实验数据的误差分析(精)
实验结果的偏差与误差分析

实验结果的偏差与误差分析实验是科学研究中常用的方法之一,通过实验可以验证理论假设并获取数据结果。
然而,在实验中我们常常会面对实验结果与理论值之间的偏差与误差。
本文将探讨实验结果的偏差与误差产生的原因,并分析如何进行误差分析以提高实验结果的准确性。
一、偏差与误差的定义在实验中,偏差和误差是常见的概念,但两者有着不同的含义。
偏差是指实验结果与理论值或标准值之间的差异,它可以是正向的或负向的。
而误差则是指实验结果相对于实际值的差异,它包括了系统误差和随机误差两个方面。
二、偏差的原因分析1.系统误差:系统误差是由于实验设置、仪器精度、操作方法等方面引入的固定偏差。
例如,在实验测量中如果仪器的刻度存在固定的偏移或者实验条件中存在系统性的误差,都会导致实验结果产生偏差。
2.随机误差:随机误差是由于实验环境、人为操作等因素引起的不确定的、无规律的误差。
例如,在重复实验中由于个体差异、观察判断的主观性等原因都会导致实验结果的随机误差。
三、误差分析方法1.确定系统误差:首先要通过仔细分析实验过程和条件,确定可能引入系统误差的原因。
然后,采取相应的修正措施,如校准仪器、优化实验设计等,以减小系统误差的影响。
2.重复实验:通过重复实验来减小随机误差的影响,获取更加准确的实验结果。
多次实验可以通过对数据进行统计处理,如计算平均值和标准偏差,以评估实验结果的准确性。
3.数据分析:对实验数据进行统计分析,可以进一步揭示偏差和误差。
利用统计方法,如相关性分析、回归分析等,可以探究实验结果与各个因素之间的关系,找出可能导致偏差和误差的原因。
四、实验结果的准确性提高为提高实验结果的准确性,除了要进行误差分析,还可以采取以下方法:1.提高实验技能:熟练掌握实验技术和操作方法,减少人为误差的发生。
2.增加样本量:增加实验样本数量可以提高数据的可靠性,降低随机误差的影响。
3.改进实验设计:精心设计实验方案,优化实验条件,减小系统误差和随机误差的发生。
实验误差分析及数据处理

u + Δu = f (x + Δx, y + Δy,z + Δz)
由泰勒公式,并略去误差的高次项,得
115
地球物理实验
u + Δu = f (x, y,z) + ∂f Δx + ∂f Δy + ∂f Δz
∂x ∂y ∂z
或
Δu = ∂f Δx + ∂f Δy + ∂f Δz
∂x ∂y ∂z
该式即为误差传递公式。 例如我们通过直接测量圆柱形试件的直径D及高H来计算试件的体积V。
前面提到测量值=真值+误差,这里误差包含了系统误差和偶然误差,则测量值=真值+
系统误差+偶然误差,当系统误差修正后,误差主要即是偶然误差。在多次测量中,偶然误
差是一随机的变量,那么测量值也就是一随机变量,我们则可用算术平均值和标准误差来
描述它。
算术平均值 X :
X
=
1 n
n
∑
i =1
xi
式中xi为第i次测量的测量值,n为测量次数,当n→∞时, X →xt(真值),但是当n增加到 一定程度时, X 的精度的提高就不显着了,所以一般测量中n只要大于10就可以了。
明误差在 ± 1.96s 以外的值都要舍去,这里
1.96s=1.96×1.12=2.19
我们以算术平均值代表真值,表中第4个测量值的偏差 di 为2.4,在 ± 2.19 以外,应当舍
去,再计算其余9个数据的算术平均值和标准误差,有
m = ∑ mi = 416.0 = 46.2
n
9
∑ s =
d
2 i
偶然误差是一种不规则的随机的误差,无法予测它的大小,其误差没有固定的大小和 偏向。
分析化学实验中误差及分析数据的处理精讲

分析化学实验中误差及分析数据的处理精讲误差在分析化学实验中扮演着非常重要的角色,它们可以帮助我们评估实验结果的可靠性和精确性。
本文将讨论实验误差的几种类型以及分析数据的处理方法。
首先,我们来看一下误差的分类。
实验误差可以分为系统误差和随机误差两种类型。
系统误差是由于实验设计或仪器故障等原因引起的,并且在多次实验中总是出现相同的偏差。
例如,如果使用的仪器的刻度有错误,或者实验操作中有不可避免的偏差,都会导致系统误差。
这种误差通常是可预测和可修正的,但需要在实验设计和执行过程中加以注意。
为了减小系统误差,我们可以使用标准校正曲线、多次测量和仪器校正等方法。
随机误差是由于实验条件或观察者等因素的变动引起的,并且在多次实验中会出现不同的偏差。
随机误差是不可预测的,它们可以通过多次重复实验来减小,同时使用统计学方法来估算其大小。
例如,如果我们多次测量同一样品的溶解度,由于溶解度的测量值会受到环境温度和湿度等因素的影响,每次测量的结果都会有所不同,这就是随机误差。
在实验数据的处理中,我们需要考虑误差的大小和如何将其纳入计算。
下面是一些常见的数据处理方法:1.均值:计算重复测量值的平均值。
这将有助于减小随机误差,并提供更可靠的结果。
对于有系统误差的情况,可以使用校正因子将均值修正为真实值。
2.方差:计算重复测量值的离散程度。
方差越大,数据的可靠性越低。
方差可以通过计算每个测量值与均值的差的平方,并将这些差值求和后除以测量次数来得到。
3.标准偏差:标准偏差是对方差的开方,它衡量了测量结果的均匀性。
标准偏差越小,数据的可靠性越高。
标准偏差可以通过方差的平方根来计算。
4.置信区间:置信区间是对测量结果的不确定性进行估计的方法。
通过构建一个置信区间,我们可以确定结果可能出现的范围。
置信区间的计算需要考虑样本大小、方差和置信水平等因素。
总之,分析化学实验中的误差是不可避免的,但我们可以通过合适的实验设计和数据处理方法来减小和评估误差的大小。
化学实验中的实验误差分析

化学实验中的实验误差分析实验误差是化学实验中无法避免的现象,对实验结果的准确性产生重要影响。
通过对实验误差进行分析,可以了解误差的来源和性质,从而采取适当的措施,提高实验结果的准确性和可重复性。
一、实验误差的分类在化学实验中,实验误差主要可分为系统误差和偶然误差两类。
1.系统误差系统误差是由于实验系统与被测系统之间存在的固有差异所导致的误差。
它具有一定的规律性和可预见性,往往会引发连续多次实验中的相同偏差。
系统误差主要包括以下几种:(1)仪器误差:仪器的精度、灵敏度和准确度等因素会对实验结果产生影响。
(2)人为误差:实验者的操作技术、经验和环境等因素会导致误差的产生。
(3)方法误差:实验方法中存在的不确定性因素,如反应速度、反应机理等。
2.偶然误差偶然误差是指实验过程中由于各种无法控制和预测的因素导致的误差。
它通常是随机发生的,无规律可循,不会在多次实验中保持相同的数值。
偶然误差主要包括以下几种:(1)观察误差:由于实验者的主观因素,如视力、反应时间等导致的误差。
(2)环境误差:由于实验环境的温度、湿度等因素导致的误差。
(3)读数误差:由于仪器读数的限度,例如天平读数时最小刻度的误差。
二、实验误差的影响实验误差对实验结果的影响直接关系到实验结果的准确性和可靠性。
误差的累积可能导致实验结果与真实值之间存在较大的偏差,甚至影响到对实验现象和规律的正确理解。
另外,误差的存在也会降低实验结果的可重复性和可比较性,增加实验数据的不确定性。
三、实验误差分析方法在化学实验中,我们可以采用以下几种方法来对实验误差进行分析:1.常规误差分析法常规误差分析法通过记录实验数据和测量结果,并进行多次实验重复,计算平均值和标准偏差以评估实验结果的可靠性和一致性。
平均值可以作为实验结果的估计值,标准偏差可以表示各次测量结果的离散程度。
2.误差传递法误差传递法是一种通过对各个实验步骤中的误差进行合理估计和传递计算,得出最终结果误差的方法。
实验数据的误差分析和修正方法

实验数据的误差分析和修正方法引言:在科学研究和实验中,准确的数据是非常重要的。
然而,由于各种原因,实验数据往往存在一定的误差。
误差可能来自仪器的精度、实验操作的不完全精确、环境因素等。
因此,对实验数据的误差进行分析和修正是确保研究结果可靠性的基础。
一、误差来源分析1. 仪器误差:每个仪器都会存在一定的测量误差,精密仪器相对精确,但也无法避免误差的产生。
2. 人为误差:操作者的技术水平、观察力的差异以及操作不精确等都会导致实验结果的误差。
3. 随机误差:由于各种随机因素的影响,重复进行相同实验可能得到不同结果,这是随机误差的表现。
4. 环境误差:实验环境的变化,例如温度、湿度等因素的变化都会对实验结果产生影响。
二、误差分析方法1. 精确度分析:通过重复实验,计算数据的平均值和标准偏差来评估数据的精确度。
标准偏差越小,数据越接近真实值。
2. 绝对误差分析:求得实验测量结果与已知真实值之间的差值,以此来评估实验误差。
3. 相对误差分析:将绝对误差以某种相对的方式表示,例如相对误差等于绝对误差与已知真值的比值。
4. 随机误差分析:通过测量多次来计算数据的标准差以及相关系数等,以揭示随机误差的大小和变化规律。
三、误差修正方法1. 仪器校正:对于存在系统误差的仪器,可以通过一系列标准样品的测量来进行校正,以消除仪器本身的误差。
2. 数据处理修正:可以采用如拟合曲线等方法对数据进行拟合和修正,以减小实验数据的误差。
3. 数据剔除:当出现明显异常值时,可以考虑将其剔除,以避免异常值对结果的影响。
4. 系统误差修正:通过对误差来源的分析,找出导致系统误差的原因并加以修正,以提高实验数据的准确性。
结论:误差分析和修正是在科学研究和实验中不可或缺的一环。
只有进行全面的误差分析,并且根据分析结果采取相应的修正方法,才能得到准确可靠的实验数据。
通过不断改进和完善误差分析和修正方法,可以提高实验的可重复性,并且为科学研究提供更加可靠的数据依据。
实验数据的误差与结果处理(精)

7
2.2 实验数据处理及结果评价 2.2.1 数理统计的几个基本概念
1. 总体(universe)(或母体)——分析研究的对象 的全体 2. 样本(swatch)(或子样)——从总体中随机抽取 一部分样品进行测定所得到的一组测定值 3. 个体(individual)——样本中的每个测定值xi 4. 样本容量(capacity of sample)(或样本大小)— 样本中所含个体的数目,用n表示
1 x (79.58 79.45 .... 79.38)% 79.50% 6
s
2018年9月28日7时8分
X
i X
2
n 1
0.09%
SX S / 6 0.04%
14
2.2 实验数据处理及结果评价
2.2.3 置信度与置信区间
偶然误差的正态分布曲线:
对于有限次测定,结果的平均 值与总体平均值 关系为 : s x t sx x t n
5. 样本平均值
1 x xi n
6. 极差: 表示数据的分散程度
2018年9月28日7时8分
R xmax xmin
8
2.2 实验数据处理及结果评价
2.2.2 少量数据的统计处理 1. 平均偏差
平均偏差又称算术平均偏差,用来表示一组数据的精密度 平均偏差: 相对平均偏差:
1 1 d xi x d i n n
s——有限次测定的标准偏差 n——测定次数
t 值表 ( t——某一置信度下的几率系数)
置信度——真值在置信区间出现的几率 置信区间——以平均值为中心,真值出现的范围 讨论: 1. 置信度不变时: n 增加,t 变小,置信区 间变小 2. n不变时:置信度增加, t变大,置信区 间变大 2. n, t不变时:s增加,置信区间变大,准 确度降低 2018年9月28日7时8分
实验数据的误差分析(精)

第2章 实验数据的误差分析通过实验测量所得大批数据是实验的主要成果,但在实验中,由于测量仪表和人的观察等方面的原因,实验数据总存在一些误差,所以在整理这些数据时,首先应对实验数据的可靠性进行客观的评定。
误差分析的目的就是评定实验数据的精确性,通过误差分析,认清误差的来源及其影响,并设法消除或减小误差,提高实验的精确性。
对实验误差进行分析和估算,在评判实验结果和设计方案方面具有重要的意义。
本章就化工原理实验中遇到的一些误差基本概念与估算方法作一扼要介绍。
2.1 误差的基本概念2.1.1真值与平均值真值是指某物理量客观存在的确定值。
通常一个物理量的真值是不知道的,是我们努力要求测到的。
严格来讲,由于测量仪器,测定方法、环境、人的观察力、测量的程序等,都不可能是完善无缺的,故真值是无法测得的,是一个理想值。
科学实验中真值的定义是:设在测量中观察的次数为无限多,则根据误差分布定律正负误差出现的机率相等,故将各观察值相加,加以平均,在无系统误差情况下,可能获得极近于真值的数值。
故“真值”在现实中是指观察次数无限多时,所求得的平均值(或是写入文献手册中所谓的“公认值”)。
然而对我们工程实验而言,观察的次数都是有限的,故用有限观察次数求出的平均值,只能是近似真值,或称为最佳值。
一般我们称这一最佳值为平均值。
常用的平均值有下列几种:(1)算术平均值这种平均值最常用。
凡测量值的分布服从正态分布时,用最小二乘法原理可以证明:在一组等精度的测量中,算术平均值为最佳值或最可信赖值。
nx n x x x x n i in ∑=++==121 (2-1) 式中: n x x x 21、——各次观测值;n ――观察的次数。
(2)均方根平均值n x n x x x x n i i n ∑=++==1222221 均 (2-2)(3)加权平均值设对同一物理量用不同方法去测定,或对同一物理量由不同人去测定,计算平均值时,常对比较可靠的数值予以加重平均,称为加权平均。
实验数据误差分析和数据处理

第二章实验数据误差分析和数据处理第一节实验数据的误差分析由于实验方法和实验设备的不完善,周围环境的影响,以及人的观察力,测量程序等限制,实验观测值和真值之间,总是存在一定的差异。
人们常用绝对误差、相对误差或有效数字来说明一个近似值的准确程度。
为了评定实验数据的精确性或误差,认清误差的来源及其影响,需要对实验的误差进行分析和讨论。
由此可以判定哪些因素是影响实验精确度的主要方面,从而在以后实验中,进一步改进实验方案,缩小实验观测值和真值之间的差值,提高实验的精确性。
一、误差的基本概念测量是人类认识事物本质所不可缺少的手段。
通过测量和实验能使人们对事物获得定量的概念和发现事物的规律性。
科学上很多新的发现和突破都是以实验测量为基础的。
测量就是用实验的方法,将被测物理量与所选用作为标准的同类量进行比较,从而确定它的大小。
1.真值与平均值真值是待测物理量客观存在的确定值,也称理论值或定义值。
通常真值是无法测得的。
若在实验中,测量的次数无限多时,根据误差的分布定律,正负误差的出现几率相等。
再经过细致地消除系统误差,将测量值加以平均,可以获得非常接近于真值的数值。
但是实际上实验测量的次数总是有限的。
用有限测量值求得的平均值只能是近似真值,常用的平均值有下列几种:(1) 算术平均值 算术平均值是最常见的一种平均值。
设1x 、2x 、……、n x 为各次测量值,n 代表测量次数,则算术平均值为nx n x x x x ni in ∑==+⋅⋅⋅++=121(2-1)(2) 几何平均值 几何平均值是将一组n 个测量值连乘并开n 次方求得的平均值。
即n nx x x x ⋅⋅⋅⋅=21几(2-2)(3)均方根平均值 nxnxx x x ni in∑==+⋅⋅⋅++=1222221均(2-3)(4) 对数平均值 在化学反应、热量和质量传递中,其分布曲线多具有对数的特性,在这种情况下表征平均值常用对数平均值。
设两个量1x 、2x ,其对数平均值21212121lnln ln x x x x x x x x x -=--=对(2-4)应指出,变量的对数平均值总小于算术平均值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2章 实验数据的误差分析通过实验测量所得大批数据是实验的主要成果,但在实验中,由于测量仪表和人的观察等方面的原因,实验数据总存在一些误差,所以在整理这些数据时,首先应对实验数据的可靠性进行客观的评定。
误差分析的目的就是评定实验数据的精确性,通过误差分析,认清误差的来源及其影响,并设法消除或减小误差,提高实验的精确性。
对实验误差进行分析和估算,在评判实验结果和设计方案方面具有重要的意义。
本章就化工原理实验中遇到的一些误差基本概念与估算方法作一扼要介绍。
2.1 误差的基本概念 2.1.1真值与平均值真值是指某物理量客观存在的确定值。
通常一个物理量的真值是不知道的,是我们努力要求测到的。
严格来讲,由于测量仪器,测定方法、环境、人的观察力、测量的程序等,都不可能是完善无缺的,故真值是无法测得的,是一个理想值。
科学实验中真值的定义是:设在测量中观察的次数为无限多,则根据误差分布定律正负误差出现的机率相等,故将各观察值相加,加以平均,在无系统误差情况下,可能获得极近于真值的数值。
故“真值”在现实中是指观察次数无限多时,所求得的平均值(或是写入文献手册中所谓的“公认值”)。
然而对我们工程实验而言,观察的次数都是有限的,故用有限观察次数求出的平均值,只能是近似真值,或称为最佳值。
一般我们称这一最佳值为平均值。
常用的平均值有下列几种:(1)算术平均值这种平均值最常用。
凡测量值的分布服从正态分布时,用最小二乘法原理可以证明:在一组等精度的测量中,算术平均值为最佳值或最可信赖值。
nxn x x x x ni in ∑=++==121 (2-1)式中: n x x x 21、——各次观测值;n ――观察的次数。
(2)均方根平均值nx nx x x x ni i n∑=++==1222221均 (2-2)(3)加权平均值设对同一物理量用不同方法去测定,或对同一物理量由不同人去测定,计算平均值时,常对比较可靠的数值予以加重平均,称为加权平均。
∑∑=++++++===n i ini ii nn n w xw w w w x w x w x w w 11212211 (2-3)式中;n x x x 21、——各次观测值;n w w w 21、——各测量值的对应权重。
各观测值的权数一般凭经验确定。
(4)几何平均值n n x x x x x 321⋅⋅=发 (2-4)(5)对数平均值21212121ln ln ln x x x x x x x x x n -=--=(2-5)以上介绍的各种平均值,目的是要从一组测定值中找出最接近真值的那个值。
平均值的选择主要决定于一组观测值的分布类型,在化工原理实验研究中,数据分布较多属于正态分布,故通常采用算术平均值。
2.1.2误差的定义及分类在任何一种测量中,无论所用仪器多么精密,方法多么完善,实验者多么细心,不同时间所测得的结果不一定完全相同,而有一定的误差和偏差,严格来讲,误差是指实验测量值(包括直接和间接测量值)与真值(客观存在的准确值)之差,偏差是指实验测量值与平均值之差,但习惯上通常将两者混淆而不以区别。
根据误差的性质及其产生的原因,可将误差分为:1)系统误差; 2)偶然误差;3)过失误差三种。
1.系统误差又称恒定误差,由某些固定不变的因素引起的。
在相同条件下进行多次测量,其误差数值的大小和正负保持恒定,或随条件改变按一定的规律变化。
产生系统误差的原因有:1)仪器刻度不准,砝码未经校正等;2)试剂不纯,质量不符合要求;3)周围环境的改变如外界温度、压力、湿度的变化等;4)个人的习惯与偏向如读取数据常偏高或偏低,记录某一信号的时间总是滞后,判定滴定终点的颜色程度各人不同等等因素所引起的误差。
可以用准确度一词来表征系统误差的大小,系统误差越小,准确度越高,反之亦然。
由于系统误差是测量误差的重要组成部分,消除和估计系统误差对于提高测量准确度就十分重要。
一般系统误差是有规律的。
其产生的原因也往往是可知或找出原因后可以清除掉。
至于不能消除的系统误差,我们应设法确定或估计出来。
2.偶然误差又称随机误差,由某些不易控制的因素造成的。
在相同条件下作多次测量,其误差的大小,正负方向不一定,其产生原因一般不详,因而也就无法控制,主要表现在测量结果的分散性,但完全服从统计规律,研究随机误差可以采用概率统计的方法。
在误差理论中,常用精密度一词来表征偶然误差的大小。
偶然误差越大,精密度越低,反之亦然。
在测量中,如果已经消除引起系统误差的一切因素,而所测数据仍在未一位或未二位数字上有差别,则为偶然误差。
偶然误差的存在,主要是我们只注意认识影响较大的一些因素,而往往忽略其他还有一些小的影响因素,不是我们尚未发现,就是我们无法控制,而这些影响,正是造成偶然误差的原因。
图2-1 精密度、正确度、精确度含义示意图3.过失误差又称粗大误差,与实际明显不符的误差,主要是由于实验人员粗心大意所致,如读错,测错,记错等都会带来过失误差。
含有粗大误差的测量值称为坏值,应在整理数据时依据常用的准则加以剔除。
综上所述,我们可以认为系统误差和过失误差总是可以设法避免的,而偶然误差是不可避免的,因此最好的实验结果应该只含有偶然误差。
2.1.3 精密度、正确度和精确度(准确度)测量的质量和水平,可用误差的概念来描述,也可用准确度等概念来描述。
国内外文献所用的名词术语颇不统一,精密度、正确度、精确度这几个术语的使用一向比较混乱。
近年来趋于一致的多数意见是:精密度:可以称衡量某些物理量几次测量之间的一致性,即重复性。
它可以反映偶然误差大小的影响程度。
正确度:指在规定条件下,测量中所有系统误差的综合,它可以反映系统误差大小的影响程度。
精确度(准确度):指测量结果与真值偏离的程度。
它可以反映系统误差和随机误差综合大小的影响程度。
为说明它们间的区别,往往用打靶来作比喻。
如图2-1所示,A 的系统误差小而偶然误差大,即正确度高而精密度低;B 的系统误差大而偶然误差小,即正确度低而精密度高;C 的系统误差和偶然误差都小,表示精确度(准确度)高。
当然实验测量中没有像靶心那样明确的真值,而是设法去测定这个未知的真值。
对于实验测量来说,精密度高,正确度不一定高。
正确度高,精密度也不一定高。
但精确度(准确度)高,必然是精密度与正确度都高。
2.2误差的表示方法测量误差分为测量点和测量列(集合)的误差。
它们有不同的表示方法。
2.2.1测量点的误差表示1.绝对误差D测量集合中某次测量值与其真值之差的绝对值称为绝对误差。
x X D -= (2-6) 即 D x X D x D x X +≤≤-±=-式中:X ——真值,常用多次测量的平均值代替; x ——测量集合中某测量值 2.相对误差Er绝对误差与真值之比称为相对误差XD =Er (2-7)相对误差常用百分数或千分数表示。
因此不同物理量的相对误差可以互相比较,相对误差与被测之量的大小及绝对误差的数值都有关系。
3.引用误差仪表量程内最大示值误差与满量程示值之比的百分值。
引用误差常用来表示仪表的精度。
2.2.2测量列(集合)的误差表示1.范围误差范围误差是指一组测量中的最高值与最低值之差,以此作为误差变化的范围。
使用中常应用误差的系数的概念。
αL K =(2-8)式中:K ——最大误差系数; L ——范围误差; α——算术平均值。
范围误差最大缺点是使K 只以决于两极端值。
而与测量次数无关。
2.算术平均误差算术平均误差是表示误差的较好方法,其定义为δ=nd i∑,n i ,2,1= (2-9) 式中:n ——观测次数;i d —-测量值与平均值的偏差,α-=i i x d 。
算术平均误差的缺点是无法表示出各次测量间彼此符合的情况。
3.标准误差标准误差也称为根误差。
nd i∑=2σ (2-10)标准误差对一组测量中的较大误差或较小误差感觉比较灵敏,成为表示精确度的较好方法。
上式适用无限次测量的场合。
实际测量中,测量次数是有限的,改写为12-=∑n diσ (2-11)标准误差不是一个具体的误差,σ的大小只说明在一定条件下等精度测量集合所属的任一次观察值对其算术平均值的分散程度,如果σ的值小,说明该测量集合中相应小的误差就占优势,任一次观测值对其算术平均值的分散度就小,测量的可靠性就大。
算术平均误差和标准误差的计算式中第i 次误差可分别代入绝对误差和相对误差,相对得到的值表示测量集合的绝对误差和相对误差。
上述的各种误差表示方法中,不论是比较各种测量的精度或是评定测量结果的质量,均以相对误差和标准误差表示为佳,而在文献中标准误差更常被采用。
2.2.3仪表的精确度与测量值的误差1.电工仪表等一些仪表的精确度与测量误差这些仪表的精确度常采用仪表的最大引用误差和精确度的等级来表示。
仪表的最大 引用误差的定义为最大引用误差=绝对值该仪表相应档次量程的仪表显示值的绝对误差×100% (2-12) 式中仪表显示值的绝对误差指在规定的正常情况下。
被测参数的测量值与被测参数的标准值之差的绝对值的最大值。
对于多档仪表,不同档次显示值的绝对误差和程量范围均不相同。
式(2-12)表明,若仪表显示值的绝对误差相同,则量程范围愈大,最大引用误差愈小。
我国电工仪表的精确度等级有七种:0.1、0.2、0.5、1.0、1.5、2..5、5.0。
如某仪表的精确度等级为2.5级,则说明此仪表的最大引用误差为2.5%。
在使用仪表时,如何估算某一次测量值的绝对误差和相对误差?设仪表的精确度等级P 级,其最大引用误差为10%。
设仪表的测量范围为n x 仪表的 示值为i x ,则由式(2-12)得该示值的误差为⎪⎭⎪⎬⎫⨯≤=⨯≤%%P x x x D E P x D i n i n 相对误差绝对误差 (2-13)式(2-13)表明:(1)若仪表的精确度等级P 和测量范围n x 已固定,则测量的示值i x 愈大,测量的相对误差愈小。
(2)选用仪表时,不能盲目地追求仪表的精确度等级。
因为测量的相对误差还与in x x有关。
应该兼顾仪表的精确度等级和i n x x 两者。
2.天平类仪器的精确度和测量误差 这些仪器的精度用以下公式来表示:仪器的精密度=量程的范围名义分度值(2-14)式中名义分度值指测量时读数有把握正确的最小分度单位,即每个最小分度所代表的数值。
例如TG —3284型天平,其名义分度值(感量)为0.1毫克,测量范围为0~200克,则其精确度=731051002001.0-⨯=⨯-)( (2-15) 若仪器的精确度已知,也可用式(2-14)求得其名义分度值。
使用这些仪器时,测量的误差可用下式来确定:⎪⎭⎪⎬⎫≤≤测量值名义度值相对误差名义分度值绝对误差 (2-16)3.测量值的实际误差由于仪表的精确度用上述方法所确定的测量误差,一般总是比测量值的实际误差小的多。