0.均值不等式的常见题型
(完整版)均值不等式常考题型

均值不等式及其应用一.均值不等式1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”) (3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x +≥ (当且仅当1x =时取“=”);若0x <,则12x x+≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则22-2a b a b a bb a b a b a+≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三相等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1x解:(1)y =3x 2+12x2 ≥23x 2·12x2 = 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x≥2x ·1x=2; 当x <0时, y =x +1x = -(- x -1x )≤-2x ·1x=-2 ∴值域为(-∞,-2]∪[2,+∞)解题技巧: 技巧一:凑项 例1:已知54x <,求函数14245y x x =-+-的最大值。
均值不等式练习题目总结

均值不等式练习题目总结
本文总结了一些常见的均值不等式练题目。
均值不等式是数学中常用的工具,用于比较一组数的大小关系。
在解题过程中,我们可以使用不等式的性质和特点来帮助求解。
一、算术平均值和几何平均值
1. 题目:已知两个正数a和b,证明:(a + b) / 2 ≥ √(ab)
解析:这是算术平均值和几何平均值不等式的基本形式,根据不等式的性质,我们可以将等式两边平方,然后进行变形和推导,最终得到证明结果。
2. 题目:已知n个正数a1, a2, ..., an,证明:(a1 + a2 + ... + an) / n ≥ √(a1 * a2 * ... * an)
解析:这是n个正数的算术平均值和几何平均值不等式,我们可以使用数学归纳法来证明。
先证明n=2的情况,然后假设n=k成立,再推导n=k+1的情况,最终得到证明结果。
二、均值不等式的应用
1. 题目:已知正数a,b,证明:(a + b)² / 4 ≥ ab
解析:这是均值不等式的应用题,我们可以使用算术平均值和几何平均值不等式来证明。
根据不等式的性质和变形,我们可以将等式转化为相等的形式进行比较,最终得到证明结果。
2. 题目:已知正数a,b,证明:(a + b)³ / 8 ≥ a²b
解析:这是均值不等式的应用题,同样使用算术平均值和几何平均值不等式来证明。
根据不等式的性质和变形,我们可以将等式转化为相等的形式进行比较,最终得到证明结果。
以上题目只是一部分均值不等式的练题目,通过练以上题目,可以加深对均值不等式的理解和运用能力,为解决更复杂的数学问题奠定基础。
均值不等式应用全面总结+题型总结(含详细解析)

均值不等式应用全面总结+题型总结(含详细解析)一.均值不等式1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”) (3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x +≥ (当且仅当1x =时取“=”);若0x <,则12x x+≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则22-2a b a b a bb a b a b a+≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”)注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用.应用一:求最值例1:求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1x解:(1)y =3x 2+12x2 ≥23x 2·12x2 = 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x≥2x ·1x=2; 当x <0时, y =x +1x = -(- x -1x )≤-2x ·1x=-2 ∴值域为(-∞,-2]∪[2,+∞)解题技巧: 技巧一:凑项 例1:已知54x <,求函数14245y x x =-+-的最大值。
均值不等式常见题型版

均值不等式一、根本知识梳理1. 算术平均值:如果a﹑ b∈ R ,那么叫做这两个正数的算术平均值 .+2. 几何平均值:如果a﹑ b∈ R+,那么叫做这两个正数的几何平均值3. 重要不等式:如果a﹑ b∈ R,那么 a2 +b2≥( 当且仅当 a=b 时,取“ =〞 ) 均值定理:如果a﹑ b∈ R ,那么 a b ≥( 当且仅当 a=b 时,取“ =〞)+2均值定理可表达为:4.变式变形:1 ab a2 b2;22a2b; 23 ba ab 0 ;a ba 2b;4 25 2 a2 b2 .5.利用均值不等式求最值,“和定,积最大;积定,和最小〞,即两个正数的和为定值,那么可求其积的最大值;积为定值,那么可求其和的最小值。
注意三个条件:“一正,二定,三相等〞即:〔 1〕各项或各因式非负;〔 2〕和或积为定值;〔3〕各项或各因式都能取得相等的值。
6. 假设屡次用均值不等式求最值,必须保持每次取“=〞号的一致性。
有时为了到达利用均值不等式的条件,需要经过配凑﹑裂项﹑转化﹑别离常数等变形手段,创设一个应用均值不等式的情景。
二、常见题型:1、分式函数求最值,如果y f ( x) 可表示为 y mg(x)A B的形式,且g (x) 在定g(x)义域内恒正或恒负, A 0, m 0, 那么可运用均值不等式来求最值。
例:求函数y ax 2 x 1 (x1 0)的最小值。
x 1 且 aax 2 x 1 1 ax xax (1 a) a解: yx 1 axx 1 1xa(x 1)a1 2a 2a 1 2a 1 x 1a当a( x 1) 即 x=0 时等号成立,ymin 1x 112、题在给出和为定值,求和的最值时,一般情况都要对所求式子进行变形,用条件进行代换,变形之后再利用均值不等式进行求最值。
例: a 0, b0,且19 1 ,求 a b 的最小值。
a b解法一: a b 1 9 b 9a 10 2 9 16a b思路二:由191 变形可得 (a 1)(b 9) 9,a 1,b 9, 然后将 a b 变形。
均值不等式的应用(习题+答案)

均值不等式的应用(习题+答案)均值不等式应用一.均值不等式1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则abba ≥+2(2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”) (3)若*,R b a ∈,则22⎪⎭⎫⎝⎛+≤b a ab (当且仅当b a =时取“=”)3.若0x >,则12x x+≥ (当且仅当1x =时取“=”);若0x <,则12x x+≤- (当且仅当1x =-时取“=”)若0x ≠,则11122-2x x x x x x+≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+abb a (当且仅当b a =时取“=”) 若0ab ≠,则22-2a b a b a bb a b a b a+≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”)注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.(2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域(1)y =3x 2+12x2 (2)y =x +1x解:(1)y =3x 2+12x2 ≥23x 2·12x2 = 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x≥2x ·1x=2;当x <0时, y =x +1x = -(- x -1x)≤-2x ·1x=-2∴值域为(-∞,-2]∪[2,+∞)解题技巧: 技巧一:凑项例1:已知54x <,求函数14245y x x =-+-的最大值。
均值不等式(基本不等式+知识点+例题+习题)pdf版

t
t
t
答案:[2, )
例 2 求函数 y x2 3 的最小值. x2 1
解析:令 x2 1 t,t 1,则 x2 t2 1 ,带入原式化简得 y t 2 2 2 , t
当 t 2 即 t 2 时等号成立. t
答案: 2 2
例 3 已知 x 1,求 f (x) x2 x 1 的最小值. 2x 1
2
2
2 | 10
[不等式] 练习答案:
1
2
38
对勾函数:
形如 f (x) ax b (ab 0) 的函数. x
利用对勾函数性质可解决均值不等式等号不成立时的情况.
性质
a 0,b 0
y
a 0,b 0 y
图像
2 ab
Obxab a NhomakorabeaO
x
-2 ab
定义域
值域 奇偶性 渐近线
{x | x 0}
2
题型四:分离换元法求最值(二次比一次或一次比二次时用)
例 1 求函数 y x2 3 (x 1) 的值域. x 1 2
解析:令 x 1 t,t 3 ,则 x t 1,带入原式得到 y (t 1)2 3 t 4 2 ,
2
t
t
t 4 2 2 t 4 2 2 ,当 t 4 即 t 2 时等号成立.
解析:构造对勾函数 y 3x 12 ,由函数性质可知 x (3, ) 时函数单调递减, x
故
y
3x
12 x
y(3)
13
.
答案: (, 13]
练习 1 练习 2
已知 x 0 ,求函数 y x 4 的最小值. x4
已知 x 3,求函数 y 2x 3 的值域. 2x
均值不等式的题型和方法

均值不等式的题型和方法
- 题型一:配凑定和。
通过因式分解、纳入根号内、升幂等于段等手段,变为“积”的形式,然后以均值不等式的取等条件为出发点,均分系数,配凑定和,求积的最大值。
- 题型二:配凑定积。
通过裂项、分子常数化、有理代换等手段,变为“和”的形式,然后以均值不等式的取等条件为出发点,配项凑定积,创造运用均值不等式的条件。
- 题型三:配凑常数降幂。
- 题型四:配凑常数升幂。
- 题型五:约分配凑。
通过“1”变换或添项进行配凑,使分母能约去或分子能降次。
- 题型六:引入参数配凑。
某些复杂的问题难以观察出匹配的系数,但利用“等”和“定”的条件,建立方程组,解得待定系数,可开辟解题捷径。
- 题型七:引入对偶式配凑。
根据已知不等式的结构,给不等式的一端匹配一个与之对偶的式子,然后一起参与运算,创造运用均值不等式的条件。
- 题型八:确立主元配凑。
在解答多元问题时,如果不分主次来研究,问题很难解决;如果根据具体条件和解题需要,确立主元,减少变元个数,恰当配凑,可创造性地使用均值不等式。
高中数学公式完全总结归纳(均值不等式)及常见题型

均值不等式归纳总结1. (1)若R b a ∈,,则ab b a 222≥+(2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+ (当且仅当ba =时取“=”)(3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”)3.若0x >,则12x x +≥ (当且仅当1x =时取“=”)若0x <,则12x x+≤- (当且仅当1x =-时取“=”)若0x ≠,则11122-2x x x x x x+≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若0>ab ,则2≥+ab ba (当且仅当b a =时取“=”)若0ab ≠,则22-2a b a b a b bababa+≥+≥+≤即或 (当且仅当b a =时取“=”)5.若R b a ∈,,则2)2(222b ab a +≤+(当且仅当b a =时取“=”)『ps.(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.(2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用』应用一:求最值例1:求下列函数的值域(1)y=3x 2+12x 2(2)y=x+1x解:(1)y=3x 2+12x 2≥23x 2·12x 2= 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x ≥2x ·1x=2; 当x <0时, y =x +1x = -(- x -1x )≤-2x ·1x=-2 ∴值域为(-∞,-2]∪[2,+∞)解题技巧技巧一:凑项例 已知54x <,求函数14245y x x =-+-的最大值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
均值不等式的常见题型 一基本习题
2、已知正数a,b 满足ab=4,那么2a+3b 的最小值为() A10B12C43D46
3、已知a >0,b >0,a+b=1则
b
a 11+的取值范围是() A(2,+∞)B[2,+∞)C(4,+∞)D[4,+∞) 4、设x,y 为正数,(x+y)(
+x 1y
4)的最小值为() A 6B 9C 12D 15 5、设+∈R b a ,,则下列不等式中不成立的是() A 4)11)((≥++b a b a B ab ab
b a 22
2≥+C 21≥+ab ab D ab b a ab ≤+2 6、设0,0>>b a ,则下列不等式中成立的是() A 221≥++ab
b a B 4)11)((≥++b a b a C b a ab b a +≥+22D ab b a ab >+2 8、已知下列不等式:①)(233+∈>+R x x x ;②),(322355+∈+≥+R b a b a b a b a ;③)1(222--≥+b a b a .其中正确的个数是()
A0个B1个C2个D3个
9、已知1,01a b ><<则log log a b b a +的取值范围是()
A (2,)+∞
B [2,)+∞
C (,2)-∞-
D (,2]-∞-
二有关范围问题
1、若正数b a ,满足3++=b a ab ,则ab 的取值范围是.
以及b a +的取值范围.
2、已知x >0,y >0且x+2y+xy=30,求xy 的最大值.
3、已知0,0x y >>且211x y
+=,若222x y m m +>+恒成立,则实数m 的取值范围是——————————。
4、问是否存在正整数k ,使不等式
11a b b c k a c -+-≥-恒成立?如果存在,求出所有k 值;如果不存在,试说明理由。
5、较难:设0a b c >>>,则221121025()
a ac c a
b a a b ++-+-的最小值是() A .2B .4C .
.5
6、已知:a>0,b>0,且4a+b=30,求b a 11+的最小值 三典型例题分析
1、若+∈R b a ,且1=+b a ,求证:22
121≤+++b a 2、是否存在常数c ,使得不等式
y
x y y x x c y x y y x x +++≤≤+++2222对任意正数y x ,恒成立,试证明你的结论.
注:考虑y x =的特殊情况. 3、已知z y x ,,是互不相等的正数且1=++z y x ,求证:8
1)11)(11)(11(>---z y x 4、若a>b>0,求)
(162b a b a -+的最小值 5、已知:x>0,y>0,且x+4y=1,求xy 的最大值
6、已知x>0,y>0,且14
3=+y x ,求xy 的最大值 四求函数的值域或者最值
1、已知310<<x ,求函数)31(x x y -=的最大值。