线性目标函数问题

合集下载

线性规划目标函数

线性规划目标函数

线性规划目标函数
线性规划是一种数学优化方法,用于解决线性约束条件下的目标最大化或最小化问题。

线性规划的目标函数是一个线性方程,它表示了需要优化的目标的数学模型。

目标函数的形式如下:
max/min Z = c1x1 + c2x2 + ... + cnxn
其中,Z表示需要最大化或最小化的目标函数值,x1, x2, ...,
xn表示决策变量,c1, c2, ..., cn表示这些变量的系数。

线性规划目标函数的含义取决于具体问题的需求。

有时,我们希望最大化某个指标,比如产量、利润、销售额等;有时,我们希望最小化某个指标,比如成本、风险、距离等。

例如,如果我们想要最大化一个公司的利润,目标函数可以表示为:
maximize Z = p1x1 + p2x2 + ... + pnxn
其中,pi表示第i个产品的售价,xi表示第i个产品的数量。

另外,线性规划目标函数还可以包含一些约束条件,如不等式约束、等式约束等。

在确定目标函数时,我们需要考虑这些约束条件,并根据具体情况进行调整。

线性规划目标函数的确定是线性规划问题的关键步骤之一。

在确定目标函数时,我们需要考虑如何平衡不同决策变量之间的权重关系,以及如何根据约束条件的要求进行调整。

通过合理
选择目标函数,我们可以在满足约束条件的前提下,以最有效的方式实现我们的目标。

简单的线性规划问题(附答案)

简单的线性规划问题(附答案)

简单的线性规划问题(附答案)简单的线性规划问题[学习目标]知识点一线性规划中的基本概念知识点二线性规划问题1.目标函数的最值线性目标函数z=ax+by(b≠0)对应的斜截式直线方程是y=-ab x+zb,在y轴上的截距是zb,当z变化时,方程表示一组互相平行的直线.当b>0,截距最大时,z取得最大值,截距最小时,z取得最小值;当b<0,截距最大时,z取得最小值,截距最小时,z取得最大值.2.解决简单线性规划问题的一般步骤在确定线性约束条件和线性目标函数的前提下,解决简单线性规划问题的步骤可以概括为:“画、移、求、答”四步,即,(1)画:根据线性约束条件,在平面直角坐标系中,把可行域表示的平面图形准确地画出来,可行域可以是封闭的多边形,也可以是一侧开放的无限大的平面区域.(2)移:运用数形结合的思想,把目标函数表示的直线平行移动,最先通过或最后通过的顶点(或边界)便是最优解.(3)求:解方程组求最优解,进而求出目标函数的最大值或最小值.(4)答:写出答案.知识点三简单线性规划问题的实际应用1.线性规划的实际问题的类型(1)给定一定数量的人力、物力资源,问怎样运用这些资源,使完成的任务量最大,收到的效益最大;(2)给定一项任务,问怎样统筹安排,使完成这项任务耗费的人力、物力资源量最小.常见问题有:①物资调动问题例如,已知两煤矿每年的产量,煤需经两个车站运往外地,两个车站的运输能力是有限的,且已知两煤矿运往两个车站的运输价格,煤矿应怎样编制调动方案,才能使总运费最小?②产品安排问题例如,某工厂生产甲、乙两种产品,每生产一个单位的甲种或乙种产品需要的A、B、C三种材料的数量,此厂每月所能提供的三种材料的限额都是已知的,这个工厂在每个月中应如何安排这两种产品的生产,才能使每月获得的总利润最大?③下料问题例如,要把一批长钢管截成两种规格的钢管,应怎样下料能使损耗最小?2.解答线性规划实际应用题的步骤(1)模型建立:正确理解题意,将一般文字语言转化为数学语言,进而建立数学模型,这需要在学习有关例题解答时,仔细体会范例给出的模型建立方法.(2)模型求解:画出可行域,并结合所建立的目标函数的特点,选定可行域中的特殊点作为最优解.(3)模型应用:将求解出来的结论反馈到具体的实例中,设计出最佳的方案.题型一求线性目标函数的最值例1 已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤2,x +y ≥1,x -y ≤1,则z =3x +y 的最大值为( )A .12B .11C .3D .-1答案 B 解析 首先画出可行域,建立在可行域的基础上,分析最值点,然后通过解方程组得最值点的坐标,代入即可.如图中的阴影部分,即为约束条件对应的可行域,当直线y =-3x +z 经过点A时,z 取得最大值.由⎩⎨⎧ y =2,x -y =1⇒⎩⎨⎧x =3,y =2,此时z =3x +y =11.跟踪训练1 (1)x ,y 满足约束条件⎩⎪⎨⎪⎧ x +y -2≤0,x -2y -2≤0,2x -y +2≥0,若z =y -ax 取得最大值的最优解不唯一...,则实数a 的值为( ) A.12或-1 B .2或12C .2或1D .2或-1(2)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≤0,x +2y -8≤0,x ≥0,则z =3x +y 的最小值为________.答案 (1)D (2)1解析 (1)如图,由y =ax +z 知z 的几何意义是直线在y 轴上的截距,故当a >0时,要使z =y -ax 取得最大值的最优解不唯一,则a =2;当a <0时,要使z =y -ax 取得最大值的最优解不唯一,则a =-1.(2)由题意,作出约束条件组成的可行域如图所示,当目标函数z =3x +y ,即y =-3x +z 过点(0,1)时z 取最小值1.题型二 非线性目标函数的最值问题例2 设实数x ,y 满足约束条件⎩⎪⎨⎪⎧x -y -2≤0,x +2y -4≥0,2y -3≤0,求 (1)x 2+y 2的最小值;(2)y x 的最大值.解 如图,画出不等式组表示的平面区域ABC ,(1)令u =x 2+y 2,其几何意义是可行域ABC 内任一点(x ,y )与原点的距离的平方.过原点向直线x +2y -4=0作垂线y =2x ,则垂足为⎩⎨⎧x +2y -4=0,y =2x 的解,即⎝ ⎛⎭⎪⎪⎫45,85, 又由⎩⎨⎧ x +2y -4=0,2y -3=0,得C ⎝ ⎛⎭⎪⎪⎫1,32, 所以垂足在线段AC 的延长线上,故可行域内的点到原点的距离的最小值为|OC |= 1+⎝ ⎛⎭⎪⎪⎫322=132,所以,x 2+y 2的最小值为134.(2)令v =yx ,其几何意义是可行域ABC 内任一点(x ,y )与原点相连的直线l 的斜率为v ,即v =y -0x -0.由图形可知,当直线l 经过可行域内点C 时,v 最大,由(1)知C ⎝⎛⎭⎪⎪⎫1,32,所以v max =32,所以y x 的最大值为32.跟踪训练2 已知x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≥1,则(x +3)2+y 2的最小值为________.答案10解析画出可行域(如图所示).(x+3)2+y2即点A(-3,0)与可行域内点(x,y)之间距离的平方.显然AC长度最小,∴AC2=(0+3)2+(1-0)2=10,即(x+3)2+y2的最小值为10.题型三线性规划的实际应用例3某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A原料1千克、B原料2千克;生产乙产品1桶需耗A原料2千克、B原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A,B原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是多少? 解 设每天分别生产甲产品x 桶,乙产品y 桶,相应的利润为z 元,于是有⎩⎪⎨⎪⎧x +2y ≤12,2x +y ≤12,x ≥0,y ≥0,x ∈N ,y ∈N ,z=300x +400y ,在坐标平面内画出该不等式组表示的平面区域及直线300x +400y =0,平移该直线,当平移到经过该平面区域内的点(4,4)时,相应直线在y 轴上的截距达到最大,此时z =300x +400y 取得最大值, 最大值是z =300×4+400×4=2 800, 即该公司可获得的最大利润是2 800元. 反思与感悟 线性规划解决实际问题的步骤:①分析并根据已知数据列出表格;②确定线性约束条件;③确定线性目标函数;④画出可行域;⑤利用线性目标函数(直线)求出最优解;⑥实际问题需要整数解时,应适当调整,以确定最优解. 跟踪训练3 预算用2 000元购买单价为50元的桌子和20元的椅子,希望使桌子和椅子的总数尽可能的多,但椅子数不少于桌子数,且不多于桌子数的1.5倍,问桌子、椅子各买多少才行? 解 设桌子、椅子分别买x 张、y 把,目标函数z =x +y ,把所给的条件表示成不等式组,即约束条件为⎩⎪⎪⎨⎪⎪⎧50x +20y ≤2 000,y ≥x ,y ≤1.5x ,x ≥0,x ∈N *,y ≥0,y ∈N *.由⎩⎨⎧50x +20y =2 000,y =x ,解得⎩⎪⎨⎪⎧x =2007,y =2007,所以A 点的坐标为⎝⎛⎭⎪⎪⎫2007,2007. 由⎩⎨⎧50x +20y =2 000,y =1.5x ,解得⎩⎨⎧x =25,y =752,所以B 点的坐标为⎝⎛⎭⎪⎪⎫25,752.所以满足条件的可行域是以A ⎝⎛⎭⎪⎪⎫2007,2007,B ⎝⎛⎭⎪⎪⎫25,752,O (0,0)为顶点的三角形区域(如图).由图形可知,目标函数z =x +y 在可行域内的最优解为B ⎝⎛⎭⎪⎪⎫25,752,但注意到x ∈N *,y ∈N *,故取⎩⎨⎧x =25,y =37.故买桌子25张,椅子37把是最好的选择.1.若直线y =2x 上存在点(x ,y )满足约束条件⎩⎪⎨⎪⎧x +y -3≤0,x -2y -3≤0,x ≥m ,则实数m 的最大值为( ) A .-1 B .1 C.32D .22.某公司招收男职员x 名,女职员y 名,x 和y需满足约束条件⎩⎪⎨⎪⎧5x -11y ≥-22,2x +3y ≥9,2x ≤11,x ∈N *,y ∈N *,则z =10x+10y 的最大值是( ) A .80 B .85 C .90 D .953.已知实数x ,y 满足⎩⎪⎨⎪⎧y ≤1,x ≤1,x +y ≥1,则z =x 2+y 2的最小值为________.一、选择题1.若点(x, y )位于曲线y =|x |与y =2所围成的封闭区域, 则2x -y 的最小值为()A .-6B .-2C .0D .22.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y -4≤0,x -3y +4≤0,则目标函数z =3x -y 的最大值为( )A .-4B .0 C.43D .43.实数x ,y 满足⎩⎪⎨⎪⎧x ≥1,y ≥0,x -y ≥0,则z =y -1x 的取值范围是( )A .[-1,0]B .(-∞,0]C .[-1,+∞)D .[-1,1)4.若满足条件⎩⎪⎨⎪⎧x -y ≥0,x +y -2≤0,y ≥a 的整点(x ,y )(整点是指横、纵坐标都是整数的点)恰有9个,则整数a 的值为( )A .-3B .-2C .-1D .05.已知x ,y 满足⎩⎪⎨⎪⎧x ≥1,x +y ≤4,x +by +c ≤0,目标函数z=2x +y 的最大值为7,最小值为1,则b ,c 的值分别为( )A .-1,4B .-1,-3C .-2,-1D .-1,-26.已知x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥5,x -y +5≥0,x ≤3,使z=x +ay (a >0)取得最小值的最优解有无数个,则a 的值为( )A .-3B .3C .-1D .1二、填空题7.若x ,y 满足约束条件⎩⎪⎨⎪⎧x ≤2,y ≤2,x +y ≥2,则z =x+2y 的取值范围是________.8.已知-1≤x +y ≤4且2≤x -y ≤3,则z =2x -3y 的取值范围是________(答案用区间表示). 9.已知平面直角坐标系xOy 上的区域D 由不等式组⎩⎪⎨⎪⎧0≤x ≤2,y ≤2,x ≤2y 给定.若M (x ,y )为D 上的动点,点A 的坐标为(2,1),则z =OM →·OA →的最大值为________.10.满足|x |+|y |≤2的点(x ,y )中整点(横纵坐标都是整数)有________个.11.设实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -y +2≥0,2x -y -5≤0,x +y -4≥0,则z =|x +2y -4|的最大值为________. 三、解答题12.已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -4y ≤-3,3x +5y ≤25,x ≥1,目标函数z =2x -y ,求z 的最大值和最小值.13.设不等式组⎩⎪⎨⎪⎧x +y -11≥0,3x -y +3≥0,5x -3y +9≤0表示的平面区域为D .若指数函数y =a x 的图象上存在区域D 上的点,求a 的取值范围.14.某家具厂有方木料90 m3,五合板600 m2,准备加工成书桌和书橱出售.已知生产每张书桌需要方木料0.1 m3,五合板2 m2,生产每个书橱需要方木料0.2 m3,五合板1 m2,出售一张方桌可获利润80元,出售一个书橱可获利润120元.(1)如果只安排生产书桌,可获利润多少?(2)如果只安排生产书橱,可获利润多少?(3)怎样安排生产可使所得利润最大?当堂检测答案1.答案 B解析如图,当y=2x经过且只经过x+y-3=0和x=m的交点时,m取到最大值,此时,即(m,2m)在直线x +y-3=0上,则m=1.2.答案 C解析该不等式组表示的平面区域为如图所示的阴影部分.由于x ,y ∈N *,计算区域内与⎝⎛⎭⎪⎪⎫112,92最近的点为(5,4),故当x =5,y =4时,z 取得最大值为90.3.答案 12解析实数x ,y 满足的可行域如图中阴影部分所示,则z 的最小值为原点到直线AB 的距离的平方,故z min =⎝ ⎛⎭⎪⎫122=12.课时精练答案一、选择题1.答案 A解析画出可行域,如图所示,解得A(-2,2),设z=2x-y,把z=2x-y变形为y=2x-z,则直线经过点A时z取得最小值;所以z min=2×(-2)-2=-6,故选A.2.答案 D解析作出可行域,如图所示.联立⎩⎨⎧ x +y -4=0,x -3y +4=0,解得⎩⎨⎧x =2,y =2.当目标函数z =3x -y 移到(2,2)时,z =3x -y 有最大值4. 3.答案 D解析 作出可行域,如图所示,y -1x的几何意义是点(x ,y )与点(0,1)连线l 的斜率,当直线l 过B (1,0)时k l 最小,最小为-1.又直线l 不能与直线x -y =0平行,∴k l <1.综上,k ∈[-1,1).4.答案 C解析不等式组所表示的平面区域如图阴影部分所示,当a=0时,只有4个整点(1,1),(0,0),(1,0),(2,0).当a=-1时,正好增加(-1,-1),(0,-1),(1,-1),(2,-1),(3,-1)5个整点.故选C.5.答案 D解析由题意知,直线x+by+c=0经过直线2x +y=7与直线x+y=4的交点,且经过直线2x +y=1和直线x=1的交点,即经过点(3,1)和点(1,-1),∴⎩⎨⎧ 3+b +c =0,1-b +c =0,解得⎩⎨⎧b =-1,c =-2.6.答案 D解析 如图,作出可行域,作直线l :x +ay =0,要使目标函数z =x +ay (a >0)取得最小值的最优解有无数个,则将l 向右上方平移后与直线x +y =5重合,故a =1,选D.二、填空题 7.答案 [2,6]解析 如图,作出可行域,作直线l :x +2y =0,将l 向右上方平移,过点A (2,0)时,有最小值2,过点B (2,2)时,有最大值6,故z 的取值范围为[2,6].8.答案 [3,8] 解析 作出不等式组⎩⎨⎧-1≤x +y ≤4,2≤x -y ≤3表示的可行域,如图中阴影部分所示.在可行域内平移直线2x -3y =0,当直线经过x -y =2与x +y =4的交点A (3,1)时,目标函数有最小值z min =2×3-3×1=3;当直线经过x +y =-1与x -y =3的交点B (1,-2)时,目标函数有最大值z max =2×1+3×2=8.所以z ∈[3,8]. 9.答案 4解析 由线性约束条件⎩⎪⎨⎪⎧0≤x ≤2,y ≤2,x ≤2y画出可行域如图中阴影部分所示,目标函数z =OM →·OA →=2x +y ,将其化为y =-2x +z ,结合图形可知,目标函数的图象过点(2,2)时,z 最大,将点(2,2)代入z =2x +y ,得z 的最大值为4.10.答案13解析 |x |+|y |≤2可化为⎩⎪⎨⎪⎧x +y ≤2 (x ≥0,y ≥0),x -y ≤2 (x ≥0,y <0),-x +y ≤2 (x <0,y ≥0),-x -y ≤2 (x <0,y <0),作出可行域为如图正方形内部(包括边界),容易得到整点个数为13个. 11.答案 21解析 作出可行域(如图),即△ABC 所围区域(包括边界),其顶点为A (1,3),B (7,9),C(3,1)方法一∵可行域内的点都在直线x+2y-4=0上方,∴x+2y-4>0,则目标函数等价于z=x+2y-4,易得当直线z=x+2y-4在点B(7,9)处,目标函数取得最大值z max=21.方法二z=|x+2y-4|=|x+2y-4|5·5,令P(x,y)为可行域内一动点,定直线x+2y-4=0,则z=5d,其中d为P(x,y)到直线x+2y-4=0的距离.由图可知,区域内的点B与直线的距离最大,故d的最大值为|7+2×9-4|5=215.故目标函数z max=215·5=21.三、解答题12.解z=2x-y可化为y=2x-z,z的几何意义是直线在y轴上的截距的相反数,故当z取得最大值和最小值时,应是直线在y轴上分别取得最小和最大截距的时候.作一组与l0:2x-y=0平行的直线系l,经上下平移,可得:当l移动到l1,即经过点A(5,2)时,z max=2×5-2=8.当l移动到l2,即过点C(1,4.4)时,z min=2×1-4.4=-2.4.13.解先画出可行域,如图所示,y=a x必须过图中阴影部分或其边界.∵A(2,9),∴9=a2,∴a=3.∵a>1,∴1<a≤3.14.解由题意可画表格如下:(1)设只生产书桌x张,可获得利润z元,则⎩⎪⎨⎪⎧0.1x ≤90,2x ≤600,z =80x ,x ≥0⇒⎩⎪⎨⎪⎧x ≤900,x ≤300,x ≥0⇒0≤x ≤300. 所以当x =300时,z max =80×300=24 000(元), 即如果只安排生产书桌,最多可生产300张书桌,获得利润24 000元.(2)设只生产书橱y 个,可获得利润z 元,则⎩⎪⎨⎪⎧0.2y ≤90,1·y ≤600,z =120y ,y ≥0⇒⎩⎪⎨⎪⎧y ≤450,y ≤600,y ≥0⇒0≤y ≤450. 所以当y =450时,z max =120×450=54 000(元), 即如果只安排生产书橱,最多可生产450个书橱,获得利润54 000元.(3)设生产书桌x 张,书橱y 个,利润总额为z 元,则⎩⎪⎨⎪⎧0.1x +0.2y ≤90,2x +y ≤600,x ≥0,y ≥0⇒⎩⎪⎨⎪⎧x +2y ≤900,2x +y ≤600,x ≥0,y ≥0.z =80x +120y .在平面直角坐标系内作出上面不等式组所表示的平面区域,即可行域(如图).作直线l :80x +120y =0,即直线l :2x +3y =0. 把直线l 向右上方平移至l 1的位置时,直线经过可行域上的点M ,此时z =80x +120y 取得最大值.由⎩⎨⎧x +2y =900,2x +y =600,解得,点M 的坐标为(100,400).所以当x=100,y=400时,z max=80×100+120×400=56 000(元).因此,生产书桌100张、书橱400个,可使所得利润最大.。

借助目标函数的几何意义解线性规划问题

借助目标函数的几何意义解线性规划问题

借助目标函数的几何意义解线性规划问题
线性规划问题是企业决策分析中常见的问题,它利用目标函数的几何意义来求解,目标函数的几何意义就是通过特定的函数曲线使得所求的最优解能够达到的最佳的位置及形状,以达到实现优化的最大化或者最小化的目的。

下面以做公司生产原料决策为例,讲解目标函数几何意义。

企业要求以X1和X2为两种原料采购,采购成本分别为1元和2元,通过原材料加工生产制成品,售价为3元每台。

线性规划问题就是在一定的条件下,如何选择X1和X2的采购量,用更少的采购成本来达到最高的利润。

假设有约束条件,比如最多只能采购3个X1和2个X2,那么,目标函数的几何意义表示的是把X1和X2的采购量作为变量,利润作为函数的函数曲线,在X1和X2的采购量满足约束条件的前提下,把曲线微调,把利润最大化,称为最佳曲线。

因此,结合目标函数几何意义,最终企业可以从曲线最高点处,获得最优原材料采购量,比如最高点处极大值为9,则最优解是,X1=3,X2=2,则最高利润为27元。

线性规划问题可以借助目标函数的几何意义来解决,也就是说,解决线性规划问题的问主要就是把函数曲线的极大值调整到可以实现最大化或最小化的结果位置。

从而可以有效的获得最优解。

线性目标函数问题

线性目标函数问题

线性目标函数问题Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT课题 线性规划一、基础知识 1、若点()2,t -在直线2360x y -+=的下方区域,则实数t 的取值范围是2、图中的平面区域(阴影部分)用不等式组表示为3、已知实数x y 、满足2203x y x y y +⎧⎪-⎨⎪⎩≥≤≤≤,则2z x y =-的最大值是______.5、已知实数,x y 满足不等式组001x y x y ≥⎧⎪≥⎨⎪+≤⎩,则2222x y x y +--的最小值为例题巩固线性目标函数问题当目标函数是线性关系式如z ax by c =++(0b ≠)时,可把目标函数变形为a z c y xb b -=-+,则zc b-可看作在y 在轴上的截距,然后平移直线法是解决此类问题的常用方法,通过比较目标函数与线性约束条件直线的斜率来寻找最优解.一般步骤如下:1.做出可行域;2.平移目标函数的直线系,根据斜率和截距,求出最优解.8、设,2,,2,x y x y z y x y -≥=<⎧⎨⎩若-2≤x ≤2,-2≤y ≤2,则z 的最小值为 ▲ 二, 非线性目标函数问题的解法当目标函数时非线性函数时,一般要借助目标函数的几何意义,然后根据其几何意义,数形结合,来求其最优解。

近年来,在高考中出现了求目标函数是非线性函数的范围问题.这些问题主要考察的是等价转化思想和数形结合思想,出题形式越来越灵活,对考生的能力要求越来越高.常见的有以下几种:1.比值问题当目标函数形如y a z x b -=-时,可把z 看作是动点(,)P x y 与定点(,)Q b a 连线的斜率,这样目标函数的最值就转化为PQ 连线斜率的最值。

2.距离问题当目标函数形如22()()z x a y b =-+-时,可把z 看作是动点(,)P x y 与定点(,)Q a b 距离的平方,这样目标函数的最值就转化为PQ 距离平方的最值。

线性规划问题的求解算法和应用

线性规划问题的求解算法和应用

线性规划问题的求解算法和应用线性规划是一种常见的数学优化问题,求解线性规划问题具有广泛的应用。

本文将对线性规划相关算法进行介绍,并讨论线性规划在实际问题中的应用。

一、线性规划基本概念线性规划是指在一定约束条件下,优化一个线性目标函数的问题。

线性规划问题的一般形式如下:\begin{equation}\begin{aligned} \max/min & \quadc_{1}x_{1}+c_{2}x_{2}+...c_{n}x_{n} \\ \text{s.t.} & \quada_{11}x_{1}+a_{12}x_{2}+...a_{1n}x_{n}\leq b_{1} \\ & \quada_{21}x_{1}+a_{22}x_{2}+...a_{2n}x_{n}\leq b_{2} \\ & \quad ... \\ & \quad a_{m1}x_{1}+a_{m2}x_{2}+...a_{mn}x_{n}\leq b_{m} \\ & \quad x_{i}\geq 0(i=1,2,...,n) \end{aligned}\end{equation}其中,$c_{i}$是目标函数的系数,$a_{ij}$是约束条件的系数,$b_{i}$是约束条件的右端常数,$x_{i}$是决策变量。

线性规划的基本概念包括可行解、最优解、最优值等。

可行解是指满足约束条件的解。

最优解是指目标函数取得最优值时的决策变量取值。

最优值是指目标函数在可行解集合中取得的最大或最小值。

二、线性规划的求解方法线性规划的求解方法主要分为两种:单纯形法和内点法。

下面对这两种方法进行简要介绍。

1. 单纯形法单纯形法是目前解决线性规划问题的最主要方法。

其基本思想是通过不断地在可行解集合内移动,最终找到最优解。

它的具体步骤是:选择一个基本可行解作为起始点,然后通过寻找相邻可行解的方式来不断移动,直至找到最优解。

线性规划中的目标函数

线性规划中的目标函数

线性规划中的目标函数。

线性规划是一种在组合优化中广泛应用的解决方案。

它是使用数学技术来解决这类问题时的首要工具,通过判断和解决系统问题,使系统能够获得最优化的效果。

简单来说,线性规划问题涉及将目标函数最大化或最小化,而且必须满足所有的约束条件。

线性规划的目标函数是求解优化问题的重要组成部分。

它用来表示被优化的总体行为,即任务的目的或受限环境的要求,多数线性规划问题的目标是要最大化或最小化函数值。

典型的目标函数可以定义为最小化求解变量在约束条件下的加权和,即最小化某一函数的结果,以实现最优效果。

最小化目标函数的目的是求出一个最优解。

实际上,它定义了优化问题的目标,其中包括最小或最大某种效果的实现。

它的设计可以非常复杂,因为它往往都有许多限制条件和变量。

不同的线性规划问题可以有不同的目标函数,其中可以明确表达出问题的要求和限制条件。

这些不同的目标函数都是为了获得最优解,即实现最小化或最大化某种特定效果而设计。

无论问题复杂与否,目标函数都是最优解的核心,所以通常会加以仔细考虑,以便最终获得较为满意的结果。

线性目标函数

线性目标函数

答:截钢板的方法有两种:第一张钢板截3张,
第二张钢板截9张;或第一张钢板截4张,第二
张钢板截8张,可以得所需钢板的规格。
解法 2:若 z=2x-y 的最大值为 2,则此时目标函数为 y=2x -2,直线 y=2x-2 与 x-2y+2=0 和 x+y=0 分别交于 A(2,2), B(2/3,-2/3),mx-y=0 经过其中一点,所以 m=1 或 m=-1,当 m =-1 时,经检验不符合题意,故 m=1
任何一个满足 不等式组的 (x,y)
可行解
线性规 划问题
可行域
所有的
2、线性规划的有关概念:
①线性约束条件:在上述问题中,不等式组是
一组变量x、y的约束条件,这组约束条件都是关 于x、y的一次不等式,故又称线性约束条件. ②线性目标函数: 关于x、y的一次式z=2x+y是欲达到最大值或最 小值所涉及的变量x、y的解析式,叫线性目标函 数.
今需要A、B、C三种规格的成品分别为15、
18、27块,问各截这两种钢板多少张可得所
需三种规格成品,且使所用钢板张数最小。
解:设需截第一种钢板 x张,第二种钢板 y张, 2 x + y 15 , , x + 2 y 18 则 x + 3 y 27, x N *, * y N .
③线性规划问题:
一般地,求线性目标函数在线性约束条件下的
最大值或最小值的问题,统称为线性规划问题. ④可行解、可行域和最优解: 满足线性约束条件的解(x,y)叫可行解. 由所有可行解组成的集合叫做可行域. 使目标函数取得最大或最小值的可行解叫线性 规划问题的最优解.
解线性规划问题的步骤:
(1)画:画出线性约束条件所表示的可行域; (2)移:在线性目标函数所表示的一组平行线中, 利用平移的方法找出与可行域有公共点 且纵截距最大或最小的直线; (3)求:通过解方程组求出最优解; (4)答:回答问题的答案.

线性规划中目标函数的几种类型

线性规划中目标函数的几种类型

乙— s in x
则原函数可看成 由函数
y=
/ 4 、 . 。,_
一i t十丁少十乙Tw
t = 2- sinx复合而成,
': sinx E 〔一1,1] ,…t= 2一sinx E [ 1,3] ,结 合图 2 可以看出当 t = 2 时,yma二二一2,当t= 1
时,y二一3,当 t = 3 时,y =
以上 4 种 目标 函数类型的处理方法对于限 制条件为非一次不等式 时 ,原则上也是可行 的 , 只要能画出(x , y) 满足的可行域.
求值域
护 一4x + 5
例 5 求函数 y = log!' x 一 2 的值域 .
解:原函数可以变形为 y =
log,
护 一4x +
x 一2
5
(x 一2) 2+ 1
. 二, _ 、 . 1 ,
= logy, x 一 2
109 2 LCx 一 G) 十 丁一一7 j , J— 乙
则原函 可以看成由 y = 1og2 t 与 t = u十
求 z = Ix + 2y- 4 1的最大值.
解 :先 画 出满足 条
件的可行域,如图 4 阴
,理
况分、节岭
少.洲 训么
影部 分. 将 目标 函数
,, ,
黝一倒
z= Ix + 2y- 4 1转化为
z= 万 · }x + 2y- 4 }
12+ 22
问题 化归 为求 可行 域
图4
内的点(x ,y) 到直线 x + 2y - 4 = 0 距离者倍的 最大值,观察知 c 点到直线x + 2y - 4= 0 距离
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题 线性规划
一、基础知识
1、若点()2,t -在直线2360x y -+=的下方区域,则实数t 的取值X
围是
2、图中的平面区域(阴影部分)用不等式组表示为
3、已知实数x y 、满足2203x y x y y +⎧⎪
-⎨⎪⎩
≥≤≤≤,则2z x y =-的最大值是______.
5、已知实数,x y 满足不等式组001x y x y ≥⎧⎪
≥⎨⎪+≤⎩
,则2222x y x y +--的最小值为
例题巩固
线性目标函数问题
当目标函数是线性关系式如z ax by c =++(0b ≠)时,可把目标函数变形为
a z c y x
b b -=-+,则z
c b
-可看作在y 在轴上的截距,然后平移直线法是解决此类问题
的常用方法,通过比较目标函数与线性约束条件直线的斜率来寻找最优解.一般步骤如下:
1.做出可行域;
2.平移目标函数的直线系,根据斜率和截距,求出最优解.
8、设,2,
,
2,x y x y z y x y -≥=<⎧⎨⎩ 若-2≤x ≤2,-2≤y ≤2,则z
的最小值为 ▲
二, 非线性目标函数问题的解法
当目标函数时非线性函数时,一般要借助目标函数的几何意义,然后根据其几何意义,数形结合,来求其最优解。

近年来,在高考中出现了求目标函数是非线性函数的X 围问题.这些问题主要考察的是等价转化思想和数形结合思想,出题形式越来越灵活,对考生的能力要求越来越高.常见的有以下几种: 1. 比值问题
当目标函数形如y a
z x b
-=
-时,可把z 看作是动点(,)P x y 与定点(,)Q b a 连线的斜率,这样目标函数的最值就转化为PQ 连线斜率的最值。

2.距离问题
当目标函数形如2
2
()()z x a y b =-+-时,可把z 看作是动点(,)P x y 与定点(,)Q a b 距离的平方,这样目标函数的最值就转化为PQ 距离平方的最值。

3.截距问题
例4 不等式组x+y 00x y x a ≥⎧⎪-≥⎨⎪≤⎩
表示的平面区域面积为81,则2
x y +的最小值为_____
解析 令2
z x y =+,则此式变形为2
y x z =-+,z 可看作是动 抛物线2
y x z =-+在y 轴上的截距,当此抛物线与y x =-相切 时,z 最小,故答案为14
-
4.向量问题
已知平面直角坐标系xoy 上的区域D 由不等式组0222x y x y
⎧≤≤⎪
≤⎨⎪
≤⎩给定。

若(,)M x y 为D 上的
动点,点A 的坐标为(
)
2,1,则z OM OA =•的最大值为
线性表示
例1 设等差数列{n a }的前n 项和为S n ,若1≤a 5≤4,2≤a 6≤3,则S 6的取值X 围是 .
教师导言:(1)如何解的(预期回答:线性规化)?
(2)能否由两式直接“加工”而得?—— 线性表示更好:S 6 = x a 5 + y a 6 ,简记:③ = ①×x + ②×y .
(3)(类比)设实数x ,y 满足2
38xy ≤≤,249x y ≤≤,则34x y
的最大值是 .
(4)会求4
5x y
的取值X 围吗?(简记:③ = ①x ②y ,取对数,两类问题一样!)
检测:设等差数列{n a }的前n 项和为S n ,若1≤a 5≤4,2≤a 6≤3,则a 7的取值X 围是 .(对某学校抽24人,有9人不对,另一校抽39人,15人不对).
三,
线性变换问题
例6 在平面直角坐标系x O y 中,已知平面区域A ={(x ,y )|x +y ≤1,且x ≥0,y ≥0},则平面区域B ={(x +y ,x -y )|(x ,y )∈A }的面积为 .
解析 令x +y =u ,x -y =v ,则x =u +v 2,y =u -v
2.
由x +y ≤1,x ≥0,y ≥0得
u ≤1,u +v ≥0,u -v ≥0.
因此,平面区域B 的图形如图.其面积为
S =1
2
×2×1=1.
五,
线性规划的逆向问题
例8 给出平面区域如图所示.若当且仅当x =23,y =4
5
时,目标函数z =ax -y 取最小值,则实数a 的取值X 围是 .
解析 当直线y =ax -z (a <0)过点(23, 4
5
),且不与直线AC ,BC 重合时,-z 取得最
大值,从而z 取得最小值.
k AC =4
5
23-1=- 125,k BC =45-123
=- 3
10.
所以,实数a 的取值X 围是(-
125,- 3
10
). 8. 若x ,y 满足不等式组⎩⎪⎨⎪

x -y +5≥0,x ≤3,
x +y -k ≥0,且z =2x +4y 的最小值为-6,则k 的值为
________.
13.不等式组220x y x y y x y a
-0⎧⎪+⎪
⎨⎪⎪+⎩≥,
≤,≥,≤表示的平面区域是一个三角形,则
a 的取值X 围是 01a <≤或
4
3
a ≥
11.(2007XX )设m 为实数,若22
250(,)
30{(,)|25}0x y x y x x y x y mx y ⎧⎫
-+≥⎧⎪
⎪⎪-≥⊆+≤⎨⎨⎬⎪⎪⎪+≥⎩⎩

,则m 的取值X 围是_____________。

答案 0≤m ≤
12(2007XX ).设集合{()||2|0}A x y y x x =-,≥,≥,{()|}B x y y x b =-+,≤,
A B ≠Φ,
(1)b 的取值X 围是 ;
(2)若()x y A
B ∈,,且2x y +的最大值为9,则b 的值是 .
答案 (1)[1
)+∞,(2)9
2
四 ,。

相关文档
最新文档