四年级第五讲等积变形(下)
小学四年级奥数题三角形的等积变形及答案【三篇】

小学四年级奥数题三角形的等积变形及答案【三篇】【第一篇】1. 三角形把一个等边三角形分别分成8块和9块形状、大小都一样的三角形.分析分成8块的方法是:先取各边的中点并把它们连接起来,得到4个大小、形状相同的三角形,然后再把每一个三角形分成一半,得到如下左图所示的图形.分成9块的方法是:先把每边三等分,然后再把分点彼此连接起来,得到加上右图所示的符合条件的图形.2.比较比较下面两个积的大小:A=987654321×123456789,B=987654322×123456788.分析经审题可知A的第一个因数的个位数字比B的第一个因数的个位数字小1,但A的第二个因数的个位数字比B的第二个因数的个位数字大1.所以不经计算,凭直接观察不容易知道A和B哪个大.但是无论是对A或是对B,直接把两个因数相乘求积又太繁,所以我们开动脑筋,将A和B先进行恒等变形,再作判断.解: A=987654321×123456789=987654321×(123456788+1)=987654321×123456788+987654321.B=987654322×123456788=(987654321+1)×123456788=987654321×123456788+123456788.因为 987654321>123456788,所以 A>B.【第二篇】如图,四边形ABCD和四边形DEFG都是正方形,已知三角形AFH的面积为6平方厘米,求三角形CDH的面积.三角形面积答案:通常求三角形的面积,都是先求它的底和高.题目中没有一条线段的长度是已知的,所以我们只能通过创造等积的方法来求.直接找三角形HDC 与三角形AFH 的关系还很难,而且也没有利用"四边形ABCD和四边形DEFG 是正方形"这一条件.我们不妨将它们都补上梯形DEFH 这一块.寻找新得到大三角形CEF 和大直角梯形DEFA 之间的关系.经过验算,可以知道它们的面积是相等的.从而得到三角形 HDC与三角形AFH面积相等,也是6平方厘米.【第三篇】如下图,BE=2AB,BC=CD。
等积变形问题归纳总结

等积变形问题归纳总结等积变形是数学中一个经典而重要的问题,涉及到几何和代数两个方面。
这类问题一般给定一个几何形状,然后要求找到一个变形的方法,使得该形状在变形后保持等面积不变。
在这篇文章中,我将对等积变形问题进行归纳和总结,介绍常见的等积变形方法及其应用。
一、等积变形的概念和意义等积变形是指通过某种方式改变一个几何形状,使得变形后的形状与原来的形状面积相等。
这个问题在工程、建筑、地理测量等领域有着广泛的应用。
等积变形的主要目的是在不改变面积的情况下,改变某个几何形状的外观或者其他性质。
在实际应用中,等积变形可以用于设计优化、曲面造型、地图绘制等方面。
二、等积变形的常见方法1. 平移变形:平移是最简单的等积变形方法之一。
平移变形是通过将几何形状整体平行地移动,使得形状的外观发生变化,但面积保持不变。
平移变形的关键是保持对称性,即移动后的形状与原来的形状在空间中仍具有相同的位置关系。
2. 旋转变形:旋转变形是通过将几何形状绕一个确定的旋转点旋转一定角度,使得形状的外观发生变化,但面积保持不变。
旋转变形的关键是确定旋转中心和旋转角度,以及保持旋转后的形状与原来的形状在空间中具有相同的位置关系。
3. 缩放变形:缩放变形是通过改变几何形状的尺寸,使得形状的外观发生变化,但面积保持不变。
缩放变形可以分为等比例缩放和非等比例缩放两种方式。
等比例缩放是将形状的所有尺寸同时按照相同的比例进行缩放;非等比例缩放是将形状的各个尺寸分别按照不同的比例进行缩放。
4. 拉伸变形:拉伸变形是通过改变几何形状的某个方向的尺寸,使得形状的外观发生变化,但面积保持不变。
拉伸变形可以在一维、二维和三维空间中进行。
在一维空间中,拉伸变形是指改变线段的长度;在二维空间中,拉伸变形是指改变面的某个方向的尺寸;在三维空间中,拉伸变形是指改变体的某个方向的尺寸。
5. 弯曲变形:弯曲变形是通过施加外力将几何形状弯曲,使得形状的外观发生变化,但面积保持不变。
【小升初专项训练】04 等积变形

第5讲等积变形第一关三角形的等积变形【例1】如图,在等腰直角三角形ABC中,已知AB的长是7厘米,那么这个直角三角形的面积为 平方厘米。
【答案】12.25【例2】如图,E、F分别是梯形ABCD两腰上的中点,已知阴影部分的面积是43c㎡,那么梯形ABCD 的面积是多少?【答案】172【例3】如图:三条直线互相平行,l1与l3之间的距离是7厘米,l2上AB=4厘米.求阴影部分三角形的面积是多少平方厘米? 【答案】14【例4】你能看出下面两个阴影部分A与B面积的大小关系吗?(两个长方形面积相等)【答案】A与B的面积相等【例5】如图,在斜边长为20cm的直角三角形ABC中去掉一个正方形EDFB,留下两个阴影部分直角三角形AED和DFC.若AD=8cm,CD=12cm,则阴影部分面积为多少?给出答案并说明你的计算依据.【答案】48【例6】如图,在直角三角形中有一个正方形,已知BD=10厘米,DC=7厘米,阴影部分的面积是多少?【答案】35平方厘米【例7】如图,梯形ABCD的面积是36,下底长是上底长的2倍,阴影三角形的面积是多少?【答案】16【例8】下图中阴影部分甲的面积与阴影部分乙的面积哪个大?【答案】图中甲乙的面积相等【例9】如图,在三角形ABC中,D是BC上靠近C的三等分点,E是AD中点,已知三角形ABC的面积为1,那么图中两个阴影三角形面积之和是多少?【答案】0.4【例10】已知△ABC面积为5,且BD=2DC,AE=ED,求阴影部分面积.要求写出关键的解题推理过程.【答案】2【例11】如图,将一个梯形分成四个三角形,其中两个三角形的面积分别为10与12.已知梯形的上底长度是下底的.请问:阴影部分的总面积是多少?【答案】23【例12】如图,已知梯形ABCD中,CD=10,梯形ABCD的高是4,那么阴影部分的面积是多少。
【答案】20【例13】(1)如图1,阴影部分的面积是多少?(2)如图2,一个长方形长4厘米,宽3厘米.A为长方形内的任意一点,阴影部分的面积是多少?【答案】(1)100;(2)6【例14】如图,在图中△ABE、ADF和四边形AECF面积相等.阴影部分的面积是多少?【答案】15【例15】如图,两个正方形(单位:厘米)中阴影部分的面积是多少平方厘米?【答案】8【例16】由面积为1,2,3,4的矩形拼成如图的长方形,图中阴影部分的面积为多少?【答案】【例17】如图所示,正方形ABCD的对角线BD长20厘米,BDFE是长方形.那么,五边形ABEFD的面积是多少平方厘米。
小学四年级奥数下册三角形的等积变形教案

三一文库()/小学四年级〔小学四年级奥数下册三角形的等积变形教案〕小学四年级小学四年级奥数下册三角形的等积变形教案,供大家学习参考。
我们已经掌握了三角形面积的计算公式:# 三角形面积=底×高÷2# 这个公式告诉我们:三角形面积的大小,取决于三角形底和高的乘积.如果三角形的底不变,高越大(小),三角形面积也就越大(小).同样若三角形的高不变,底越大(小),三角形面积也就越大(小).这说明;当三角形的面积变化时,它的底和高之中至少有一个要发生变化.但是,当三角形的底和高同时发生变化时,三角形的面积不一定变化.比如当高变为原来#角形的面积变化与否取决于它的高和底的乘积,而不仅仅取决于高或底的变化.同时也告诉我们:一个三角形在面积不改变的情况下,可以有无数多个不同的形状.本讲即研究面积相同的三角形的各种形状以及它们之间的关系.# 为便于实际问题的研究,我们还会常常用到以下结论:# ①等底等高的两个三角形面积相等.# ②底在同一条直线上并且相等,该底所对的角的顶点是同一个点或在与底平行的直线上,这两个三角形面积相等.# ③若两个三角形的高(或底)相等,其中一个三角形的底(或高)是另一个三角形的几倍,那么这个三角形的面积也是另一个三角形面积的几倍.# #,它们所对的顶点同为A点,(也就是它们的高相等)那么这两个三角形的面积相等.#同时也可以知道△ABC的面积是△ABD或△AEC面积的3倍.#例如在右图中,△ABC与△DBC的底相同(它们的底都是BC),它所对的两个顶点A、D在与底BC平行的直线上,(也就是它们的高相等),那么这两个三角形的面积相等.#例如右图中,△ABC与△DBC的底相同(它们的底都是BC),△ABC的高是△DBC高的2倍(D是AB中点,AB=2BD,有AH=2DE),则△ABC的面积是△DBC面积的2倍.###。
《等积变形问题》课件

等积变形问题的应用范围广泛,涵盖了建筑设计、地图制作、数学建模等多个领域。
继续探索
等积变形问题只是数学世界的冰山一角,还有更多有趣且挑战性的数学问题等待我们去探索 和解决。
在数学中的应用
1 变量的关系
等积变形问题可以帮助我们理解变量之间的关系,如面积和边长的关系、体积和半径的 关系等。
2 图形的性质
通过等积变形问题的研究,我们可以更好地理解图形的性质和特点,如面积保持不变的 图形变形。
3 应用于积分
等积变形问题的思想也可以应用于积分中,帮助我们求解复杂的积分问题。
解决等积变形建筑设计
等积变形可以帮助建筑设计师在设计过程中保持建筑物的总面积不变,从而灵活 调整建筑形状和尺寸。
2
地图投影
地图投影是通过等积变形的方法将地球的曲面展示在平面上,从而解决地球表面 在平面上的表示问题。
3
轮胎设计
等积变形可以应用于轮胎设计,帮助优化轮胎的形状,提高车辆的性能和操控稳 定性。
《等积变形问题》PPT课 件
欢迎来到《等积变形问题》PPT课件!通过本课件,我们将一起探索等积变 形问题的定义、分类、应用以及解决方法。让我们一起开始吧!
等积变形问题的定义
等积变形问题指的是在几何中,物体的形状或者大小发生变化,但其面积不变。这是一个有趣且挑战性的数学 问题,需要灵活的思维和创造性的解决方法。
等积变形问题的分类
平面等积变形
平面等积变形是指在平面上的变形,如图形的旋转、镜像、扭曲等,同时保持图形的面积不 变。
立体等积变形
立体等积变形是指在三维空间中的变形,如物体的拉伸、压缩、伸缩等,同时保持物体的体 积不变。
其他等积变形
除了平面和立体等积变形,还存在其他形式的等积变形问题,如曲线等积变形等。
等积变形(附解答)

三角形的等积变形我们已经掌握了三角形面积的计算公式:三角形面积=底×高÷2这个公式告诉我们:三角形面积的大小,取决于三角形底和高的乘积.如果三角形的底不变,高越大(小),三角形面积也就越大(小).同样若三角形的高不变,底越大(小),三角形面积也就越大(小).这说明;当三角形的面积变化时,它的底和高之中至少有一个要发生变化.但是,当三角形的底和高同时发生变化时,三角形的面积不一定变化.比如当高变为原来角形的面积变化与否取决于它的高和底的乘积,而不仅仅取决于高或底的变化.同时也告诉我们:一个三角形在面积不改变的情况下,可以有无数多个不同的形状.本讲即研究面积相同的三角形的各种形状以及它们之间的关系.为便于实际问题的研究,我们还会常常用到以下结论:①等底等高的两个三角形面积相等.②底在同一条直线上并且相等,该底所对的角的顶点是同一个点或在与底平行的直线上,这两个三角形面积相等.③若两个三角形的高(或底)相等,其中一个三角形的底(或高)是另一个三角形的几倍,那么这个三角形的面积也是另一个三角形面积的几倍.它们所对的顶点同为A点,(也就是它们的高相等)那么这两个三角形的面积相等.同时也可以知道△ABC的面积是△ABD或△AEC面积的3倍.例如在图中,△ABC与△DBC的底相同(它们的底都是BC),它所对的两个顶点A、D在与底BC平行的直线上,(也就是它们的高相等),那么这两个三角形的面积相等.例如图中,△ABC与△DBC的底相同(它们的底都是BC),△ABC的高是△DBC 高的2倍(D是AB中点,AB=2BD,有AH=2DE),则△ABC的面积是△DBC面积的2倍.上述结论,是我们研究三角形等积变形的重要依据.例1、用三种不同的方法,把任意一个三角形分成四个面积相等的三角形.方法2:如右图,先将BC二等分,分点D、连结AD,得到两个等积三角形,即△ABD与△ADC等积.然后取AC、AB中点E、F,并连结DE、DF.以而得到四个等积三角形,即△ADF、△BDF、△DCE、△ADE等积.例2、用三种不同的方法将任意一个三角形分成三个小三角形,使它们的面积比为及1∶3∶4.方法 1:如下左图,将BC边八等分,取1∶3∶4的分点D、E,连结AD、AE,从而得到△ABD、△ADE、△AEC的面积比为1∶3∶4.DE,从而得到三个三角形:△ADE、△BDE、△ACD.其面积比为1∶3∶4.当然本题还有许多种其他分法,同学们可以自己寻找解决.例3、如图,在梯形ABCD中,AC与BD是对角线,其交点O,求证:△AOB与△COD面积相等.证明:∵△ABC与△DBC等底等高,∴S△ABC=S△DBC又∵ S△AOB=S△ABC—S△BOCS△DOC=S△DBC—S△BOC∴S△AOB=S△COD.例4、如图,把四边形ABCD改成一个等积的三角形.分析本题有两点要求,一是把四边形改成一个三角形,二是改成的三角形与原四边形面积相等.我们可以利用三角形等积变形的方法,如右图,把顶点A移到CB的延长线上的A′处,△A′BD与△ABD面积相等,从而△A′DC面积与原四边形ABCD面积也相等.这样就把四边形ABCD等积地改成了三角形△A′DC.问题是A′位置的选择是依据三角形等积变形原则.过A 作一条和DB平行的直线与CB的延长线交于A′点.解:①连结BD;②过A作BD的平行线,与CB的延长线交于A′.③连结A′D,则△A′CD与四边形ABCD等积.例5、如图,已知在△ABC中,BE=3AE,CD=2AD.若△ADE的面积为1平方厘米.求三角形ABC的面积.解法1:连结BD,在△ABD中∵ BE=3AE,∴ S△ABD=4S△ADE=4(平方厘米).在△ABC中,∵CD=2AD,∴ S△ABC=3S△ABD=3×4=12(平方厘米).解法2:连结CE,如右图所示,在△ACE中,∵ CD=2AD,∴ S△ACE=3S△ADE=3(平方厘米).在△ABC中,∵BE=3AE∴ S△ABC=4S△ACE=4×3=12(平方厘米).例6、如下图,在△ABC中,BD=2AD,AG=2CG,BE=EF=FC=解:连结BG,在△ABG中,∴ S△ADG+S△BDE+S△CFG例7、如右图,ABCD为平行四边形,EF平行AC,如果△ADE的面积为4平方厘米.求三角形CDF的面积.解:连结AF、CE,∴S△ADE=S△ACE;S△CDF=S△ACF;又∵AC与EF平行,∴S△ACE=S△ACF;∴ S△ADE=S△CDF=4(平方厘米).例8、如右图,四边形ABCD面积为1,且AB=AE,BC=BF,DC=CG,AD=DH.求四边形EFGH的面积.解:连结BD,将四边形ABCD分成两个部分S1与S2.连结FD,有S△FBD=S △DBC=S1所以S△CGF=S△DFC=2S1.同理 S△AEH=2S2,因此S△AEH+S△CGF=2S1+2S2=2(S1+S2)=2×1=2.同理,连结AC之后,可求出S△HGD+S△EBF=2所以四边形EFGH的面积为2+2+1=5(平方单位).例9、如右图,在平行四边形ABCD中,直线CF交AB于E,交DA延长线于F,若S△ADE=1,求△BEF的面积.解:连结AC,∵AB//CD,∴S△ADE=S△ACE又∵AD//BC,∴S△ACF=S△ABF而 S△ACF=S△ACE+S△AEF∶S△ABF=S△BEF+S△AEF∴ S△ACE=S△BEF∴S△BEF=S△ADE=1.。
春季五年制小学奥数四年级三角形等积变形(下)

三角形等积变形<例1正方形ABCD和正方形CEFG,且正方形ABCD边长为10厘米,则图中阴影面积为多少平方厘米?例2两个正方形如图排列,面积相差60,求阴影部分梯形面积。
例3如图所示,已知正方形ABCD的边长为10厘米,EC=2×BE,则,图中阴影部分的面积是________平方厘米。
例4如图,已知三角形ABC面积为1,延长AB至D,使BD=AB;延长BC至E,使CE=2BC;延长CA至F,使AF=3AC,求三角形DEF的面积。
例5如图,ABCD为平行四边形,EF平行AC,如果△ADE的面积为4平方厘米。
求三角形CDF的面积。
例6如图,在四边形ABCD中,对角线AC、BD交于E,且AF=CE,BG=DE,如果四边形ABCD面积是1,求△EFG 的面积?测试题1.如图,长方形ABCD 的面积是1,M 是AD 边的中点,N 在AB 边上,且2AN BN =。
则,阴影部分的面积是多少?NMDCBA2.如图,梯形ABCD 被它的一条对角线BD 分成了两部分。
三角形BDC 的面积比三角形ABD 的面积大10平方分米。
已知梯形的上底与下底的长度之和是15分米,它们的差是5分米。
求梯形ABCD 的面积。
AB CD3.图中两个正方形的边长分别是6厘米和4厘米,则图中阴影部分三角形的面积是〔 〕平方厘米。
4.正方形ABCD 和正方形CEFG ,且正方形ABCD 边长为10厘米,则图中阴影面积为多少平方厘米?HG FEDCBA5.如图,已知三角形ABC 面积为1,延长AB 至D ,使BD AB =;延长BC 至E ,使2CE BC =;延长CA 至F ,使2AF AC =,求三角形DEF 的面积。
答案1.连接BM ,因为M 是中点所以ABM ∆的面积为14又因为2AN BN =,所以ANM ∆的面积为1114312⨯=,又因为BDC ∆面积为12,所以阴影部分的面积为:115112212--=2.CB如右图,作AB 的平行线DE 。
三角形等积变形

例5 如右图,已知在△ABC中,BE=3AE,CD=2AD.若△ADE 的面积为1平方厘米.求三角形ABC的面积.
解法1:连结BD,在△ABD 中 ∵ BE=3AE, ∴ S△ABD=4S△ADE=4 (平方厘米). 在△ABC中,∵CD=2AD, ∴ S△ABC=3S△ABD=3×4=12 (平方厘米).
上述结论,是我们研究三角形等积变形的 重要依据.
方法2:如右图,先将BC二等分,分点D、连结AD, 得到两个等积三角形,即△ABD与△ADC等 积.然后取AC、AB中点E、F,并连结DE、DF.以 而得到四个等积三角形,即△ADF、△BDF、 △DCE、△ADE等积.
例2 用三种不同的方法将任意一个三角形分成 三个小三角形,使它们的面积比为及 1∶3∶4.
三角形等积变形
我们已经掌握了三角形面积的计算公式: 三角形面积=底×高÷2
这个公式告诉我们:三角形面积的大小,取决 于三角形底和高的乘积.
①等底等高的两个三角形面积相等.
例如在右图中,若△ABD与 △AEC的底边相等 (BD=DE=EC=BC) ,它们所对的顶点同为A点, (也就是它们的高相等) 那么这两个三角形的面积 相等. 同时也可以知道△ABC 的面积是△ABD或 △AEC面积的3倍.
证明:∵△ABC与△DBC等 底等高, ∴S△ABC=S△DBC 又∵ S△AOB=S△ABC—S△BOC S△DOC=S△DBC— S△BOC ∴S△AOB=S△COD.
例4 如右图,把四边形ABCD改成一个等积的三角形
分析 本题有两点要求,一是把四边形改成一个三角形,二 是改成的三角形与原四边形面积相等.我们可以利用三角 形等积变形的方法,如右图, 把顶点A移到CB的延长线上的A′处, △A′BD与△ABD面积相等,从而 △A′DC面积与原四边形ABCD面积也 相等.这样就把四边形ABCD等积地 改成了三角形△A′DC.问题是A′位 置的选择是依据三角形等积变形原 则.过A作一条和DB平行的直线与 CB的延长线交于A′点. 解:①连结BD; ②过A作BD的平行线,与CB的 延长线交于A′. ③连结A′D,则△A′CD与四边形 ABCD等积.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【动手算一算】
⑴
⑵
⑴如图,BD长12厘米,DC长4厘米,B、C和D在同一条直线上。
①求三角形ABC的面积是三角形ADC面积的多少倍?
②求三角形ABD的面积是三角形ADC面积的多少倍?
⑵如图,E在AD上,AD垂直BC,AD=12厘米,DE=3厘米。
求三角形ABC的面积是三角形EBC
面积的几倍?
如图,三角形ABC的面积是40,D、E和F分别是BC、AC和AD的中点。
求:三角形DEF的面积。
等积变形(下)
(★★)
(★★★)
如图,在三角形ABC 中,BC =8厘米,高是6厘米,E 、F 分别为AB 和AC 的中点,那么三角形
EBF 的面积是多少平方厘米?
如图所示,在平行四边形ABCD 中,E 为AB 的中点,AF =2CF ,三角形AFE (图中阴影部分)的面积为10平方厘米。
平行四边形
ABCD 的面积是多少平方厘米?
如图,三角形ABC 被分成了甲、乙两部分,BD =DC =4,BE =3,AE =6
,乙部分面积是甲部分面积的几倍?
如图,三角形ABC 的面积为1,其中AE =3AB ,BD =2BC ,三角形
BDE 的面积是多少?
如图,已知三角形ABC 面积为1,延长AB 至D ,使BD =AB ;延长BC 至E ,使CE =BC ;延长CA 至F ,使AF =2AC ,求三角形DEF 的面积。
(★★★) (★★★★) (★★★) (★★★★) (★★★)
(★★★★★)
如图,D是三角形ABC一边上的中点,两个长方形分别以B、D为顶点,并且有一个公共顶点E,已
的面积是多少?
知两块阴影部分的面积分别是100和120,则三角形BDE
一、重要结论
1.结论㈠:等底等高的两个三角形面积相等
结论㈠拓展:夹在平行线间的一组同底三角形面积相等
如下图,△ACD和△BCD夹在一组平行线之间,且有公共底边CD,那么S△ACD=S
△BCD Array 2.结论㈡
⑴若两个三角形的高相等,其中一个三角形的底是另一个三角形的几倍,那么这个三角形的面
积也是另一个三角形面积的几倍。
⑵若两个三角形的底相等,其中一个三角形的高是另一个三角形的几倍,那么这个三角形的面
积也是另一个三角形面积的几倍。
二、技巧方法
1.平行线的来源
⑴平行四边形(包括长方形和正方形)和梯形
⑵已知平行
⑶并排摆放的正方形的同方向对角线
2.已知做底边,等高优先找
三、经典例题
等积变形(上):例3,例5,例6,例7
等积变形(下):例2,例4,例5,例7
课后练习题
题1:如右图,已知三角形ABC的面积为9平方厘米,且BE=EF=FC,ED=2DA,求阴影部分面积。
题2:正方形ABCD和正方形CEFG,且正方形ABCD边长为10厘米,则图中阴影部分面积为多少平方厘米?
题3:如图,ABCD是平行四边形,直线CF与AB相交于E,已知三角形ADE的面积是1,求三角形BEF的面积。
题4:把三角形DEF的各边向外延长1倍后得到三角形ABC,三角形DEF的面积为1。
三角形ABC 的面积是多少?
题5:如图,梯形ABCD被它的一条对角线BD分成了两部分,三角形BDC的面积比三角形ABD的面积大10平方分米。
已知梯形的上底与下底的长度之和是15分米,它们的差是5分米。
则梯形ABCD 的面积是( )平方分米。
A:30 B:40 C:50 D:60。