(完整版)等差数列通项公式基础练习
等差数列题目100道

等差数列题目100道一、基础概念类题目1. 已知数列{a_n}满足a_{n + 1}-a_n = 3,a_1 = 2,求数列{a_n}的通项公式。
- 解析:因为a_{n + 1}-a_n = d = 3(d为公差),a_1 = 2。
根据等差数列通项公式a_n=a_1+(n - 1)d,可得a_n=2+(n - 1)×3=3n - 1。
2. 在等差数列{a_n}中,a_3 = 7,a_5 = 11,求a_{10}。
- 解析:首先求公差d,d=frac{a_{5}-a_{3}}{5 - 3}=(11 - 7)/(2)=2。
由a_3=a_1+(3 - 1)d,即7=a_1 + 2×2,解得a_1 = 3。
那么a_{10}=a_1+(10 -1)d=3+9×2 = 21。
3. 若数列{a_n}为等差数列,且a_2=5,a_6 = 17,求其公差d。
- 解析:根据等差数列通项公式a_n=a_m+(n - m)d,则a_6=a_2+(6 - 2)d,即17 = 5+4d,解得d = 3。
4. 已知等差数列{a_n}的首项a_1=-1,公差d = 2,求该数列的前n项和S_n的公式。
- 解析:根据等差数列前n项和公式S_n=na_1+(n(n - 1))/(2)d,将a_1=-1,d = 2代入可得S_n=-n+(n(n - 1))/(2)×2=n^2 - 2n。
5. 在等差数列{a_n}中,a_1 = 1,a_{10}=19,求S_{10}。
- 解析:根据等差数列前n项和公式S_n=(n(a_1 + a_n))/(2),这里n = 10,a_1 = 1,a_{10}=19,则S_{10}=(10×(1 + 19))/(2)=100。
二、性质应用类题目6. 在等差数列{a_n}中,若a_3+a_8+a_{13}=12,求a_8的值。
- 解析:因为在等差数列中,若m,n,p,q∈ N^+,m + n=p+q,则a_m + a_n=a_p + a_q。
等差数列的概念与通项公式-练习

10.已知数列{an}中,a1=53,an=2-an1-1(n≥2,n∈N*),数列{bn}满足 bn=an-1 1 (n∈N*). (1)求证:数列{bn}是等差数列; 证明 因为 an=2-an1-1(n≥2,n∈N*),bn=an-1 1(n∈N*), 所又以b1=bn+a11--1 b1n==-an52+.11-1-an-1 1=2-a11n-1-an-1 1=ana-n 1-an-1 1=1. 所以数列{bn}是以-25为首项,1 为公差的等差数列.
1 2 3 4 5 6 7 8 9 10
∴a+c=2b. ∴(ka+2)+(kc+2)=k(a+c)+4=2(kb+2), 即ka+2,kb+2,kc+2成等差数列,故C正确; 对于 D,a=b=c≠0⇒1a=1b=1c,故 D 正确.
1 2 3 4 5 6 7 8 9 10
6.在等差数列{an}中,a1+a5=2,a3+a7=8,则a11+a15=____3_2___. 解析 (a3+a7)-(a1+a5)=4d=6,则 d=32,则 a11+a15=(a1+a5)+20d=2+20×32 =32.
解析 由题意知,an,an+1 都不等于零.将 an-an+1=2anan+1 的两边同时除以 anan+1,得an1+1-a1n=2. 所以a1n是以a11=1 为首项,2 为公差的等差数列, 所以a16=1+5×2=11,即 a6=111.
1 2 3 4 5 6 7 8 9 10
9.已知各项都为正数的等差数列{an}中,a5=3,则a3a7的最大值为_____9___. 解析 依题意,得等差数列{an}各项都为正数,所以 a3>0,a7>0, 所以 a3a7≤a3+2 a72=a25=9, 当且仅当 a3=a7=3 时等号成立.
等差数列的通项公式(含答案)

次成等差数列,问五人各得多少钱?”这个问题中,甲所得为( )
A. 钱
B. 钱
C. 钱
D. 钱
14.已知等差数列{an}满足 a1+a2=﹣1,a3=4,则 a4+a5=( )
A. 17
B. 16
C. 15
D. 14
15.若等差数列{an}的前 5 项和 S5=25,则 a3 等于( )
A. 3
B. 4
A. 0
B. 3
꠰
.若则
C. 8
,,则 ( )源自D. 1133.等差数列{an}的前 n 项和为 Sn , 已知 S3=a1+4a2 , a5=7,则 a1=( )
A. 1
B. ﹣1
C. म
D. ﹣ म
34.首项为-20 的等差数列,从第 10 项起开始为正数,则公差 d 的取值范围是( )
A. ሧ
म
D. 16
19.在等差数列{an}中,a3+a7=2,数列{bn}是等比数列,且 a5=b5 , 则 b4•b6=( )
A. 1
B. 2
C. 4
D. 8
20.已知等差数列
的公差为 2,且
꠰ ,则
()
A. 12
B. 13
C. 14
D. 15
21.已知
是公差为 2 的等差数列,若
,则
()
A.
B.
C.
A. 24
B. 12
C. 8
D. 4
12.已知等差数列{an}满足 a1=2,a3=8,则数列{an}的公差为( )
A. 1
B. 2
C. 3
D. 4
13.《九章算术》中有“今有五人分无钱,令上二人所得与下三人等,问各得几何?”.其意思为“已知甲、
等差数列通项公式基础训练题(含详解)

学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.等差数列 中,已知 , ,则 ()
A.16B.17C.18D.19
2.设 为等差数列,若 ,则
A.4B.5C.6D.7
3.设数列 是公差为 的等差数列,若 ,则 ()
A.4B.3C.2D.1
4.已知数列 满足 ,且 ,那么 ()
A.8B.9C.10D.11
5.在数列{an}中,若 ,a1=8,则数列{an}的通项公式为()
A.an=2(n+1)2B.an=4(n+1)C.an=8n2D.an=4n(n+1)
6.在数列 中, =1, ,则 的值为()
A.99B.49C.101D.102
7.在数列 中, , , ,则 ()
A.6B.7C.8D.9
8.等差数列 中, ,则 ( ).
A.110B.120C.130D.140
9.已知数列 是等差数列, ,则 ( )
A.36B.30C.24 D.1
10.在等差数列 中,若 ,则 ()
A.10B.5C. D.
11.等差数列 满足 ,则其前10项之和为( )
【详解】
根据题意,设 ,数列 是等差数列,
则 , ,
则 ,
即 ;
解可得 ;
故答案为:
【点睛】
本题考查等差数列的性质,关键是求出数列 的通项公式.
19.
【解析】
【分析】
本次考察的是等差数列通项公式的求法。
【详解】
,
【点睛】
等差数列通项公式除了掌握 ,考生还应掌握
等差数列的性质(完整版,配例题)

等差数列的性质等差数列通项公式:()d n a a n 11-+= 等差数列前n 项和公式:()()d n n na a a n S n n 21211-+=+=等差数列的性质:(1)等差中项:如果c b a ,,成等差数列,则称b 是a 与c 的等差中项。
即:c b a ,,成等差数列22ca b b c a +=⇔=+⇔ (2)等差数列{}n a 中,当n 为奇数时,21121+=-+=-n a d n a S S 偶奇(中间项); 21+⋅=n n a n S (项数与中间项的积);11-+=n n S S 偶奇; 当n 为偶数时,d nS S 2=-奇偶; 2122++⋅=nn n a a n S ;122+=nna a S S 偶奇。
【例1】在等差数列{}n a 中, ① 已知154533,153a a ==,求30a ;总结:已知(),且同奇偶+∈N n m a a n m ,,,可求2n m a +。
② 已知16,1086==a a ,求13S ;总结:已知()+∈N n m a a n m ,,,可求1-+n m S 。
③ 已知163a =,求31S ;总结:已知()+∈N n a n ,可求12-n S ()()n n a n S 1212-=-。
④ (2007湖北理)已知两个等差数列{}n a 和{}n b 的前n 项和分别为n A 和n B ,且3457++=n n B A n n ,则使得n n b a为整数的正整数n 的个数是( ) A .2 B .3 C .4 D .5【练习1】等差数列{}n a 的前12项和为354,前12项中奇数项与偶数项的和之比为27:32,求公差d ;【练习2】在两个等差数列{}n a 和{}n b 满足327321321++=++++++++n n b b b b a a a a n n ,求55b a 。
(3)等差数列{}n a 中,()()+∈-=-N m n d m n a a m n ,;(4)如果c b a ,,成等差数列,则k mc k mb k ma +++,,也成等差数列()为常数k m ,; (5)等差数列{}n a 中,若q p n m +=+,则q p n m a a a a +=+;(6)等差数列{}n a 中,每隔相同的项抽出来的项按照原来的顺序排列,构成的新数列仍然是等差数列,但剩下的项按照原来的顺序排列,构成的新数列不一定是等差数列。
(完整版)等差数列练习题有答案

数列A 、等差数列知识点及例题一、数列由与的关系求n a n S na 由求时,要分n=1和n≥2两种情况讨论,然后验证两种情况可否用统一的解析式表示,若不能,则用分段函数的n S n a 形式表示为。
11(1)(2)n n n S n a S S n -=⎧=⎨-≥⎩〖例〗根据下列条件,确定数列的通项公式。
{}na 分析:(1)可用构造等比数列法求解;(2)可转化后利用累乘法求解;(3)将无理问题有理化,而后利用与的关系求解。
n a n S 解答:(1)(2)……累乘可得,故(3)二、等差数列及其前n 项和(一)等差数列的判定1、等差数列的判定通常有两种方法:第一种是利用定义,,第二种是利用等差中项,即。
1()(2)n n a a d n --=≥常数112(2)n n n a a a n +-=+≥2、解选择题、填空题时,亦可用通项或前n 项和直接判断。
(1)通项法:若数列{}的通项公式为n 的一次函数,即=An+B,则{}是等差数列;n a n a n a (2)前n 项和法:若数列{}的前n 项和是的形式(A ,B 是常数),则{}是等差数列。
n a n S 2n S An Bn =+n a 注:若判断一个数列不是等差数列,则只需说明任意连续三项不是等差数列即可。
〖例〗已知数列{}的前n 项和为,且满足n a n S 111120(2),2n n n n S S S S n a ---+=≥=A (1)求证:{}是等差数列;1nS (2)求的表达式。
n a 分析:(1)与的关系结论;1120n n n n S S S S ---+=A →1n S 11n S -→(2)由的关系式的关系式1nS →n S →n a 解答:(1)等式两边同除以得-+2=0,即-=2(n≥2).∴{}是以==2为首1n n S S -A 11n S -1n S 1n S 11n S -1n S 11S 11a 项,以2为公差的等差数列。
数列求通项公式练习题及答案

数列求通项公式练习题及答案练题
1. 求等差数列的通项公式,已知公差为3,首项为5。
2. 求等差数列的通项公式,已知首项为2,末项为20,公差为2。
3. 求等差数列的通项公式,已知首项为10,公差为-2,求第6项。
4. 求等差数列的通项公式,已知首项为1,公差为0.5,求第10项。
5. 求等差数列的通项公式,已知首项为3,公差为-1/2,求第8项。
答案
1. 等差数列的通项公式为:$a_n = a_1 + (n-1) \cdot d$
公差为3,首项为5,代入公式得:$a_n = 5 + (n-1) \cdot 3$
2. 等差数列的通项公式为:$a_n = a_1 + (n-1) \cdot d$
首项为2,末项为20,公差为2,代入公式得:$20 = 2 + (n-1) \cdot 2$
化简为:$18 = (n-1) \cdot 2$
3. 等差数列的通项公式为:$a_n = a_1 + (n-1) \cdot d$
首项为10,公差为-2,求第6项,代入公式得:$a_6 = 10 + (6-1) \cdot -2$
4. 等差数列的通项公式为:$a_n = a_1 + (n-1) \cdot d$
首项为1,公差为0.5,求第10项,代入公式得:$a_{10} = 1 + (10-1) \cdot 0.5$
5. 等差数列的通项公式为:$a_n = a_1 + (n-1) \cdot d$
首项为3,公差为$-\frac{1}{2}$,求第8项,代入公式得:$a_8 = 3 + (8-1) \cdot -\frac{1}{2}$
以上是数列求通项公式练习题及答案。
高中数学等差数列的通项公式训练练习题含答案

高中数学等差数列的通项公式训练练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 在等差数列51、47、43,…中,第一个负数项为()A.第13项B.第14项C.第15项D.第16项2. 已知等差数列{a n},a2=4,a6+a7=6+a9,则公差d=()A.2B.1C.−2D.−13. 已知数列{a n}中,a1=2,a n+1=a n+12(n∈N∗),则a99的值为( )A.48B.49C.50D.514. 在等差数列{a n}中,a1+3a8+a15=60,则2a9−a10的值为( )A.6B.8C.12D.135. 数列{a n}中,若a1=1,a n+1=a n+4,则下列各数中是{a n}中某一项的是()A.2007B.2008C.2009D.20106. 若a≠b,两个等差数列a,x1,x2,b与a,y1,y2,y3,b的公差分别为d1,d2,则d1d2等于()A.3 2B.23C.43D.347. 在数列{a n}中,a1=1,a n+1=2a na n+2(n∈N∗),则a5等于( )A.2 5B.13C.23D.128. 已知等差数列{a n}的公差d为正数,a1=1,2(a n a n+1+1)=tn(1+a n),t为常数,则a n=( )A.2n−1B.4n−3C.5n−4D.n9. 《周髀算经》有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种十二个节气日影长减等寸,冬至、立春、春分日影之和为三丈一尺五寸,前九个节气日影之和为八丈五尺五寸,问芒种日影长为()A.一尺五寸B.二尺五寸C.三尺五寸D.四尺五寸10. 一个首项为,公差为整数的等差数列,如果前六项均为正数,第七项起为负数,则它的公差是()A. B. C. D.11. 等差数列{a n},a1=0,公差d=1,则a8=________.712. 在等差数列{a n}中,a2=1,a4=5,则a n=________.13. 等差数列{a n}中,若a3+a5=4,则a4=________.14. 已知数列{a n}的前n项和S n=n2−9n,则其通项a n=________.15. 已知等差数列{a n},a n=4n−3,则首项a1为________,公差d为________.16. 《张丘建算经》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女不善织,日减功迟,初日织五尺,末日织一尺,今共织九十尺,问织几日?”.其中“日减功迟”的具体含义是每天比前一天少织同样多的布,则每天比前一天少织布的尺数为________.17. “欢欢”按如图所示的规则练习数数,记在数数过程中对应中指的数依次排列所构成的数列为{a n},则数到2008时对应的指头是________,数列{a n}的通项公式a n=________.(填出指头的名称,各指头的名称依次为大拇指、食指、中指、无名指、小指).18. 表中的数阵为“森德拉姆数筛”,其特点是每行每列都成等差数列,则数字70在表中出现的次数为________19. 已知数列的前n项和为,,,则________.20. 已知数列满足,,若,则数列的前n项和________.21. 数列{a n}中,a1=8,a4=2且满足a n+2=2a n+1−a n(n∈N∗),数列{a n}的通项公式________.22. 在等差数列{a n}中,已知a4+a6=28,a7=20,求a3和公差d.23. 数列{a n}是等差数列,a1=f(x+1),a2=0,a3=f(x−1),其中f(x)=x2−4x+2,求通项公式a n.24. 设数列{a n}满足a1=1,a n+1=3a n,n∈N+.(1)求数列{a n}的通项公式及前n项和S n;(2)已知数列{b n}是等差数列,且满足b1=a2,b3=a1+a2+a3,求数列{b n}的通项公式.25. 已知数列{a n},|b n}满足a1=2,b1=1 ,且当n≥2a n=23a n−1+13b n−1+2b n=1 3a n−1+23b n−1+2(1)令c n=a n+b n,d n=a n−b n ,证明:{c n}为等差数列,{d n}为等比数列;(2)求数列{a n}的通项公式及前π项和S n26. 已知公差不为零的等差数列{a n}各项均为正数,其前n项和为S n,满足2S2=a2(a2+1)且a1,a2,a4成等比数列.(1)求数列{a n}的通项公式;(2)设b n=a n+1⋅2a n,求数列{b n}的前n项和为T n.27. 已知公差不为零的等差数列{a n}的前n项和为S n,a3=4,a5是a2与a11的等比中项.(1)求S n;(2)设数列{b n}满足b1=a2, b n+1=b n+3×2a n,求数列{b n}的通项公式.28. 已知递增等差数列{a n}满足a1+a5=4,前3项的积为8,求等差数列{a n}的通项公式.29. 在等差数列{a n}中,已知a5=10,a12=31,求a1,d,a20,a n.30. 已知数列{a n},对于任意n∈N∗,都有a n=n2−bn,是否存在一个整数m,使得当b<m时,数列{a n}为递增数列?这样的整数是否唯一?是否存在最大的整数?31. 在等差数列{a n}中,a2=3,a9=17,求a19+a20+a21的值.32. 在等差数列{a n}中,已知a3=8,且满足a10>21,a12<27,若d∈Z,求公差d的值.33. 已知数列{a n}为等差数列,且a4=9,a9=−6.(1)求通项a n;(2)求a12的值.34. 已知:公差大于零的等差数列{a n}的前n项和为S n,且满足a3a4=117,a2+a5= 22.求数列{a n}的通项公式.35. 设无穷等差数列{a n}的前n项和为S n,求所有的无穷等差数列{a n},使得对于一切正整数k都有S k3=(S k)3成立.36. 在等差数列{a n}中,公差d≠0,己知数列a k1,a k2,a k3,…a kn…是等比数列,其中k1=1,k2=7,k3=25.(1)求数列{k n}的通项公式;(2)若a1=9,b n=√a k n6+√k n2,S n=b12+b22+b32...+b n2,T n=1b12+1b22+1b32...+1b n2,试判断{S n+T n}的前100项中有多少项是能被4整除的整数.37. 设正数数列的前项和为,对于任意,是和的等差中项. (1)求数列的通项公式;(2)设,是的前项和,是否存在常数,对任意,使恒成立?若存在,求取值范围;若不存在,说明理由.38. 记等差数列的前项和,已知.(1)若,求的通项公式;(2)若,求使得的的取值范围.39. 观察下表:1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,……问:(1)此表第行的第一个数与最后一个数分别是多少?(2)此表第行的各个数之和是多少?(3)2019是第几行的第几个数?40. 等差数列{a n}中,d=2,a1=5,S n=60,求n及a n.参考答案与试题解析高中数学等差数列的通项公式训练练习题含答案一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】B【考点】等差数列的通项公式【解析】根据等差数列51、47、43,…,得到等差数列的通项公式,让通项小于0得到解集,求出解集中最小的正整数解即可.【解答】解:因为数列51、47、43,…为等差数列,所以公差d=47−51=−4,首项为51,所以通项a n=51+(n−1)×(−4)=55−4n,所以令55−4n<0解得n>554因为n为正整数,所以最小的正整数解为14,所以第一个负数项为第14项故选B2.【答案】B【考点】等差数列的通项公式【解析】(1)利用等差数列的性质进行解题即可.【解答】解:已知数列{a n}是等差数列,则a2=a1+d=4,a6+a7=2a1+11d=6+a1+8d,解得d=1 .故选B .3.【答案】D【考点】等差数列的通项公式【解析】的等差数列,由此能求出a99.由已知得数列{a n}是首项为a1=2,公差为a n+1−a n=12【解答】(n∈N∗),解:∵在数列{a n}中,a1=2,a n+1=a n+12∴数列{a n}是首项为2,公差为1的等差数列,2∴a99=2+98×1=51.2故选D.4.【答案】C【考点】等差数列的通项公式【解析】由已知条件利用等差数列的通项公式求解.【解答】解:在等差数列{a n}中,∵a1+3a8+a15=60,∴a1+3(a1+7d)+a1+14d=5(a1+7d)=60,∴a1+7d=12,∴2a9−a10=2(a1+8d)−(a1+9d)=a1+7d=12.故选C.5.【答案】C【考点】等差数列的通项公式【解析】利用等差数列的定义判断,再用通项公式求解即可.【解答】解:∵数列{a n}中有a1=1,a n+1=a n+4,∴数列{a n}为等差数列,且a1=1,公差d=4,即通项公式为:a n=4n−3,∵4n−3=2009,4n=2012,∴n=503且n=503是整数.故选C.6.【答案】C【考点】等差数列的通项公式【解析】由a,x1,x2,b为等差数列,根据等差数列的性质得到b=a+3d1,表示出d1,同理由a,y1,y2,y3,b为等差数列,根据等差数列的性质表示出d2,即可求出d1与d2的比值.【解答】解:∵a,x1,x2,b为等差数列,且公差为d1,∴b=a+3d1,即d1=b−a,3∵a,y1,y2,y3,b也为等差数列,且公差为d2,∴b=a+4d2,即d2=b−a,4则d 1d 2=43.故选C 7.【答案】 B【考点】等差数列的通项公式 【解析】 此题暂无解析 【解答】 解:由a n+1=2a nan+2,得1a n+1=a n +22a n=1a n+12,又a 1=1,所以数列{1a n}是以1为首项,12为公差的等差数列, 所以1a 5=1+4×12=3,所以a 5=13.故选B . 8. 【答案】 A【考点】等差数列的通项公式 【解析】根据数列的递推关系式,先求出t =4,即可得到{a 2n−1}是首项为1,公差为4的等差数列,a 2n−1=4n −3,{a 2n }是首项为3,公差为4的等差数列,a 2n =4n −1,问题得以解决. 【解答】解:由题设2(a n a n+1+1)=tn(1+a n ),即a n a n+1+1=tS n ,可得a n+1a n+2+1=tS n+1, 两式相减得a n+1(a n+2−a n )=ta n+1, 所以a n+2−a n =t .由2(a 1a 2+1)=t(1+a 1) 可得a 2=t −1,由a n+2−a n =t 可知a 3=t +1.因为{a n }为等差数列,所以2a 2=a 1+a 3, 解得t =4,故a n+2−a n =4,由此可得{a 2n−1}是首项为1,公差为4的等差数列,a 2n−1=4n −3, {a 2n }是首项为3,公差为4的等差数列,a 2n =4n −1, 所以a n =2n −1. 故选A . 9. 【答案】 B【考点】等差数列的通项公式【解析】从冬至日起各节气日影长设为{a n},可得{a n}为等差数列,根据已知结合前八项和公式和等差中项关系,求出通项公式,即可求解.【解答】由题知各节气日影长依次成等差数列,设为{a n}S n是其前?项和,则尺,所以a5=9.5尺,由题S S=9(a1+a5)24+a7=3a4=31.5所以a4=10.5,所以公差d=a5−a4=−1所以a12=a5+7d=2.5尺.故选:B.10.【答案】C【考点】等差数列的通项公式【解析】设等差数列{a n}的公差为|da4=23+5d,a7=23+6d,又:数列前六项均为正数,第七项起为负数,23+5d>0.23+6d<0−235<d<−236,又…数列是公差为整数的等差数列,d=−4,故选C.【解答】此题暂无解答二、填空题(本题共计 10 小题,每题 3 分,共计30分)11.【答案】1【考点】等差数列的通项公式【解析】直接由等差数列的通项公式求解.【解答】解:在等差数列{a n},由a1=0,公差d=17,得a8=a1+7d=0+7×17=1.故答案为:1.12.【答案】2n−3【考点】等差数列的通项公式【解析】利用等差数列的通项公式即可得出.【解答】解:设等差数列{a n}的公差为d,∵a2=1,a4=5,∴{a1+d=1a1+3d=5,解得{a1=−1d=2.∴a n=−1+2(n−1)=2n−3.故答案为2n−3.13.【答案】2【考点】等差数列的通项公式【解析】根据等差数列的定义和性质,结合题意可得2a4=a3+a5=4,由此解得a4的值.【解答】解:∵等差数列{a n}中,a3+a5=4,∴2a4=a3+a5=4,解得a4=2,故答案为:2.14.【答案】2n−10【考点】等差数列的通项公式【解析】利用递推关系a n={S1n=1S n−S n−1n≥2可求数列的通项公式【解答】解:∵S n=n2−9n,∴a1=S1=−8n≥2时,a n=S n−S n−1=n2−9n−(n−1)2+9(n−1)=2n−10 n=1,a1=8适合上式故答案为:2n−1015.【答案】1,4【考点】等差数列的通项公式【解析】根据等差数列的通项公式求出公差d,令n=1求得首项a1.【解答】解:由题意得,等差数列{a n},a n=4n−3,则公差d=4,令n=1得首项a1=1,故答案为:1、4.16.【答案】429等差数列的通项公式【解析】利用等差数列的通项公式求和公式即可得出.【解答】已知数列{a n}为等差数列,其中,a1=5,a n=1,S n=90.,1=5+(n−1)d,设公差为d,则90=n(5+1)2.解得:d=−42917.【答案】食指,4n−1【考点】等差数列的通项公式【解析】注意到数1,9,17,25,,分别都对应着大拇指,且1+8×(251−1)=2001,因此数到2008时对应的指头是食指.对应中指的数依次是:3,7,11,15,,因此数列{a n}是3为首项4为公差的等差数列,根据等差数列的通项公式即可得到答案.【解答】解:∵数1,9,17,25,,分别都对应着大拇指,且1+8×(251−1)=2001,∴数到2008时对应的指头是食指.∵对应中指的数依次是:3,7,11,15,因此数列{a n}的通项公式是a n=3+(n−1)×4=4n−1.故答案为:食指,4n−118.【答案】4【考点】等差数列的通项公式【解析】第1行数组成的数列A1j(j=1, 2,…)是以2为首项,公差为1的等差数列,第j列数组成的数列Aij(i=1, 2,…)是以j+1为首项,公差为j的等差数列,求出通项公式,就求出结果.【解答】第i行第j列的数记为Aij.那么每一组i与j的组合就是表中一个数.因为第一行数组成的数列A1j(j=1, 2,…)是以2为首项,公差为1的等差数列,所以A1j=2+(j−1)×1=j+1,所以第j列数组成的数列Aij(i=1, 2,…)是以j+1为首项,公差为j的等差数列,所以Aij=(j+1)+(i−1)×j=ij+1.所以ij=69=1×69=3×23=23×3=69×1=81.所以表中的数70共出现54,19.【答案】________、1,2n—1【考点】等差数列的通项公式根据a n−1=S n+1−S n ,代入后等式两边同时除以S n+1S n+1.即可得【解答】因为a n−1=S n+1−S n则a n−1+2S n+1S n =0可化简为S n−1−S n +2S n−1S n =0等式两边同时除以S n−1S n可得1S n −1S n+1+2=0.即1S n−1−1S n =2 所以数列为等差数列,首项1S 1=1a 1=1,公差d =2 所以1S n=1+(n −1)×2=2n −1 即S n =12n−1故答案为:12n−1I =加加】本题考查了数列的综合应用,通项公式与前n 项和公式的关系,等差数列通项公式的求法,属于中档题.20.【答案】s _、4”1−4,3【考点】等差数列的通项公式【解析】a n+1n+1−a n n =2,求得an n 的通项,进而求得a n =2n 2,得b n 通项公式,利用等比数列求和即可.【解答】由题为等差数列,a n n =a 11+n −1×2=2na n =2n 2∴ b n =22n ∴ S n =4(1−42)1−4=4n−1−43,故答案为4n+1−43三、 解答题 (本题共计 20 小题 ,每题 10 分 ,共计200分 )21.【答案】a n =10−2n【考点】等差数列的通项公式【解析】本题考查等差数列通项公式,由条件 a n+2=2a n+1−a n 可得 a n+2−a n+1=a n+1−a n ,从而{a n }为等差数列,利用 a 1=8, a 4=2 可求公差,从而可求数列{a n }的通项公式.【解答】解:由题意, a n+2−a n+1=a n+1−a n ,∴ 数列 {a n } 为等差数列,设公差为d ,由a 1=8,a 4=2 ,得8+3d =2 ,解得d =−2,∴ a n =8−2(n −1)=10−2n .故答案为:a n =10−2n .22.【答案】解:在等差数列{a n }中,∵ a 4+a 6=28,a 7=20,∴ 由题意得{a 3+d +a 3+3d =28①,a 3+4d =20②,由①②解得{a 3=8,d =3.【考点】等差数列的通项公式【解析】利用等差数列的通项公式求解.【解答】解:在等差数列{a n }中,∵ a 4+a 6=28,a 7=20,∴ 由题意得{a 3+d +a 3+3d =28①,a 3+4d =20②,由①②解得{a 3=8,d =3.23.【答案】解:因为数列{a n }是等差数列,所以a 1+a 3=2a 2,即f(x +1)+f(x −1)=0,又f(x)=x 2−4x +2,所以(x +1)2−4(x +1)+2+(x −1)2−4(x −1)+2=0,整理得x 2−4x +3=0,解得x =1,或x =3.当x =1时,a 1=f(x +1)=f(2)=22−4×2+2=−2,d =a 2−a 1=0−(−2)=2,∴ a n =a 1+(n −1)d =−2+2(n −1)=2n −4.当x =3时,a 1=f(x +1)=f(4)=42−4×4+2=2,d =0−2=−2,∴ a n =a 1+(n −1)d =2+(n −1)×(−2)=4−2n .所以,数列{a n }的通项公式为2n −4或4−2n .【考点】等差数列的通项公式【解析】题目给出了一个等差数列的前3项,根据等差中项概念列式a 1+a 3=2a 2,然后把a 1和a 3代入得到关于x 的方程,解方程,求出x 后再分别代回a 1=f(x +1)求a 1,则d 也可求,所以通项公式可求.【解答】解:因为数列{a n }是等差数列,所以a 1+a 3=2a 2,即f(x +1)+f(x −1)=0,又f(x)=x 2−4x +2,所以(x +1)2−4(x +1)+2+(x −1)2−4(x −1)+2=0,整理得x 2−4x +3=0,解得x =1,或x =3.当x =1时,a 1=f(x +1)=f(2)=22−4×2+2=−2,d =a 2−a 1=0−(−2)=2,∴ a n =a 1+(n −1)d =−2+2(n −1)=2n −4.当x =3时,a 1=f(x +1)=f(4)=42−4×4+2=2,d =0−2=−2,∴ a n =a 1+(n −1)d =2+(n −1)×(−2)=4−2n .所以,数列{a n }的通项公式为2n −4或4−2n .24.【答案】解:(1)由题设可知{a n }是首项为1,公比为3的等比数列,所以a n =3n−1,S n =1−3n 1−3=3n −12.(2)设数列{b n }的公差为d ,∵ b 1=a 2=3,b 3=a 1+a 2+a 3=S 3=13,∴ b 3−b 1=10=2d ,∴ d =5,∴ b n =5n −2.【考点】等比数列的前n 项和等比数列的通项公式等差数列的通项公式【解析】(1)判断数列是等比数列,然后求{a n }的通项公式及前n 项和S n ;(2)利用数列的关系求出公差,然后求解通项公式.【解答】解:(1)由题设可知{a n }是首项为1,公比为3的等比数列,所以a n =3n−1,S n =1−3n 1−3=3n −12.(2)设数列{b n }的公差为d ,∵ b 1=a 2=3,b 3=a 1+a 2+a 3=S 3=13,∴ b 3−b 1=10=2d ,∴ d =5,∴ b n =5n −2.25.【答案】解:(1)数列{a n },{b n }满足a 1=2,b 1=1,且 {a n =23a n−1+13b n−1+2b n =13a n−1+23b n−1+2(n ≥2), ∴ a n +b n =(a n−1+b n−1)+4(n ≥2),因为c n =a n +b n ,即c n =c n−1+4(n ≥2),∴ {c n }是首项为a 1+b 1=3, 公差为4的等差数列.且通项公式为c n =3+4(n −1)=4n −1,而a n −b n =(13a n−1−13b n−1)=13(a n−1−b n−1)(n ≥2),因为d n =a n −b n ,即d n =13d n−1(n ≥2), ∴ {d n }是首项为a 1−b 1=1, 公比为13的等比数列.且通项公式为d n =(13)n−1. (2)由(1)得到 {a n +b n =4n −1a n −b n =(13)n−1, 解得a n =12×3n−1+2n −12,∴ S n = 12×[1−(13)n ]1−13+2×n(n+1)2-12n =34−14×3+n 2+n 2. 【考点】由递推关系证明数列是等差数列等差数列与等比数列的综合数列的求和等比数列的通项公式等差数列的通项公式【解析】由题得到a n +b n =(a n−1+b n−1)+4(n ≥2),即可得到c n =c n−1+4(n ≥2),即可知{c n }是首项为a 1+b 1=3, 公差为4的等差数列.而a n −b n =13(a n−1−b n−1)(n ≥2),即可得d n =13d n−1(n ≥2),可知{d n }是首项为a 1−b 1=1, 公比为13的等比数列.由(1)得到 {a n +b n =4n −1a n −b n =(13)n−1,即可得到a n =12×3+2n −12,再利用分组转换求和法即可得解S n .【解答】解:(1)数列{a n },{b n }满足a 1=2,b 1=1,且 {a n =23a n−1+13b n−1+2b n =13a n−1+23b n−1+2(n ≥2), ∴ a n +b n =(a n−1+b n−1)+4(n ≥2),因为c n =a n +b n ,即c n =c n−1+4(n ≥2),∴ {c n }是首项为a 1+b 1=3, 公差为4的等差数列.且通项公式为c n =3+4(n −1)=4n −1,而a n −b n =(13a n−1−13b n−1)=13(a n−1−b n−1)(n ≥2),因为d n =a n −b n ,即d n =13d n−1(n ≥2), ∴ {d n }是首项为a 1−b 1=1, 公比为13的等比数列.且通项公式为d n =(13)n−1. (2)由(1)得到 {a n +b n =4n −1a n −b n =(13)n−1, 解得a n =12×3n−1+2n −12,∴ S n =12×[1−(13)n ]1−13+2×n(n+1)2-12n =34−14×3+n 2+n 2. 26.【答案】解:(1)设等差数列的公差为d ,由题意得{2S 2=a 2(a 2+1),a 22=a 1a 4, 整理{a 12+2a 1d +d 2=3a 1+d ,a 1=d ,解得a 1=d =1,所以a n =n .(2)由(1)得b n =(n +1)2n ,则T n =2×21+3×22+4×23+⋯+(n +1)×2n ,2T n =2×22+3×23+4×24+⋯+(n +1)×2n+1,两式作差整理得,T n =n ⋅2n+1.【考点】等比中项数列的求和等差数列的通项公式【解析】此题暂无解析【解答】解:(1)设等差数列的公差为d ,由题意得{2S 2=a 2(a 2+1),a 22=a 1a 4,整理{a 12+2a 1d +d 2=3a 1+d ,a 1=d ,解得a 1=d =1,所以a n =n .(2)由(1)得b n =(n +1)2n ,则T n =2×21+3×22+4×23+⋯+(n +1)×2n ,2T n =2×22+3×23+4×24+⋯+(n +1)×2n+1,两式作差整理得,T n =n ⋅2n+1.27.【答案】解:(1)由题意可得{a 1+2d =4,(a 1+4d )2=(a 1+d )(a 1+10d ),即{a 1+2d =4,2d 2=a 1d.又因为d ≠0,所以{a 1=2,d =1,所以a n =n +1,所以S n =n (2+n+1)2=n 2+3n 2;(2)由条件及(1)可得b 1=a 2=3.由已知得b n+1−b n =3×2n+1,b n −b n−1=3×2n (n ≥2).所以b n =(b n −b n−1)+(b n−1−b n−2)+⋯+(b 2−b 1)+b 1=3(2n +2n−1+2n−2+⋯+22)+3=3×2n+1−9(n ≥2).又b 1=3满足上式,所以b n =3×2n+1−9.【考点】等比中项数列递推式等差数列的前n 项和等差数列的通项公式【解析】左侧图片未给出解析左侧图片未给出解析【解答】解:(1)由题意可得{a 1+2d =4,(a 1+4d )2=(a 1+d )(a 1+10d ),即{a 1+2d =4,2d 2=a 1d.又因为d ≠0,所以{a 1=2,d =1,所以a n =n +1,所以S n =n (2+n+1)2=n 2+3n 2;(2)由条件及(1)可得b 1=a 2=3.由已知得b n+1−b n =3×2n+1,b n −b n−1=3×2n (n ≥2).所以b n =(b n −b n−1)+(b n−1−b n−2)+⋯+(b 2−b 1)+b 1=3(2n +2n−1+2n−2+⋯+22)+3=3×2n+1−9(n ≥2).又b 1=3满足上式,所以b n =3×2n+1−9.28.【答案】解:∵ 递增等差数列{a n }满足a 1+a 5=4,前3项的积为8,∴ {a 1+a 1+4d =4a 1(a 1+d)(a 1+2d)=8d >0,解得a 1=−4,d =3,∴ 等差数列{a n }的通项公式a n =−4+(n −1)×3=3n −7.【考点】等差数列的通项公式【解析】利用等差数列前n 项和公式列出方程组,求出首项和公比,由此能求出等差数列{a n }的通项公式.【解答】解:∵ 递增等差数列{a n }满足a 1+a 5=4,前3项的积为8,∴ {a 1+a 1+4d =4a 1(a 1+d)(a 1+2d)=8d >0,解得a 1=−4,d =3,∴ 等差数列{a n }的通项公式a n =−4+(n −1)×3=3n −7.29.【答案】解:解法一:∵ a 5=10,a 12=31,则{a 1+4d =10a 1+11d =31⇒{a 1=−2d =3∴ a n =a 1+(n −1)d =3n −5,a 20=a 1+19d =55解法二:∵ a 12=a 5+7d ⇒31=10+7d ⇒d =3∴ a 20=a 12+8d =55,a n =a 12+(n −12)d =3n −5【考点】等差数列的通项公式【解析】此题暂无解析【解答】略30.【答案】解:∵数列{a n},对于任意n∈N∗,都有a n=n2−bn,假设存在一个整数m,使得当b<m时,数列{a n}为递增数列,∴a n+1−a n=[(n+1)2−b(n+1)]−(n2−bn)=2n+1−b>0,∴存在一个整数m,使得当b<m时,数列{a n}为递增数列,且m=2n+1,n∈N∗.满足条件的整数m不是唯一的,但不存在最大值.【考点】等差数列的通项公式【解析】假设存在一个整数m,使得当b<m时,数列{a n}为递增数列,则a n+1−a n=[(n+ 1)2−b(n+1)]−(n2−bn)=2n+1−b>0,由此能求出结果.【解答】解:∵数列{a n},对于任意n∈N∗,都有a n=n2−bn,假设存在一个整数m,使得当b<m时,数列{a n}为递增数列,∴a n+1−a n=[(n+1)2−b(n+1)]−(n2−bn)=2n+1−b>0,∴存在一个整数m,使得当b<m时,数列{a n}为递增数列,且m=2n+1,n∈N∗.满足条件的整数m不是唯一的,但不存在最大值.31.【答案】解:∵等差数列{a n}中,a2=3,a9=17∴d=a9−a29−2=17−37=2∴a20=a2+18d=3+36=39∵a19+a20+a21=3a20=117【考点】等差数列的通项公式【解析】由已知结合公式d=a9−a29−2可求d,然后利用等差数列的性质及通项公式即可求解【解答】解:∵等差数列{a n}中,a2=3,a9=17∴d=a9−a29−2=17−37=2∴a20=a2+18d=3+36=39∵a19+a20+a21=3a20=11732.【答案】解:∵等差数列{a n}中,a3=8,且满足a10>21,a12<27,∴{a1+2d=8a1+9d>21a1+11d<27,∴{8−2d+9d>218−2d+11d<27,解得137<d <199.∵ d ∈Z ,∴ 公差d =2. 【考点】等差数列的通项公式 【解析】由已知条件利用等差数列通项公式能求出公差d 的值. 【解答】解:∵ 等差数列{a n }中,a 3=8,且满足a 10>21,a 12<27, ∴ {a 1+2d =8a 1+9d >21a 1+11d <27,∴ {8−2d +9d >218−2d +11d <27,解得137<d <199.∵ d ∈Z ,∴ 公差d =2. 33.【答案】 解:(1)∵ 数列{a n }为等差数列,且a 4=9,a 9=−6, ∴ {a 1+3d =9a 1+8d =−6,解得a 1=18,d =−3,∴ 通项a n =18+(n −1)×(−3)=21−3n . (2)a 12=21−3×12=−15.【考点】等差数列的通项公式 【解析】(1)利用等差数列通项公式列出方程组,求出首项与公差,由此能求出通项a n . (2)由通项通项a n ,能求出a 12的值.【解答】 解:(1)∵ 数列{a n }为等差数列,且a 4=9,a 9=−6, ∴ {a 1+3d =9a 1+8d =−6,解得a 1=18,d =−3,∴ 通项a n =18+(n −1)×(−3)=21−3n . (2)a 12=21−3×12=−15. 34.【答案】解:在等差数列{a n }中,a 3+a 4=a 2+a 5=22,a 3⋅a 4=117, ∴ a 3,a 4是方程x 2−22x +117=0的两实根, ∵ 公差d >0,∴ a 3<a 4, ∴ a 3=9,a 4=13; 即{a 1+2d =9a 1+3d =13, 解得{a 1=1d =4;∴ 通项公式为a n =1+4(n −1)=4n −3. 【考点】等差数列的通项公式 【解析】根据题意,由a 3+a 4=a 2+a 5,a 3⋅a 4的值求出a 3、a 4;由此求出{a 1=1d =4;即得通项公式a n . 【解答】解:在等差数列{a n }中,a 3+a 4=a 2+a 5=22,a 3⋅a 4=117, ∴ a 3,a 4是方程x 2−22x +117=0的两实根, ∵ 公差d >0,∴ a 3<a 4, ∴ a 3=9,a 4=13; 即{a 1+2d =9a 1+3d =13, 解得{a 1=1d =4;∴ 通项公式为a n =1+4(n −1)=4n −3. 35.【答案】解:若等差数列{a n }满足S k 3=(S k )3则当k =1时,有s 1=s 13,∴ a 1=0或a 1=1或a 1=−1当k =2时,有s 8=s 23,即8a 1+8×72d =(2a 1+d)3(1)当a 1=0时,代入上式得d =0或d =2√7或d =−2√7 ①当a 1=0,d =0时,a n =0,S n =0 满足S k 3=(S k )3此时,数列{a n }为:0,0,0…②当a 1=0,d =2√7时,a n =2√7(n −1),S n =2√7n(n−1)2=√7n(n −1)S 27≠(S 3)3 ∴ 不满足题意③当a 1=0,d =−2√7时,a n =−2√7(n −1),S n =−2√7n(n−1)2=−√7n(n −1)S 27≠(S 3)3 ∴ 不满足题意(2)当a 1=1时,代入上式得d =0或d =2或d =−8 ①当a 1=1,d =0时,a n =1,S n =n 满足S k 3=(S k )3此时,数列{a n }为:1,1,1…②当a 1=1,d =2时,a n =2n −1,S n =n 2 满足S k 3=(S k )3此时,数列{a n }为:1,3,5…③当a 1=1,d =−8时,a n =−8n +9,S n =n(5−4n) S 27≠(S 3)3 ∴ 不满足题意(3)当a 1=−1时,代入上式得d =0或d =−2或d =8 ①当a 1=−1,d =0时,a n =−1,S n =−n满足S k3=(S k)3此时,数列{a n}为:−1,−1,−1…②当a1=−1,d=−2时,a n=−2n+1,S n=−n2满足S k3=(S k)3此时,数列{a n}为:−1,−3,−5…③当a1=−1,d=8时,a n=8n−9,S n=n(4n−5)S27≠(S3)3∴不满足题意∴满足题意的等差数列{a n}有:①0,0,0…②1,1,1…③1,3,5…④−1,−1,−1…⑤−1,−3,−5…【考点】等差数列的通项公式【解析】先由k=1,k=2时,确定首项和公差,再验证每一组解是否符合题意,从而可以找到符合题意的数列【解答】解:若等差数列{a n}满足S k3=(S k)3则当k=1时,有s1=s13,∴a1=0或a1=1或a1=−1d=(2a1+d)3当k=2时,有s8=s23,即8a1+8×72(1)当a1=0时,代入上式得d=0或d=2√7或d=−2√7①当a1=0,d=0时,a n=0,S n=0满足S k3=(S k)3此时,数列{a n}为:0,0,0…=√7n(n−1)②当a1=0,d=2√7时,a n=2√7(n−1),S n=2√7n(n−1)2S27≠(S3)3∴不满足题意=−√7n(n−1)③当a1=0,d=−2√7时,a n=−2√7(n−1),S n=−2√7n(n−1)2S27≠(S3)3∴不满足题意(2)当a1=1时,代入上式得d=0或d=2或d=−8①当a1=1,d=0时,a n=1,S n=n满足S k3=(S k)3此时,数列{a n}为:1,1,1…②当a1=1,d=2时,a n=2n−1,S n=n2满足S k3=(S k)3此时,数列{a n}为:1,3,5…③当a1=1,d=−8时,a n=−8n+9,S n=n(5−4n)S27≠(S3)3∴不满足题意(3)当a1=−1时,代入上式得d=0或d=−2或d=8①当a 1=−1,d =0时,a n =−1,S n =−n 满足S k 3=(S k )3此时,数列{a n }为:−1,−1,−1…②当a 1=−1,d =−2时,a n =−2n +1,S n =−n 2 满足S k 3=(S k )3此时,数列{a n }为:−1,−3,−5…③当a 1=−1,d =8时,a n =8n −9,S n =n(4n −5) S 27≠(S 3)3 ∴ 不满足题意∴ 满足题意的等差数列{a n }有: ①0,0,0… ②1,1,1… ③1,3,5…④−1,−1,−1… ⑤−1,−3,−5… 36.【答案】 解:(1)设{a n }的首项为a 1,公差为d(d ≠0), ∵ a 1,a 7,a 25成等比数列, ∴ (a 1+6d)2=a 1(a 1+24d), ∴ 36d 2=12a 1d ,又d ≠0, ∴ a 1=3d...3分∴ a n =3d +(n −1)d =(n +2)d , 又a k 2a k 1=a 7a 1=9d 3d=3,∴ {a k n }是以a 1=3d 为首项,3为公比的等比数列,∴ a k n =3d ⋅3n−1=d ⋅3n ,∴ (k n +2)d =d ⋅3n (d ≠0), ∴ k n =3n −2(n ∈N ∗).(2)∵ a 1=9,∴ 3d =9,解得d =3,∴ a k n =3n+1, ∴ b n =√a k n 6+√kn2=√3n +√3n −2√2, 则b n 2+1b n2=(b n +1b n)2−2=(√3n +√3n −2√2√3n −√3n −2√2)2−2=2×3n −2,∴ S n +T n =2×3n−1−32−2n =3(3n −1)−2n ,当n 为偶数时:3n−1=(8+1)n 2−1=8n 2+...+C n 2n 2−1⋅8,能被4整除,2n 也能被4整除,∴ S n +T n 能被4整除.当n 为奇数时,S n +T n =3n+1−1−2(n +1), 3n+1−1=(8+1)n+12−1=8n+12+...+Cn+12n+12−1⋅8能被4整除,2(n +1)也能被4整除,∴ S n +T n 能被4整除,∴ {S n +T n }的前100项中有100项是能被4整除的整数.【考点】等差数列的通项公式 【解析】(1)设{a n }的首项为a 1,公差为d(d ≠0),由题意可求得a 1=3d ,于是可求得a n 的关于d 的表达式,再利用a k 2ak 1=a 7a 1=9d3d =3,可求得其公比,继而可求得akn 的关系式,两者联立即可求得数列{k n }的通项公式k n .(2)先求出b n ,进一步求出S n +T n 的通项公式,再利用二项式知识解决整除问题 【解答】 解:(1)设{a n }的首项为a 1,公差为d(d ≠0), ∵ a 1,a 7,a 25成等比数列, ∴ (a 1+6d)2=a 1(a 1+24d), ∴ 36d 2=12a 1d ,又d ≠0, ∴ a 1=3d...3分∴ a n =3d +(n −1)d =(n +2)d , 又a k 2a k 1=a 7a 1=9d 3d=3,∴ {a k n }是以a 1=3d 为首项,3为公比的等比数列,∴ a k n =3d ⋅3n−1=d ⋅3n ,∴ (k n +2)d =d ⋅3n (d ≠0), ∴ k n =3n −2(n ∈N ∗).(2)∵ a 1=9,∴ 3d =9,解得d =3,∴ a k n =3n+1, ∴ b n =√a k n 6+√k n 2=√3n +√3n −2√2, 则b n 2+1b n2=(b n +1b n)2−2=(√3n +√3n −2√2√3n −√3n −2√2)2−2=2×3n −2,∴ S n +T n =2×3n−1−32−2n =3(3n −1)−2n ,当n 为偶数时:3n−1=(8+1)n 2−1=8n 2+...+C n 2n 2−1⋅8,能被4整除,2n 也能被4整除,∴ S n +T n 能被4整除.当n 为奇数时,S n +T n =3n+1−1−2(n +1), 3n+1−1=(8+1)n+12−1=8n+12+...+Cn+12n+12−1⋅8能被4整除,2(n +1)也能被4整除,∴ S n +T n 能被4整除,∴ {S n +T n }的前100项中有100项是能被4整除的整数. 37.【答案】(1)a n =n ;(2)存在实数0≤λ<1符合题意.【考点】等差数列的通项公式 【解析】(1)根据S n 是a n 2和a n 的等差中项可知2S n =a n 2+a n ,且a n >0,则当n ≥2时,有2S n−1=(a n−1)2+a n−1,两式相减并化简即 可求解;(2)由(1)知a n =n ,由题意知,T n =1−(12)n,假设存在常数λ≥0,对任意n ∈N ,使恒成立等价于对任意n ∈N ′1−(12)n−λ(12)n>√λ恒成立整理化简,利用分离参数法求解恒成立问题即可.【解答】(1)由S n 是a n 2和a n 的等差中项可知,2S n =a n 2+a n ,且a n >0 则当n ≥2时,有2S n−1=(a n−1)2+a n−1两式相减可得,2S n −2S n−1=a n 2−a n−12+a n −a n−1即2a n =a n 2−a n−12+a n −a n+1,a n >0,化简可得,a n −a n−1=1(n ≥2) 所以数列{a n }是以1为首项1为公差的等差数列, 所以数列{a n }的通项公式为a n =n(2)由(1)知,a n =n ,因为b n =(12)n,所以数列{b n }的前几项和T n =1−(12)n假设存在常数λ≥0,对任意n ∈N ′,使T n −λ⋅2−a ,√λ恒成立 即对任意n ∈N1−(12)n−λ(12)n>√λ恒成立等价于对任意n ∈N ′1+√A <2n 恒成立即1+√2小于2a 的最小值即可.所以0≤λ<1满足对任意n ∈N ,使T n −λ⋅2−a >√λ恒成立.所以存在这样的实数?,对任意n ∈N ′,使恒成立,实数?的取值范围为0≤λ<1 38.【答案】(1)a n =−2n +8(2){n|1≤n ≤8,n ∈N }【考点】等差数列的通项公式 【解析】(1)由已知可得a 4=0,再根据a 2=4可得a 1,d 的方程组,解得.(2)由(1)可知a 1=−3d ,故可用含d 的式子表示S n 和a n ,列出不等式求解即可. 【解答】(1)设等差数列{a n }的首项为a 1公差为d ;因为等差数列{a n }的前)项和S n 且S 4=S 3.a 4=0,又∵ a 2=4 {a 1+3d =0a 1+d =4,解得{a 1=4d =−2 所以a n =a 2+(n −2)⋅d =−2n +8 (2)因为a 1=−3d >0,所以d <0 所以S n =na 1+n (n−1)2d =−3nd +n (n−1)2da n =a 1+(n −1)⋅d =(n −4)d 因为S n ≥a n ,所以(n 2−n 2−3n)d ≥(n −4)d因为d <0,所以n 2−n2−3n ≤n −4整理得n 2−9n +8≤0,解得1≤n ≤8 所以”的取值范围是{n|1≤n ≤8,n ∈N } 39.【答案】(1)第几行的第一个数是n 2,最后一个数是n 2+2n (2)第八行各个数之和为2n 3+3n 2+n(3)2019是第44行第84个数.【考点】等差数列的通项公式【解析】(1)根据此表的特点可知此表n行的第1个数为n2,第n行共有3+(n−1)×2=2n+ 1个数,依次构成公差为1的等差数列,利用等差数列的通项公式解之即可;(2)直接根据等差数列的前n项和公式进行求解;(3)1936=442×2019×452=2025,所以2019在第44行,然后设2019是此数表的第44行的第k个数,而第44行的第1个数为442,可求出k,从而得到结论.【解答】(1)由表可知,每一行都是公差为1的等差数列,第n行第一个数是n2,每一行比上一行多2个数,第一行有3个数,则第n行有3+(n−1)×2=2n+1个数,所以第一行最后一个数是n2+(2n+1−1)×1=n2+2n(当然也可以观察得出第n行最后一个数为(n+1)2−1)(2)由(1)知,第几行各个数之和为(2n+1)(n 2+n2+2n)2=(2n+1)(n2+n)=2n3+3n2+n(3)因为1936=442<2019<452=2025,所以2019在第44行,设2019是第44行第k个数,则2019=442+(k−1)×1,解得k=84,所以2019是第44行第84个数.40.【答案】解:等差数列{a n}中,d=2,a1=5,S n=60,∵前n项和S n=na1+12n(n+1)d,即5n+12×n(n−1)×2=60;解得n=6,n=−10(舍去);∴通项公式是a n=a1+(n−1)d=5+2(n−1)=2n+3,∴a6=2×6+3=15.∴所求的n=6,a6=15.【考点】等差数列的通项公式【解析】由等差数列的前n项和公式求出n的值,再由通项公式求出a6即可.【解答】解:等差数列{a n}中,d=2,a1=5,S n=60,∵前n项和S n=na1+12n(n+1)d,即5n+12×n(n−1)×2=60;解得n=6,n=−10(舍去);∴通项公式是a n=a1+(n−1)d=5+2(n−1)=2n+3,∴a6=2×6+3=15.∴所求的n=6,a6=15.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、若数列a n的通项公式为a n 2n 5,则此数列是(
A.公差为2的等差数列
B. 公差为5的等差数列
C.首项为5的等差数列
D. 公差为n的等差数列
2、2005是数列7,13,19,25,31, L ,中的第()项• A.332 B. 333 C. 334 D. 335
3、等差数列3, 7, 11,L ,的一个通项公式为( )A. 4n 7 B. 4n 7 C. 4n 1 D. 4n 1
5、已知等差数列a n的首项为23, 公差是整数, 从第7项开始为负值, 则公差为(
A. —5
B.
C.
D.
6、在等差数列a n中,若a3 a4a5 a6 a7 450 ,则a2 a8
A.45
B.75
C. 180
D.300
7、若a n是等差数列,则a〔a? a3 , a4 a5 a6 , L, a3n 2 a3n a3n ,
A. 一定不是等差数列
B. 定是递增数列
C. 一定是等差数列
D. 定是递减数列
1、等差数列a n中, a3 50 , a5 30,则a?
2、等差数列a中, a3 a5 24, a2 3,则a6
3、已知等差数列a n 中
a2与比的等差中项为5 , a3与a7的等差中项为7,则a n
,
4、一个等差数列中a15 = 33,a25= 66,贝U a 35
=
1、判断实数17、52, 2k 7(k N )是否为等差数列a n 1 , 1,…中的项,若是,是第几项?
2、在等差数列a n中,a1223 , a42143, a n 239,求n及公差d.
3、已知成差数列的四个数之和为26,第二个数和第三个之积为40,求这四个数.
4、已知等差数列a n中,a p q , a q p,求a p q的值.
第1页共2页
一.选择题
ACDC BCCC
二.填空题
1、10.
2、21 .
3、a n 2n 3.
4、99.
三.解答题
1、17为第12项;52不是;2k
2、d 4, n 66.
3、2, 5, 8, 11 或11 , 8, 5, 2.
4、0.
参考答案7为第k 7项.
第2页共2页。