有广泛的应用,
如市场分析、社交网络分析和生物信息学等。

通过应用聚类分析方法,可以帮助我们更好地理解和分析数据。

聚类分析定义及分析方法

聚类分析定义及分析⽅法聚类分析聚类分析(Cluster Analysis)是根据事物本⾝的特性研究个体分类的⽅法。

聚类分析的原则是同⼀类中的个体有较⼤的相似性,不同类的个体差异很⼤。

根据分类对象不同分为样品聚类和变量聚类。

样品聚类在统计学中⼜称为Q型聚类。

⽤SPSS的术语来说就是对事件(cases)进⾏聚类,或是说对观测量进⾏聚类。

是根据被观测的对象的各种特征,即反映被观测对象的特征的各变量值进⾏分类。

变量聚类在统计学中有称为R型聚类。

反映事物特点的变量有很多,我们往往根据所研究的问题选择部分变量对事物的某⼀⽅⾯进⾏研究。

SPSS中进⾏聚类和判别分析的统计过程是由菜单Analyze---Classify导出的选择Classify 可以显⽰三个过程命令:1 K-Means Cluster进⾏快速聚类过程。

2 Hierarchical Cluster进⾏样本聚类和变量聚类过程。

3 Discriminant进⾏判别分析过程。

通常情况下在聚类进⾏之前 Proximitice 过程先根据反映各类特性的变量对原始数据进⾏预处理,即利⽤标准化⽅法对原始数据进⾏⼀次转换。

并进⾏相似性测度或距离测度。

然后 Cluster 过程根据转换后的数据进⾏聚类分析。

在SPSS for Windows 中分层聚类各⽅法都包含了 Proximitice 过程对数据的处理和Cluster 过程。

对数据的分析给出的统计量可以帮助⽤户确定最好的分类结果。

1.1 主要功能聚类的⽅法有多种,最常⽤的是分层聚类法。

根据聚类过程不同⼜分为凝聚法和分解法。

分解法:聚类开始把所有个体(观测量或变量)都视为属于⼀⼤类,然后根据距离和相似性逐层分解,直到参与聚类的每个个体⾃成⼀类为⽌。

凝聚法:聚类开始把参与聚类的每个个体(观测量或变量)视为⼀类,根据两类之间的距离或相似性逐步合并直到合并为⼀个⼤类为⽌。

⽆论哪种⽅法,其聚类原则都是近似的聚为⼀类,即距离最近或最相似的聚为⼀类。

聚类分析的思路和方法

目的
揭示数据的内在结构和分布规律,为 数据分析和挖掘提供有力支持。
聚类分析的应用领域
01
02
03
04
模式识别
用于图像分割、语音识别等领 域。
数据挖掘
用于发现数据中的隐藏模式、 异常检测等。
生物信息学
用于基因序列分析、蛋白质结 构预测等。
社交网络分析
用于发现社交网络中的社区结 构、用户行为分析等。
聚类分析的基本流程
要点二
戴维森-布尔丁指数(DaviesBouldin In…
DBI通过计算每个簇内样本到簇质心的平均距离与簇质心 到其他簇质心的最小距离之比的最大值来评估聚类效果。 DBI越小表示聚类效果越好。它考虑了簇内的紧密性和簇 间的分离性。
CHAPTER 05
聚类结果的解释与应用
聚类结果的可视化
散点图
将聚类结果以二维或三维散点图 的形式展示,不同类别的样本用 不同颜色或形状表示,可以直观 地看出各类别之间的分布情况和
CHAPTER 03
聚类算法介绍
K-means算法
算法原理
K-means算法是一种基于距离的聚类算法,通过迭代将数据点划分为K个簇,使得每个簇 内的数据点尽可能相似,而不同簇之间的数据点尽可能不同。
算法步骤
首先随机选择K个数据点作为初始聚类中心,然后计算每个数据点到各个聚类中心的距离 ,并将其划分到距离最近的聚类中心所在的簇中。接着重新计算每个簇的聚类中心,并重 复上述过程直到聚类中心不再发生变化或达到最大迭代次数。
DBSCAN算法
算法原理
DBSCAN(Density-Based Spatial Clustering of Applications with Noise)算法是一种基于密度的聚类 算法,通过寻找被低密度区域分隔的 高密度区域来实现数据的聚类。

数据聚类分析方法

数据聚类分析方法
数据聚类分析方法是一种将数据分组或分类的技术。

聚类分析的目标是将相似的数据聚集在一起,同时将不相似的数据分开。

以下是常见的数据聚类分析方法:
1. K-means聚类算法:K-means算法是一种迭代的聚类算法。

它将数据集分为预先指定的K个簇,其中每个数据点属于距离该数据点最近的簇。

该算法通过不断迭代更新簇的中心来优化聚类结果。

2. 层次聚类算法:层次聚类算法通过以下两种方法进行聚类分析:聚合和分裂。

聚合方法将每个数据点作为一个单独的簇,并逐渐将相似的簇合并在一起。

分裂方法则是从一个包含所有数据点的簇开始,并逐渐将不相似的数据点分离开来。

3. 密度聚类算法:密度聚类算法将数据点密度作为聚类的基础。

该算法通过确定数据点周围的密度来划分不同的簇。

常见的密度聚类算法有DBSCAN和OPTICS。

4. 基于网格的聚类算法:基于网格的聚类算法将数据空间划分为网格,并将数据点分配到各个网格中。

该算法通常适用于高维数据集,可以减少计算复杂度。

5. 谱聚类算法:谱聚类算法将数据点表示为一个图的拉普拉斯矩阵,并通过谱分解将数据点分配到不同的簇中。

该算法通常用于非线性可分的数据集。

需要根据具体的数据集和分析目标来选择适合的数据聚类分析方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

聚类分析的方法一、系统聚类法系统聚类分析法就是利用一定的数学方法将样品或变量(所分析的项目)归并为若干不同的类别(以分类树形图表示),使得每一类别内的所有个体之间具有较密切的关系,而各类别之间的相互关系相对地比较疏远。

系统聚类分析最后得到一个反映个体间亲疏关系的自然谱系,它比较客观地描述了分类对象的各个体之间的差异和联系。

根据分类目的不同,系统聚类分析可分为两类:一类是对变量分类,称为R型分析;另一类是对样品分类,称为Q型分析。

系统聚类分析法基本步骤如下(许志友,1988)。

(一)数据的正规化和标准化由于监测时所得到的数值各变量之间相差较大,或因各变量所取的度量单位不同,使数值差别增大,如果不对原始数据进行变换处理,势必会突出监测数据中数值较大的一些变量的作用,而消弱数值较小的另一些变量的作用,克服这种弊病的办法是对原始数据正规化或标准化,得到的数据均与监测时所取的度量单位无关。

设原始监测数据为Xij (i=1,2,…,n;j=1,2,…,m;n为样品个数,m为变量个数),正规化或标准化处理后的数据为Zij (i=1,2,…,n;j=1,2,…,m)。

1. 正规化计算公式如下:(7-32)(i=1,2,…,n;j=1,2,…,m)2. 标准化计算公式如下:(7-33)(i=1,2,…,n;j=1,2,…,m)其中:(二)数据分类尺度计算为了对数据Zij进行分类,须对该数据进一步处理,以便从中确定出分类的尺度,下列出分类尺度计算的四种方法。

1.相关系数R两两变量间简单相关系数定义为:(7-34)(i,j=1,2,…,m)其中一般用于变量的分类(R型)。

有一1≤≤1且愈接近1时,则此两变量愈亲近,愈接近-1,则关系愈疏远。

2.相似系数相似系数的意义是,把每个样品看做m维空间中的一个向量,n个样品相当于m维空间中的n个向量。

第i个样品与第j个样品之间的相似系数是用两个向量之间的夹角余弦来定义,即:(7-35)(i,j=1,2,…,m)常用于样品间的分类(Q型)。

有一1≤≤1,且的值愈大,愈接近l,两个样品关系愈亲近。

3.欧氏距离欧氏距离含义为,对每个样品,把它的m个因素(变量)的值看做m维空间中的一个点,则,2个样品就是7n维系空间中n个点,则第i个样品与第j个样品之间的距离为:(7-36)(i,j=1,2,…,m)一般用做样品间的分类。

显然有0≤≤1,距离愈小,表示两个样品愈亲密,反之则疏远。

4.斜交空间距离由于变量间往往存在程度不同的相关关系,以欧氏距离计算距离,会使结果发生偏差,因而对样品i,j之间的距离可用更广义的斜交空间距离作为分类尺度。

(7-37)(i,j=1,2,…,n)其中(k,L=1,2,…,m)一般用于样品的分类。

有0≤≤1,且距离愈小表示两个样品愈亲密。

(三)分类树形图的绘制绘制分类树形图的法则是使相似程度高的样本或样本所代表的类优先集中在一起,用较短的线联结起来,而相似程度低的样本或类之间用较长的线联结。

绘制分类树形图可采用两种方法。

1.一次形成分类法首先选出相关系数最大的元素对(或距离矩阵中最小的元素对),然后选出次大的元素对(或距离矩阵中次小的元素对),依次类推。

选出元素对后,将各元素对按下列准则连接成群:若两个元素在已形成的群中没有出现过,则形成一个独立的新群;若两个元素中有一个是在已经分好的群中出现过,则另一个加入该群;若两个元素都在已分好的两群中,则把两群连一起;若两个元素都在同一群中,则这对元素就不再作处理。

这样反复进行,直到所有的元素都分群完毕为止,形成一个树形图。

2.逐步形成分类法假设分类是对样品进行的,且采用的分类尺度是距离。

从距离矩阵中选出最小的元素,这说明第k个样品与第L个样品距离最近(关系最亲密)应首先归入一组,然后按下面方法进行计算:首先,把第五个样品与第L个样品的相应的各个变量取平均值,用它代替第k个样品,并取消第j个样品,形成新的样品数据,它比归并前的样品数目减少一个(当为组合变量时应取加权平均值)。

其次,根据新的样品数据,重新计算距离矩阵。

再从新的距离矩阵中选出最小的,说明新的样品数据中第个样品与第个样品距离最近(关系最密切),应将它们归为一组,然后重复进行上述(1)、(2)、(3)步工作。

以上各步重复进行n-1次则全部样品最后归并为一组,最后按归组的先后顺序及相应的距离大小作出分类树形图。

(四)类别的划分对于已建立的相似性矩阵,即可根据不同的且置信水平进行分类。

分类时应先求出R的λ截矩阵。

(7-38)其中:显然=1时,i与j应归为同一类,否则为不同类。

对于不同的又,可得到不同的分类方案,看0≤≤≤1,则所分出的每一类必是的某一类的子类。

图7-3分类树形图左边的每一个分支代表一个成员,而右边的“根”则代表全部成员的总体。

由分支向根移动时,成员聚合成点群的程度愈来愈高。

以图7-3为例,有5个原始成员,可能的点群有:五个点群,每个点群中成员之间的相似程度最高(只有一个成员);4个点群,即成员(1、2)合并为一个点群,再加上余3个成员;3个点群,即(1、2),(3、4),(5);两个点群,即(1、2),(3、4、5)最后为一个点群,包括所有5个成员。

点群愈少,则点群中成员之间的相似程度愈差,这就可以根据所研究问题的需要而选取。

运用Q式分类树形图进行地下水化学污染综合分类时,还应结合地区的水文地质条件分析判断,才能达到较好的效果。

图7-3 分类树形图二、灰色聚类法灰色聚类是将聚类对象对于不同聚类指数所拥有的白化数,按n个灰类进行归纳,判断该聚类对象属于哪一类。

灰色聚类可按下述步骤计算(邓聚龙,1987):(一)确定灰类白化系数若记I、Ⅱ、Ⅲ,…为聚类对象(即样品),1﹡、2﹡、3﹡,…为聚类指示(即评价因子),1、2、3,…为聚类灰数(即等级划分),第i类聚类对象对第j个聚类指标所拥有的白化数为(实测值),白化系数可按下式计算:(7-39)(k=1,2,…,n;j=1,2,…,m)(二)求标定聚类权j=1,2,…,m (7-40)(三)求聚类系数第j个聚类对象对于第j个灰类的聚类系数为:(7-41)同理可得是个取样点几种污染因子的k个聚类系数矩阵。

(四)灰色聚类取最大值为所对应的水质级别为该评价水体的水质级数。

三、模糊数学法在评价地下水污染时,通常是按照污染物质的单项污染值及综合污染值来区分水质属于轻度污染或严重污染。

这样用一个污染指数值来判定污染程度,不能客观地反映出污染状况。

按模糊数学的观点,地下水污染评价中“污染程度”的界线是模糊的,对于这样的模糊问题应用模糊数学方法把许多资料、判断及各种定性描述转化为模糊语言,对地下水污染进行综合识别和判断,将会得到更为合理的解决。

(一)模糊聚类分析法模糊聚类分析法就是根据各项污染指数得到的模糊矩阵作复合运算,得到模糊等价关系矩阵,然后再进行模糊关系的分类。

其基本步骤如下(蔡贻谟等,1987):1.数据的标准化和正规化设分项污染值为(i=1,2,…,n;j=1,2,…,m;n为样品数,m为监测的污染物个数),则聚类因子值构成了一组n×m的原始数据阵。

对原始数据的标准化和正规化处理方法可采用式7-32和式7-33。

2.模糊相容系数的计算根据规一化数据计算出模糊相容系数矩阵,其作用在于找到样品间的相容性或差异性,以便进行分类,相当于一般的聚类分析中确定分类尺度。

计算的方法如第三节所述,可采用计算相关系数R、相似系数S或计算欧氏距离D,以及计算斜交空间距离D1等,亦可按下式计算距离关系补充定义的相容关系:(7-42)式中:——第i个样品的第k个因子的值;——第j个样品的第k个因子的值;——第i个样品与第j个样品的相容关系。

相容关系越大,表示i,j两个样品污染状况越相似,反之差异越大。

当=1时,说明i,j两个样品取样点的污染状况相同,属于同一类。

将计算得到的相容关系作为矩阵元素,则得到相容系数矩阵。

3.模糊矩阵复合运算由以上具有模糊关系得到相容系数矩阵R,一般是满足反身性和对称性,不满足传递性,不是模糊等价关系,直接由R不能有效地进行分类,需要对只作复合运算,得到模糊等价关系矩阵。

设R是一个模糊关系(矩阵)。

其具有反身性是指=l(i、j=1,2,…,n);其具有对称性是指=;其具有传递性是指对R进行复合运算,记,当取…,若在某一步有,则便是一个模糊等价关系矩阵。

模糊矩阵复合运算是指:当取,则(7-43)(i,j=1,2,…,n)式中:∨——并运算,如即a,b两数中取大者;∧——交运算,如即a,b两数中取小者。

4.绘制模糊聚类图及分类评价对于已建立的模糊等价关系矩阵R﹡,可绘制模糊聚类图(方法同前),并选取不同的置信度进行分类。

然后再结合定性研究资料,对所设环境问题进行评价。

(二)模糊综合评判法模糊综合评判法是以隶属度来描述模糊的水质分级界线的。

1.隶属度的确定假设地下水水质一般可分为m个等级:Ⅰ级,Ⅱ级,…,m级)设x表示某一样品一种污染因子的浓度,则x对于等级V的隶属关系可按下式计算:Ⅰ级(7-44)m-1级(7-45)m级(7-46)(i=1,2,…,n;j=1,2,…,m)式中:n——污染因子数;m ——水质级别数;——某一样品第i种污染因子第j级国家标准浓度。

由此得到某一样品的几种污染因子的隶属度矩阵(7-47)同理可得k个取样点的几种污染因子的k个隶属度矩阵。

2.权重的确定根据这n种污染因子所产生的污染作用不同,可按下式计算,得到权重系数矩阵A:(7-48)其中:3.模糊矩阵复合运算综合评判结果是通过权重矩阵A和模糊关系矩阵R的复合运算得到的,因此有矩阵:(7-49)这里运算符号“。

”可以有两种处理方法:一是模糊矩阵合成算法;二是普通矩阵的算法。

按模糊矩阵合成法则,即按最大、最小运算法则进行,与普通矩阵算法相比较,运算过程一样,只不过是将实数加法改为逻辑加“V”,将实数乘法改为逻辑乘“”。

由于最大“V”、最小“”运算法则只突出了隶属度很大和很小项的作用,所得运算结果B中的值有时相等,评价不出优劣,这在实际问题中是不合理的。

4.模糊综合评判以上结果是对应于集合V上的各项隶属度,取其中最大者所对应的水质级数为该评价水体的水质级数。

四、人工神经网络分析法人工神经网络是对人脑或自然的神经网络若干基本特性的抽象和模拟,是一种非线性的动力学系统。

其特点为:具有大规模的并行处理和分布式的信息存储能力;良好的自适应性、自组织性;很强的学习、联想、容错及抗干扰能力。

人工神经网络形式较多,其中前馈式BP网络属于多层状型的人工神经网络,由输入层、若干隐层和输出层组成。

各层的作用为:输入层接受外界的信息,并向前传播;输出层对输人层传来的信息进行判别和决策;隐层用来处理信息或存储知识。

相关文档
最新文档