充分条件和必要条件含区分和例题

合集下载

高考数学 百大经典例题 充分条件与必要条件

高考数学 百大经典例题 充分条件与必要条件

充分条件与必要条件例1 已知p:x1,x2是方程x2+5x-6=0的两根,q:x1+x2=-5,则p是q的[ ] A.充分但不必要条件B.必要但不充分条件C.充要条件D.既不充分也不必要条件分析利用韦达定理转换.解∵x1,x2是方程x2+5x-6=0的两根,∴x1,x2的值分别为1,-6,∴x1+x2=1-6=-5.因此选A.说明:判断命题为假命题可以通过举反例.例2 p是q的充要条件的是[ ] A.p:3x+2>5,q:-2x-3>-5B.p:a>2,b<2,q:a>bC.p:四边形的两条对角线互相垂直平分,q:四边形是正方形D.p:a≠0,q:关于x的方程ax=1有惟一解分析逐个验证命题是否等价.解对A.p:x>1,q:x<1,所以,p是q的既不充分也不必要条件;对B.p q但q p,p是q的充分非必要条件;对C.p q且q p,p是q的必要非充分条件;⇒⇒⇔D p q q p p q p q D对.且,即,是的充要条件.选.说明:当a=0时,ax=0有无数个解.例3 若A是B成立的充分条件,D是C成立的必要条件,C是B成立的充要条件,则D是A成立的[ ] A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件分析通过B、C作为桥梁联系A、D.解∵A是B的充分条件,∴A B①∵D是C成立的必要条件,∴C D②⇔C B C B∵是成立的充要条件,∴③由①③得A C④由②④得A D .∴D 是A 成立的必要条件.选B .说明:要注意利用推出符号的传递性.例4 设命题甲为:0<x <5,命题乙为|x -2|<3,那么甲是乙的[ ]A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 分析 先解不等式再判定.解 解不等式|x -2|<3得-1<x <5.∵0<x <5-1<x <5,但-1<x <50<x <5 ∴甲是乙的充分不必要条件,选A .说明:一般情况下,如果条件甲为x ∈A ,条件乙为x ∈B .当且仅当时,甲为乙的充分条件;当且仅当时,甲为乙的必要条件;A B A B ⊆⊇当且仅当A =B 时,甲为乙的充要条件. 例5 设A 、B 、C 三个集合,为使A(B ∪C),条件A B 是[ ]A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件 分析 可以结合图形分析.请同学们自己画图.∴A(B ∪C).但是,当B =N ,C =R ,A =Z 时, 显然A(B ∪C),但AB 不成立, 综上所述:“A B ”“A(B ∪C)”,而“A (B ∪C)”“AB ”.即“AB ”是“A (B ∪C)”的充分条件(不必要).选A .说明:画图分析时要画一般形式的图,特殊形式的图会掩盖真实情况.例6 给出下列各组条件: (1)p :ab =0,q :a 2+b 2=0; (2)p :xy ≥0,q :|x|+|y|=|x +y|; (3) p : m >0,q :方程x 2-x -m =0有实根; (4)p :|x -1|>2,q :x <-1. 其中p 是q 的充要条件的有[ ]A .1组B .2组C .3组D .4组分析 使用方程理论和不等式性质. 解 (1)p 是q 的必要条件 (2)p 是q 充要条件 (3)p 是q 的充分条件(4)p 是q 的必要条件.选A .说明:ab =0指其中至少有一个为零,而a 2+b 2=0指两个都为零.例>>是>>的条件.7x 3x 3x x x 12112⎧⎨⎩+⎧⎨⎩x 269分析 将前后两个不等式组分别作等价变形,观察两者之间的关系.解>且>+>且>,但当取=,=时,>>成立,而>>不成立=与>矛盾,所以填“充分不必要”.x 3x 3x x 6x x 9x 10x 2(x 2x 3)1212121222⇒+⎧⎨⎩⎧⎨⎩x x x x x x 1212126933 说明:>>->->x 3x 3 x 30x 301212⎧⎨⎩⇔⎧⎨⎩⇔⎧⎨⎩⇔⎧⎨⎩(x 3)(x 3)0(x 3)(x 3)0x x 6x x 3(x x )901212121212-+->-->+>-++>这一等价变形方法有时会用得上.例8 已知真命题“a ≥b c >d ”和“a <be ≤f ”,则“c ≤d ”是“e ≤f ”的________条件.分析 ∵a ≥b c >d(原命题), ∴c ≤d a <b(逆否命题). 而a <b e ≤f ,∴c ≤d e ≤f 即c ≤d 是e ≤f 的充分条件. 答 填写“充分”.说明:充分利用原命题与其逆否命题的等价性是常见的思想方法.例9 ax 2+2x +1=0至少有一个负实根的充要条件是[ ]A .0<a ≤1B .a <1C .a ≤1D .0<a ≤1或a <0分析 此题若采用普通方法推导较为复杂,可通过选项提供的信息,用排除法解之.当a =1时,方程有负根x =-1,当a =0时,x =-.故排除、、选.12A B D C 解常规方法:当=时,=-. a 0x 12当a ≠0时1a 0ax 2x 10021a 0a 12.>,则++=至少有一个负实根<-<<≤.⇔---⇔-⇔24422aa2a 0ax 2x 100221a 21a 1a 02.<,则++=至少有一个负实根<>->-><.⇔-+-⇔⇔⇔2442aa综上所述a ≤1.即ax 2+2x +1=0至少有一个负实根的充要条件是a ≤1.说明:特殊值法、排除法都是解选择题的好方法.例10 已知p 、q 都是r 的必要条件,s 是r 的充分条件,q 是s 的充分条件,那么s ,r ,p 分别是q 的什么条件?分析 画出关系图1-21,观察求解.解 s 是q 的充要条件;(s r q ,q s) r 是q 的充要条件;(r q ,q s r) p 是q 的必要条件;(q s r p)说明:图可以画的随意一些,关键要体现各个条件、命题之间的逻辑关系. 例11 关于x 的不等式|x |x 3(a 1)x 2(3a 1)0AB A B 1a 3a 12-≤与-+++≤的解集依次为与,问“”是“≤≤或=-”的充要条件吗?()()a a +-⊆121222分析 化简A 和B ,结合数轴,构造不等式(组),求出a . 解 A ={x|2a ≤x ≤a 2+1},B ={x|(x -2)[x -(3a +1)]≤0}当≤+即≥时,23a 1a 13B ={x|2≤x ≤3a +1}.A B 2a 2a +13a +11a 323a 1a 2⊆⇔⎧⎨⎩⇔≥≤≤≤当>+即<时,13B ={x|3a +1≤x ≤2}A B 2a 3a +1a +12a 1A B a 11a 3A B 1a 3a 12⊆⇔⎧⎨⎩⇔⊆⇔⊆≥≤=-.综上所述:=-或≤≤.∴“”是“≤≤或=-”的充要条件.说明:集合的包含关系、命题的真假往往与解不等式密切相关.在解题时要理清思路,表达准确,推理无误.例>,>是<的必要条件还是充分条件,还是充12 x y xy 011x y要条件?分析 将充要条件和不等式同解变形相联系.解.当<时,可得-<即< 1001111x y x y y xxy-则-><或-<>,即<<或>>,y x 0xy 0y x 0xy 0 x y xy 0x 0⎧⎨⎩⎧⎨⎩⎧⎨⎩⎧⎨⎩y xy故<不能推得>且>有可能得到<<,即>且>并非<的必要条件.11011x y x y xy x yx y xy 0()x y xy 0⎧⎨⎩2x y xy 0x y x 0y 0x yx 0y 0x y xy 0.当>且>则分成两种情况讨论:>>>或><<不论哪一种情况均可化为<.∴>且>是<的充分条件.⎧⎨⎪⎩⎪⎧⎨⎪⎩⎪1111x yx y说明:分类讨论要做到不重不漏.例13 设α,β是方程x 2-ax +b =0的两个实根,试分析a >2且b >1是两根α,β均大于1的什么条件?分析 把充要条件和方程中根与系数的关系问题相联系,解题时需要搞清楚条件与结论分别指什么.然后再验证是还是还是.p q p q q p p q ⇒⇒⇔解据韦达定理得:=α+β,=αβ,判定的条件是:>>结论是:α>β>还要注意条件中,,需要满足大前提Δ=-≥a b pq(p a b a4b 0)2ab21 11⎧⎨⎩⎧⎨⎩(1)1a2b1由α>β>得=α+β>,=αβ>,1⎧⎨⎩∴q p.上述讨论可知:a>2,b>1是α>1,β>1的必要但不充分条件.说明:本题中的讨论内容在二次方程的根的分布理论中常被使用.例14 (1991年全国高考题)设甲、乙、丙是三个命题,如果甲是乙的必要条件,丙是乙的充分条件,但不是乙的必要条件,那么[ ] A.丙是甲的充分条件,但不是甲的必要条件B.丙是甲的必要条件,但不是甲的充分条件C.丙是甲的充要条件D.丙不是甲的充分条件,也不是甲的必要条件分析1:由丙乙甲且乙丙,即丙是甲的充分不必要条件.分析2:画图观察之.答:选A.说明:抽象命题之间的逻辑关系通常靠画图观察比较方便。

充分条件、必要条件、充要条件题型解析

充分条件、必要条件、充要条件题型解析

ʏ朱珠充分条件与必要条件是高中数学的重要概念,因其抽象性而成为同学们难以理解的内容㊂下面就这方面的题型进行举例分析㊂一㊁充分条件㊁必要条件㊁充要条件的判断充分条件与必要条件:若p⇒q,则p是q的充分条件,q是p的必要条件;若p⇒/q,则p不是q的充分条件,q不是p的必要条件㊂一般地,如果p⇒q,且q⇒p,就记作p⇔q,则p是q的充分必要条件,简称充要条件㊂概括地说,如果p⇔q,那么p与q互为充要条件㊂判断p是q的什么条件,主要判断p⇒q,及q⇒p这两个命题的正确性,若p⇒q真,则p是q成立的充分条件;若q⇒p 真,则p是q成立的必要条件㊂要否定p与q不能相互推出时,举出一个反例即可㊂例1(1)已知实系数一元二次方程a x2+b x+c=0(aʂ0),则下列结论正确的是()㊂①Δ=b2-4a cȡ0是这个方程有实根的充要条件;②Δ=b2-4a c=0是这个方程有实根的充分条件;③Δ=b2-4a c>0是这个方程有实根的必要条件;④Δ=b2-4a c<0是这个方程没有实根的充要条件㊂A.③④B.②③C.①②③D.①②④(2)若p:AɘB=A,q:∁U B⊆∁U A,则p 是q的()㊂A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件分析:对于(1),利用Δ=b2-4a c判断方程根的情况,当Δ=0时,一元二次方程有两个等根;当Δ>0时,一元二次方程有两个不相等的根;当Δ<0时,一元二次方程没有实数根㊂对于(2),画出V e n n图(如图1),结合图形,可帮助求解㊂图1解:(1)Δȡ0⇔一元二次方程a x2+b x+ c=0(aʂ0)有实根,①正确㊂Δ=0⇒一元二次方程a x2+b x+c=0(aʂ0)有实根,②正确㊂Δ>0⇒一元二次方程a x2+b x+c=0 (aʂ0)有实根,但a x2+b x+c=0(aʂ0)有实根⇒/Δ>0,③错误㊂Δ<0⇔一元二次方程a x2+b x+c=0(aʂ0)无实根,④正确㊂应选D㊂(2)结合图1可得AɘB=A⇔A⊆B⇔∁U A⊇∁U B,即p是q的充要条件㊂应选C㊂充分条件与必要条件的两种判断方法:直接利用定义判断;集合法,将命题p,q分别看作集合A, B,当A⊆B时,p是q的充分条件,q是p的必要条件,当A=B时,p,q互为充要条件㊂二㊁充分条件㊁必要条件㊁充要条件的应用利用充分条件㊁必要条件求参数的取值范围问题,常利用集合法求解,先化简集合A={x|p(x)}和B={x|q(x)},然后根据p 与q的关系(充分㊁必要㊁充要条件),得出集合A与B的包含关系,进而得到相关不等式组,最后求出参数的取值范围㊂例2已知集合A={x|a<x<a+2}, B={x|x<-1或x>3},且A是B的充分不必要条件,求实数a的取值范围㊂分析:由A是B的充分不必要条件,说0 1知识结构与拓展高一数学2023年9月Copyright©博看网. All Rights Reserved.明集合A 是B 的真子集,即A ⫋B ,由此可得实数a 满足的条件,从而得到实数a 的取值范围㊂解:因为A 是B 的充分不必要条件,所以A ⫋B ㊂又因为A ={x |a <x <a +2},B ={x |x <-1或x >3},所以a +2ɤ-1或a ȡ3,解得a ȡ3或a ɤ-3,所以实数a 的取值范围是{a |a ȡ3或a ɤ-3}㊂充分条件㊁必要条件中的含参数问题,往往是通过集合的包含关系来解答的㊂三㊁充要条件的证明充要条件的证明,可分为充分性和必要性的证明,证明时要注意两种叙述方式的区别:①p 是q 的充要条件,由p ⇒q 是充分性,由q ⇒p 是必要性;②p 的充要条件是q ,由p ⇒q 是必要性,由q ⇒p 是充分性㊂例3 求证:方程m x 2-2x +3=0有两个同号且不相等实根的充要条件是0<m <13㊂分析:先找出条件和结论,然后证明充分性和必要性都成立㊂证明:先证充分性(由条件推结论)㊂因为0<m <13,所以方程m x 2-2x +3=0的判别式Δ=4-12m >0,所以方程有两个不相等的实根㊂设方程的两根为x 1,x 2,当0<m <13时,x 1+x 2=2m >0且x 1x 2=3m>0,所以方程m x 2-2x +3=0有两个同号且不相等的实根,所以0<m <13⇒方程m x 2-2x +3=0有两个同号且不相等的实根㊂再证必要性(由结论推条件)㊂若方程m x 2-2x +3=0有两个同号且不相等的实根,则Δ=4-12m >0,x 1x 2=3m>0,所以0<m <13,所以方程m x 2-2x +3=0有两个同号且不相等的实根⇒0<m <13㊂综上可得,方程m x 2-2x +3=0有两个同号且不相等的实根的充要条件是0<m <13㊂ 证明p 是q 的充要条件,既要证明命题 p ⇒q为真,又要证明 q ⇒p 为真,前者证明的是充分性,后者证明的是必要性㊂证明充要条件,即证明原命题和逆命题都成立㊂要注意 p 是q 的充要条件 与 p 的充要条件是q 这两种说法的差异,要分清哪个是条件,哪个是结论㊂1.求证:关于x 的方程a x 2+b x +c =0有一个根是1的充要条件是a +b +c =0㊂提示:先证明p ⇒q ,即证明必要性,再证明q ⇒p ,即证明充分性㊂设命题p :方程a x 2+b x +c =0有一个根是1,命题q :a +b +c =0㊂先证明p ⇒q ,即证明必要性,由x =1是方程a x 2+b x +c =0的根,可得a ㊃12+b ㊃1+c =0,即a +b +c =0㊂再证明q ⇒p ,即证明充分性,由a +b +c =0,可得c =-a -b ,因为a x 2+b x +c =0,所以a x 2+b x -a -b =0,即a (x 2-1)+b (x -1)=0,也即(x -1)(a x +a +b )=0,所以x =1是方程的一个根㊂综上可知,方程a x 2+b x +c =0有一个根是1的充要条件是a +b +c =0㊂2.已知三个不等式:a b >0,b c -a d >0,c a -db>0(其中a ,b ,c ,d 均为实数)㊂用其中两个不等式作为条件,余下的一个不等式作为结论组成一个命题,则可组成的正确命题的个数是( )㊂A.0 B .1 C .2 D .3提示:a b >0为①,b c -a d >0为②,ca-d b >0为③㊂若①②成立,则1a b (b c -a d )>,可得c a -d b >0,即③成立㊂若①③成立,则a bc a -d b>0,可得b c -a d >0,即②成立㊂若②③成立,则由③得b c -a da b>0,由②b c -a d >0得a b >0,即①成立㊂应选D ㊂作者单位:江苏省阜宁县东沟中学(责任编辑 郭正华)11知识结构与拓展高一数学 2023年9月Copyright ©博看网. All Rights Reserved.。

充分条件和必要条件的例题

充分条件和必要条件的例题

充分条件和必要条件的例题嘿,大家好!今天我们来聊聊“充分条件”和“必要条件”这两个数学和逻辑中的重要概念。

虽然这听起来有点儿枯燥,但是如果我们把它们用得当,可以让我们的思维变得更清晰、更精准。

咱们先从简单的入手,再慢慢深入,保证大家听完后对这些概念有一个清晰的了解。

1. 基本概念1.1 充分条件所谓充分条件,就是一个条件的满足可以保证另一个条件的成立。

换句话说,只要满足了这个条件,结果就能实现了。

例如,你做了充足的准备,那么考试就很可能能取得好成绩。

这里,“充足的准备”就是取得好成绩的充分条件。

也就是说,充足的准备足够让你取得好成绩,但它本身并不一定是唯一的途径。

1.2 必要条件相对的,必要条件就是一个条件的存在是另一个条件成立的必须条件。

它是实现某个结果的基础条件,但单靠它还不够。

比如说,考试成绩及格的必要条件是你至少得参加考试。

如果你根本没有参加考试,那你肯定无法获得成绩。

然而,参加考试并不一定保证你能及格,你还得努力复习,做好准备。

2. 例子分析2.1 生活中的例子我们可以用生活中的例子来更好地理解这两个概念。

假如你想学会开车,首先,你必须有一个驾照,这就属于学习开车的必要条件。

没有驾照,你就不能合法开车。

然后,拿到驾照只是个起点,你还得进行实际操作练习,掌握驾驶技巧,这才是充分条件。

如果你拥有驾照但没有练车,那即便有了条件,你也可能没法真正开车。

2.2 数学问题中的应用再来看一个数学例子。

假设我们有一个数学命题:“如果一个数是偶数,那么它可以被2整除。

”这里,“偶数”就是充分条件,因为一旦你确认某个数是偶数,那么它就一定能被2整除。

而“可以被2整除”则是这个命题的必要条件,因为只有具备这个条件,数才能被称为偶数。

3. 如何应用3.1 理解和分析理解充分条件和必要条件对解决问题非常重要。

比如,在学习过程中,如果你明白某个条件是否足够让结论成立,或者某个条件是否必须存在,你会更容易找到解决问题的方法。

充分条件和必要条件(含区分和例题)

充分条件和必要条件(含区分和例题)

充分条件和必要条件(含区分和例题)充分条件和必要条件解释:如果有事物情况A,则必然有事物情况B ; 如果没有事物情况A,则必然没有事物情况B , A就是B的充分必要条件(简称:充要条件)。

简单地说,满足A,必然B ;不满足A,必然不B,则A是B的充分必要条件。

(A可以推导出B,且B也可以推导出A)例如: 1. A=三角形等边” B=三角形等角” 2. A=某人触犯了刑律”;B=应当依照刑法对他处以刑罚” 3. A=付了足够的钱”;B=能买到商店里的东西” 例子中A 都是B的充分必要条件:其一、A必然导致B ;其二,A是B发生必需的。

区分:假设A是条件,B是结论由A可以推出B〜由B可以推出A〜~则A是B 的充要条件(充分且必要条件)由A可以推出B〜由B不可以推出A〜〜则A是B 的充分不必要条件由A不可以推出B〜由B可以推出A~~则A是B的必要不充分条件由A不可以推出B~由B不可以推出A~~则A 是B 的不充分不必要条件简单一点就是:由条件能推出结论,但由结论推不出这个条件,这个条件就是充分条件如果能由结论推出条件,但由条件推不出结论。

此条件为必要条件如果既能由结论推出条件,又能有条件推出结论。

此条件为充要条件例子:1.充分条件:由条件a推出条件b,但是条件b并不一定能推出条件a,天下雨了,地面一定湿,但是地面湿不一定是下雨造成的。

2.必要条件:由后一个条件推出前一个条件,但是前一个条件并一定能推出后一个条件。

我们把前面一个例子倒过来:地面湿了,天下雨了。

我这里在简单说下哲学上的充分条件和必要条件1. 充分条件是指根据提供的现有条件可以直接判断事物的运行发展结果。

充分条件是事物运行发展的必然性条件,体现必然性的哲学内涵。

如父亲和儿子的关系属于亲情关系吗?答必然属于。

2. 必要性条件。

事物的运行发展有其规律性,必要性条件是指一些外在或内在的条件符合该事物的运行规律的要求,但不能推动事物规律的最终运行。

充分条件和必要条件的举例

充分条件和必要条件的举例

充分条件和必要条件的举例1. 充分条件和必要条件的基本概念要理解充分条件和必要条件,咱们先来聊聊这俩个概念。

简单来说,充分条件就像是一个“钥匙”,只要你有了它,就能打开“门”。

而必要条件就像是你要进这扇门必须具备的“通行证”。

明白这点后,咱们就能更好地理解生活中各种关系了。

1.1 充分条件的例子比如说,想要成为一名足球明星,你得踢得特别好。

也就是说,踢得好就是成为足球明星的一个充分条件。

你只要有这个条件,基本上就可以说,成为足球明星的那扇门对你敞开着。

不过,这里得注意哦,光踢得好还不够,你还得有好的教练、合适的球队,甚至还得有人赏识你。

再举个例子,如果你要上大学,拿到好成绩就是一个充分条件,只要你成绩足够高,大学的大门就会向你敞开。

1.2 必要条件的例子说到必要条件,咱们换个角度想。

如果你想上大学,没高中毕业的学历,基本上是没戏的。

高中毕业就是个必要条件,你不具备这个条件,就算考得再好也没用。

再比如,想喝到好酒,你得年满18岁,这就是喝酒的必要条件。

如果不满18岁,哪怕你在酒吧外面干等,也只能望酒兴叹。

2. 生活中的充分条件和必要条件在我们的日常生活中,充分条件和必要条件随处可见。

想买车,肯定得有钱,这就是个必要条件。

没钱,你就别想开上车了。

不过,钱多了就能选择更多的车型,这就变成了一个充分条件。

其实生活中的许多事情都可以用这两种条件来解释,让人觉得生活更有趣。

2.1 感情中的充分与必要条件再来聊聊感情。

想要谈恋爱,首先得有对方愿意,这就是一个必要条件。

如果对方不喜欢你,那你再努力也白搭。

不过,光有这个条件还不够哦,你还得有共同的兴趣、良好的沟通,这些都是充分条件,缺一不可。

就像一顿丰盛的晚餐,只有一道菜是远远不够的,你还得配上米饭、饮料,这样才能让味道更加丰富。

2.2 职场中的充分与必要条件在职场上也是如此。

想要升职加薪,首先得有工作的能力,这就是一个必要条件。

如果你啥都不会,老板怎么可能提拔你呢?但是,单靠能力也不行,适当的人脉关系、出色的表现也都是提升的充分条件。

充分条件和必要条件(含区分和例题)

充分条件和必要条件(含区分和例题)

充分条件和必要条件解释:如果有事物情况A,则必然有事物情况B;如果没有事物情况A,则必然没有事物情况B,A就是B的充分必要条件(简称:充要条件)。

简单地说,满足A,必然B;不满足A,必然不B,则A是B的充分必要条件。

(A可以推导出B,且B也可以推导出A)例如: 1. A=“三角形等边”;B=“三角形等角”。

2. A=“某人触犯了刑律”;B=“应当依照刑法对他处以刑罚”。

3. A=“付了足够的钱”;B=“能买到商店里的东西”。

例子中A都是B的充分必要条件:其一、A必然导致B;其二,A是B发生必需的。

区分:假设A是条件,B是结论由A可以推出B~由B可以推出A~~则A是B的充要条件(充分且必要条件)由A可以推出B~由B不可以推出A~~则A是B的充分不必要条件由A不可以推出B~由B可以推出A~~则A是B的必要不充分条件由A不可以推出B~由B不可以推出A~~则A是B的不充分不必要条件简单一点就是:由条件能推出结论,但由结论推不出这个条件,这个条件就是充分条件如果能由结论推出条件,但由条件推不出结论。

此条件为必要条件如果既能由结论推出条件,又能有条件推出结论。

此条件为充要条件例子:1.充分条件:由条件a推出条件b,但是条件b并不一定能推出条件a,天下雨了,地面一定湿,但是地面湿不一定是下雨造成的。

2.必要条件:由后一个条件推出前一个条件,但是前一个条件并一定能推出后一个条件。

我们把前面一个例子倒过来:地面湿了,天下雨了。

我这里在简单说下哲学上的充分条件和必要条件1. 充分条件是指根据提供的现有条件可以直接判断事物的运行发展结果。

充分条件是事物运行发展的必然性条件,体现必然性的哲学内涵。

如父亲和儿子的关系属于亲情关系吗答必然属于。

2. 必要性条件。

事物的运行发展有其规律性,必要性条件是指一些外在或内在的条件符合该事物的运行规律的要求,但不能推动事物规律的最终运行。

如亲情关系和父子关系,亲情关系符合父子关系的一种现象表达,但不能推倒出亲情关系属于父子关系。

充分条件和必要条件(含区分和例题)

充分条件和必要条件(含区分和例题)

充分条件和必要条件解释:如果有事物情况A,则必然有事物情况B;如果没有事物情况A,则必然没有事物情况B,A就是B的充分必要条件(简称:充要条件)。

简单地说,满足A,必然B;不满足A,必然不B,则A是B的充分必要条件。

(A可以推导出B,且B也可以推导出A)例如: 1. A=“三角形等边”;B=“三角形等角”。

2. A=“某人触犯了刑律”;B=“应当依照刑法对他处以刑罚”。

3. A=“付了足够的钱”;B=“能买到商店里的东西”。

例子中A都是B的充分必要条件:其一、A必然导致B;其二,A是B发生必需的。

区分:假设A是条件,B是结论由A可以推出B~由B可以推出A~~则A是B的充要条件(充分且必要条件)由A可以推出B~由B不可以推出A~~则A是B的充分不必要条件由A不可以推出B~由B可以推出A~~则A是B的必要不充分条件由A不可以推出B~由B不可以推出A~~则A是B的不充分不必要条件简单一点就是:由条件能推出结论,但由结论推不出这个条件,这个条件就是充分条件如果能由结论推出条件,但由条件推不出结论。

此条件为必要条件如果既能由结论推出条件,又能有条件推出结论。

此条件为充要条件例子:1.充分条件:由条件a推出条件b,但是条件b并不一定能推出条件a,天下雨了,地面一定湿,但是地面湿不一定是下雨造成的。

2.必要条件:由后一个条件推出前一个条件,但是前一个条件并一定能推出后一个条件。

我们把前面一个例子倒过来:地面湿了,天下雨了。

我这里在简单说下哲学上的充分条件和必要条件1. 充分条件是指根据提供的现有条件可以直接判断事物的运行发展结果。

充分条件是事物运行发展的必然性条件,体现必然性的哲学内涵。

如父亲和儿子的关系属于亲情关系吗?答必然属于。

2. 必要性条件。

事物的运行发展有其规律性,必要性条件是指一些外在或内在的条件符合该事物的运行规律的要求,但不能推动事物规律的最终运行。

如亲情关系和父子关系,亲情关系符合父子关系的一种现象表达,但不能推倒出亲情关系属于父子关系。

充分条件和必要条件(含区分和例题)

充分条件和必要条件(含区分和例题)

充分条件和必要条件(含区分和例题)充分条件和必要条件解释:如果有事物情况A,则必然有事物情况B;如果没有事物情况A,则必然没有事物情况B,A就是B的充分必要条件(简称:充要条件)。

简单地说,满足A,必然B;不满足A,必然不B,则A是B的充分必要条件。

(A可以推导出B,且B也可以推导出A)例如: 1. A=“三角形等边”;B=“三角形等角”。

2. A=“某人触犯了刑律”;B=“应当依照刑法对他处以刑罚”。

3. A=“付了足够的钱”;B=“能买到商店里的东西”。

例子中A 都是B的充分必要条件:其一、A必然导致B;其二,A是B发生必需的。

区分:假设A是条件,B是结论由A可以推出B~由B可以推出A~~则A是B 的充要条件(充分且必要条件)由A可以推出B~由B不可以推出A~~则A是B的充分不必要条件由A不可以推出B~由B可以推出A~~则A是B的必要不充分条件由A不可以推出B~由B不可以推出A~~则A 是B的不充分不必要条件简单一点就是:由条件能推出结论,但由结论推不出这个条件,这个条件就是充分条件如果能由结论推出条件,但由条件推不出结论。

此条件为必要条件如果既能由结论推出条件,又能有条件推出结论。

此条件为充要条件例子:1.充分条件:由条件a推出条件b,但是条件b并不一定能推出条件a,天下雨了,地面一定湿,但是地面湿不一定是下雨造成的。

2.必要条件:由后一个条件推出前一个条件,但是前一个条件并一定能推出后一个条件。

我们把前面一个例子倒过来:地面湿了,天下雨了。

我这里在简单说下哲学上的充分条件和必要条件1. 充分条件是指根据提供的现有条件可以直接判断事物的运行发展结果。

充分条件是事物运行发展的必然性条件,体现必然性的哲学内涵。

如父亲和儿子的关系属于亲情关系吗?答必然属于。

2. 必要性条件。

事物的运行发展有其规律性,必要性条件是指一些外在或内在的条件符合该事物的运行规律的要求,但不能推动事物规律的最终运行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

充分条件和必要条件
解释:如果有事物情况A,则必然有事物情况B;如果没有事物情况A,则必然没有事物情况B,A就是B的充分必要条件(简称:充要条件)。

简单地说,满足A,必然B;不满足A,必然不B,则A是B的充分必要条件。

(A可以推导出B,且B也可以推导出A)
例如: 1. A=“三角形等边”;B=“三角形等角”。

2. A=“某人触犯了刑律”;B=“应当依照刑法对他处以刑罚”。

3. A=“付了足够的钱”;B=“能买到商店里的东西”。

例子中A都是B的充分必要条件:其一、A必然导致B;其二,A是B发生必需的。

区分:假设A是条件,B是结论
由A可以推出B~由B可以推出A~~则A是B的充要条件(充分且必要条件)
由A可以推出B~由B不可以推出A~~则A是B的充分不必要条件
由A不可以推出B~由B可以推出A~~则A是B的必要不充分条件
由A不可以推出B~由B不可以推出A~~则A是B的不充分不必要条件
简单一点就是:由条件能推出结论,但由结论推不出这个条件,这个条件就是充分条件
如果能由结论推出条件,但由条件推不出结论。

此条件为必要条件
如果既能由结论推出条件,又能有条件推出结论。

此条件为充要条件
例子:1.充分条件:由条件a推出条件b,但是条件b并不一定能推出条件a,
天下雨了,地面一定湿,但是地面湿不一定是下雨造成的。

2.必要条件:由后一个条件推出前一个条件,但是前一个条件并一定能推出后一个条件。

我们把前面一个例子倒过来:地面湿了,天下雨了。

我这里在简单说下哲学上的充分条件和必要条件
1. 充分条件是指根据提供的现有条件可以直接判断事物的运行发展结果。

充分条件是事物运行发展的必然性条件,体现必然性的哲学涵。

如父亲和儿子的关系属于亲情关系吗?答必然属于。

2. 必要性条件。

事物的运行发展有其规律性,必要性条件是指一些外在或在的条件符合该
事物的运行规律的要求,但不能推动事物规律的最终运行。

如亲情关系和父子关系,亲情关系符合父子关系的一种现象表达,但不能推倒出亲情关系属于父子关系。

集合表示:设A、B是两个集合,
A是B的充分条件,即满足A的必然满足B,表示为A包含于B;
A是B的必要条件,即满足B的必然满足A,表示为A包含B,或B包含于A;
A是B的充分不必要条件,即A是B的真子集,表示为A真包含于B;
A是B的必要不充分条件,即B是A的真子集,表示为A真包含B,或者B真包含于A;
A是B的充分必要条件,即A、B等价,表示为A=B。

其中包含与真包含的符号打不出,自己写吧。

不过这种表示方法非常的不严格,实际中A、B两集合的元素未必是同一各类,而只是有一定的逻辑关系,所以这种表示法也只能在特别的情况下适用。

例题:例1 已知p:x1,x2是方程x2+5x-6=0的两根,q:x1+x2=-5,则p是q的[ ]
A.充分但不必要条件B.必要但不充分条件
C.充要条件D.既不充分也不必要条件
分析利用韦达定理转换.
解∵x1,x2是方程x2+5x-6=0的两根,
∴x1,x2的值分别为1,-6,
∴x1+x2=1-6=-5.
因此选A.
说明:判断命题为假命题可以通过举反例.
例2 p是q的充要条件的是
[ ]
A.p:3x+2>5,q:-2x-3>-5
B.p:a>2,b<2,q:a>b
C.p:四边形的两条对角线互相垂直平分,q:四边形是正方形
D.p:a≠0,q:关于x的方程ax=1有惟一解
分析逐个验证命题是否等价.
解对A.p:x>1,q:x<1,所以,p是q的既不充分也不必要条件;
对B.p q但q p,p是q的充分非必要条件;
对C.p q且q p,p是q的必要非充分条件;
说明:当a=0时,ax=0有无数个解.
例3 若A是B成立的充分条件,D是C成立的必要条件,C是B成立的充要条件,则D是A 成立的
[ ]
A.充分条件B.必要条件
C.充要条件D.既不充分也不必要条件
分析通过B、C作为桥梁联系A、D.
解∵A是B的充分条件,∴A B①
∵D是C成立的必要条件,∴C D②
由①③得A C④
由②④得A D.
∴D是A成立的必要条件.选B.
说明:要注意利用推出符号的传递性.
例4 设命题甲为:0<x<5,命题乙为|x-2|<3,那么甲是乙的
[ ]
A.充分不必要条件 B.必要不充分条件
C.充要条件D.既不充分也不必要条件
分析先解不等式再判定.
解解不等式|x-2|<3得-1<x<5.
∵0<x<5 -1<x<5,但-1<x<5 0<x<5
∴甲是乙的充分不必要条件,选A.
说明:一般情况下,如果条件甲为x∈A,条件乙为x∈B.
当且仅当A=B时,甲为乙的充要条件.
例5 设A、B、C三个集合,为使A (B∪C),条件A B是
[ ]
A.充分条件B.必要条件
C.充要条件D.既不充分也不必要条件
分析可以结合图形分析.请同学们自己画图.
∴A (B∪C).
但是,当B=N,C=R,A=Z时,
显然A (B∪C),但A B不成立,
综上所述:“A B” “A (B∪C)”,而
“A (B∪C)” “A B”.
即“A B”是“A (B∪C)”的充分条件(不必要).选A.
说明:画图分析时要画一般形式的图,特殊形式的图会掩盖真实情况.例6 给出下列各组条件:
(1)p:ab=0,q:a2+b2=0;
(2)p:xy≥0,q:|x|+|y|=|x+y|;
(3)p:m>0,q:方程x2-x-m=0有实根;
(4)p:|x-1|>2,q:x<-1.
其中p是q的充要条件的有
[ ]
A.1组 B.2组
C.3组 D.4组
分析使用方程理论和不等式性质.
解 (1)p是q的必要条件
(2)p是q充要条件
(3)p是q的充分条件
(4)p是q的必要条件.选A.
说明:ab=0指其中至少有一个为零,而a2+b2=0指两个都为零.
分析将前后两个不等式组分别作等价变形,观察两者之间的关系.
例8 已知真命题“a≥b c>d”和“a<b e≤f”,则“c≤d”是“e≤f”的________条件.分析∵a≥b c>d(原命题),
∴c≤d a<b(逆否命题).
而a<b e≤f,
∴c≤d e≤f即c≤d是e≤f的充分条件.
答填写“充分”.
说明:充分利用原命题与其逆否命题的等价性是常见的思想方法.
例9 ax2+2x+1=0至少有一个负实根的充要条件是
[ ]
A.0<a≤1 B.a<1
C.a≤1 D.0<a≤1或a<0
分析此题若采用普通方法推导较为复杂,可通过选项提供的信息,用排除法解之.当a=1时,方程有负根x=-1,当a=0时,x=
当a≠0时
综上所述a≤1.
即ax2+2x+1=0至少有一个负实根的充要条件是a≤1.
说明:特殊值法、排除法都是解选择题的好方法.
例10 已知p、q都是r的必要条件,s是r的充分条件,q是s的充分条件,那么s,r,p 分别是q的什么条件?
分析画出关系图1-21,观察求解.
解 s是q的充要条件;(s r q,q s)
r是q的充要条件;(r q,q s r)
p是q的必要条件;(q s r p)
说明:图可以画的随意一些,关键要体现各个条件、命题之间的逻辑关系.
例11 关于x的不等式
分析化简A和B,结合数轴,构造不等式(组),求出a.
解 A={x|2a≤x≤a2+1},B={x|(x-2)[x-(3a+1)]≤0}
B={x|2≤x≤3a+1}.
B={x|3a+1≤x≤2}
说明:集合的包含关系、命题的真假往往与解不等式密切相关.在解题时要理清思路,表达准确,推理无误.
要条件?
分析将充要条件和不等式同解变形相联系.
说明:分类讨论要做到不重不漏.
例13 设α,β是方程x2-ax+b=0的两个实根,试分析a>2且b>1是两根α,β均大于1的什么条件?
分析把充要条件和方程中根与系数的关系问题相联系,解题时需
∴q p.
上述讨论可知:a>2,b>1是α>1,β>1的必要但不充分条件.
说明:本题中的讨论容在二次方程的根的分布理论中常被使用.
例14 (1991年全国高考题)设甲、乙、丙是三个命题,如果甲是乙的必要条件,丙是乙的充分条件,但不是乙的必要条件,那么
[ ]
A.丙是甲的充分条件,但不是甲的必要条件
B.丙是甲的必要条件,但不是甲的充分条件
C.丙是甲的充要条件
D.丙不是甲的充分条件,也不是甲的必要条件
分析1:由丙乙甲且乙丙,即丙是甲的充分不必要条件.
分析2:画图观察之.
答:选A.
说明:抽象命题之间的逻辑关系通常靠画图观察比较方便。

相关文档
最新文档