大学物理同步训练(第2版)

合集下载

大学物理(二)练习册答案

大学物理(二)练习册答案

1 大学物理(二)练习册参考解答第12章真空中的静电场一、选择题1(D),2(C),3(C),4(A),5(C),6(B),7(C),8(D),9(D),10(B),二、填空题(1). 电场强度和电势,0/q F E=,l E q W U aaò×==00d /(U 0=0). (2). ()042e /q q+,q 1、q 2、q 3、q 4 ;(3). 0,l / (2e 0);(4). s R / (2e 0) ;(5). 0 ;(6). ÷÷øöççèæ-p 00114r r qe ;(7). -2³103 V ;(8). ÷÷øöççèæ-p a br r q q 11400e (9). 0,pE sin a ;(10). ()i a x A2+-.三、计算题1. 如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度.解:设杆的左端为坐标原点O ,x 轴沿直杆方向.带电直杆的电荷线密度为l =q / L ,在x 处取一电荷元d q = l d x = q d x / L ,它在P 点的场强:()204d d x d L qE -+p =e ()204d x d L L xq -+p =e 总场强为ò+p =Lx d L x Lq E 020)(d 4-e ()d L d q +p =04e 方向沿x 轴,即杆的延长线方向.2.一个细玻璃棒被弯成半径为R 的半圆形,沿其上半部分均匀分布有电荷+Q ,沿其下半部分均匀分布有电荷-Q ,如图所示.试求圆心O 处的电场强度.解:把所有电荷都当作正电荷处理. 在q 处取微小电荷d q = l d l = 2Q d q / p 它在O 处产生场强Ldq P +Q-QROxyPLdd qx (L+d -x ) d ExOq e e d 24d d 20220RQRq E p =p =按q 角变化,将d E 分解成二个分量:分解成二个分量:q q e q d sin 2sin d d 202RQE E x p ==q q e q d cos 2cos d d 202RQE E y p -=-=对各分量分别积分,积分时考虑到一半是负电荷对各分量分别积分,积分时考虑到一半是负电荷úûùêëé-p =òòpp p q q q q e 2/2/0202d sin d sin 2R QE x =0 2022/2/0202d cos d cos 2R Q R QE y e q q q q e pp p p -=úûùêëé-p -=òò所以所以j R Q j E i E E y x202e p -=+=3. “无限长”均匀带电的半圆柱面,半径为R ,设半圆柱面沿轴线OO'单位长度上的电荷为l ,试求轴线上一点的电场强度.,试求轴线上一点的电场强度.解:设坐标系如图所示.将半圆柱面划分成许多窄条.d l 宽的窄条的电荷线密度为荷线密度为q l l l d d d p=p =l R取q 位置处的一条,它在轴线上一点产生的场强为位置处的一条,它在轴线上一点产生的场强为q e l e l d 22d d 020RR E p =p =如图所示. 它在x 、y 轴上的二个分量为:轴上的二个分量为:d E x =d E sin q , d E y =-d E cos q 对各分量分别积分对各分量分别积分 R R E x 02002d sin 2e lq q e l pp =p =ò 0d c o s 202=p -=òp q q e lRE y场强场强 i Rj E i E E y x02e lp =+=4. 实验表明,在靠近地面处有相当强的电场,电场强度E垂直于地面向下,大小约为100 N/C ;在离地面1.5 km 高的地方,E也是垂直于地面向下的,大小约为25 N/C . (1) 假设地面上各处E都是垂直于地面向下,试计算从地面到此高度大气中电荷的平均体密度;体密度;(2) 假设地表面内电场强度为零,假设地表面内电场强度为零,且地球表面处的电场强度完全是由均匀分布在地表面且地球表面处的电场强度完全是由均匀分布在地表面的电荷产生,求地面上的电荷面密度.(已知:真空介电常量0e =8.85³10-12 C 2²N -1²m -2) d qR Oxyqd qqq d E y y d l d q R q O d E xx d EOR’O'解:(1) 设电荷的平均体密度为r ,取圆柱形高斯面如图(1)(侧面垂直底面,底面D S 平行地面)上下底面处的上下底面处的 场强分别为E 1和E 2,则通过高斯面的电场强度通量为:,则通过高斯面的电场强度通量为:òòE²S d =E 2D S -E 1D S =(E 2-E 1) D S 高斯面S 包围的电荷∑q i =h D S r由高斯定理(E 2-E 1) D S =h D S r /e∴ () E Eh121-=er =4.43³10-13 C/m 3(2) 设地面面电荷密度为s .由于电荷只分布在地表面,所以电力线终止于地面,取高斯面如图(2) 由高斯定理由高斯定理òòE ²S d =åi 01q e-E D S =SD se1∴ s=-e 0 E =-8.9³10-10 C/m 35. 一半径为R 的带电球体,其电荷体密度分布为的带电球体,其电荷体密度分布为r =Ar (r ≤R ) , r =0 (r >R ), A 为一常量.试求球体内外的场强分布.为一常量.试求球体内外的场强分布.解:在球内取半径为r 、厚为d r 的薄球壳,该壳内所包含的电荷为的薄球壳,该壳内所包含的电荷为 r r Ar V q d 4d d 2p ×==r在半径为r 的球面内包含的总电荷为的球面内包含的总电荷为 403d 4Ar r Ar dV q rV p =p ==òòr (r ≤R) 以该球面为高斯面,按高斯定理有以该球面为高斯面,按高斯定理有 0421/4e Ar r E p =p ×得到得到 ()0214/e ArE =, (r ≤R ) 方向沿径向,A >0时向外, A <0时向里.时向里.在球体外作一半径为r 的同心高斯球面,按高斯定理有的同心高斯球面,按高斯定理有0422/4e AR r E p =p ×得到得到 ()20424/rAR E e =, (r >R ) 方向沿径向,A >0时向外,A <0时向里.时向里.6. 如图所示,一厚为b 的“无限大”带电平板的“无限大”带电平板 , 其电荷体密度分布为r =kx (0≤x ≤b ),式中,式中k 为一正的常量.求:为一正的常量.求: (1) 平板外两侧任一点P 1和P 2处的电场强度大小;处的电场强度大小;(2) 平板内任一点P 处的电场强度;处的电场强度; (3) 场强为零的点在何处?场强为零的点在何处?解:解: (1) 由对称分析知,平板外两侧场强大小处处相等、方向垂直于平面且背离平面.设场强大小为E .作一柱形高斯面垂直于平面.其底面大小为S ,如图所示.,如图所示.E(2)xbP 1 P 2Px OSE 2D SE 1(1) h按高斯定理åò=×0e /d q S E S ,即,即 020002d d 12e e r e kSbx x kSxS SEb b ===òò得到得到 E = k b kb 2 / (4e 0) (板外两侧) (2) 过P 点垂直平板作一柱形高斯面,底面为S .设该处场强为E ¢,如图所示.按高斯定理有定理有()022ee k S bx d x kSSE Ex==+¢ò得到得到 ÷÷øöççèæ-=¢22220b x k E e (0≤x ≤b ) (3) E ¢=0,必须是0222=-bx , 可得2/b x =7. 一“无限大”平面,中部有一半径为R 的圆孔,设平面上均匀带电,电荷面密度为s .如图所示,试求通过小孔中心O 并与平面垂直的直线上各点的场强和电势(选O 点的电势为零).解:将题中的电荷分布看作为面密度为s 的大平面和面密度为-s 的圆盘叠加的的圆盘叠加的 结果.选x 轴垂直于平面,坐标原点O在圆盘中心,大平面在x 处产生的场强为处产生的场强为 i xx E012e σ=圆盘在该处的场强为圆盘在该处的场强为i x R x x E÷÷øöççèæ+--=2202112e σ ∴ i xR xE E E 220212+=+=e σ 该点电势为该点电势为()22222d 2xRR xR xx U x+-=+=òe se s8. 一半径为R 的“无限长”圆柱形带电体,其电荷体密度为r =Ar (r ≤R ),式中A 为常量.试求:求:(1) 圆柱体内、外各点场强大小分布;圆柱体内、外各点场强大小分布; (2) 选与圆柱轴线的距离为l (l >R ) 处为电势零点,计算圆柱体内、外各点的电势分布.解:(1) 取半径为r 、高为h 的高斯圆柱面(如图所示).面上各点场强大小为E 并垂直于柱面.则穿过该柱面的电场强度通量为:面.则穿过该柱面的电场强度通量为:xS P SE ESSEd xb E ¢sOROxPòp =×SrhE S E2d 为求高斯面内的电荷,r <R 时,取一半径为r ¢,厚d r ¢、高h 的圆筒,其电荷为的圆筒,其电荷为r r Ah V ¢¢p =d 2d 2r则包围在高斯面内的总电荷为则包围在高斯面内的总电荷为3/2d 2d 32Ahrr r Ah V rVp =¢¢p =òòr由高斯定理得由高斯定理得 ()033/22e Ahr rhE p =p 解出解出 ()023/e Ar E = (r ≤R ) r >R 时,包围在高斯面内总电荷为:时,包围在高斯面内总电荷为:3/2d 2d 32AhRrrAh VRVp=¢¢p=òòr由高斯定理由高斯定理 ()033/22e A h R r h E p =p 解出解出 ()r AR E 033/e = (r >R ) (2) 计算电势分布计算电势分布r ≤R 时 òòò×+==lRRrlrrr AR r r A r E U d 3d 3d 0320e e()Rl AR rR A ln 3903330e e +-=r >R 时 rl AR rr AR rE Ulrl rln3d 3d 033e e =×==òò9.一真空二极管,其主要构件是一个半径R 1=5³10-4 m 的圆柱形阴极A 和一个套在阴极外的半径R 2=4.5³10-3 m 的同轴圆筒形阳极B ,如图所示.阳极电势比阴极高300 300 VV ,忽略边缘效应. 求电子刚从阴极射出时所受的电场力.(基本电荷e =1.6³10-19 C) 解:与阴极同轴作半径为r (R 1<r <R 2 )的单位长度的圆柱形高斯面,设阴极上电荷线密度为l .按高斯定理有.按高斯定理有 2p rE = l / e 0 得到得到 E = l / (2p e 0r ) (R 1<r <R 2) 方向沿半径指向轴线.两极之间电势差方向沿半径指向轴线.两极之间电势差òòp -=×=-21d 2d 0R R BAB A rr r E U U el120ln 2R R elp -=得到得到()120/ln 2R R UUAB-=p e l, 所以所以 ()rR R UUE AB1/ln 12×-=在阴极表面处电子受电场力的大小为在阴极表面处电子受电场力的大小为 ()()11211/c R RR UUeReE F AB×-===4.37³10-14 N 方向沿半径指向阳极.方向沿半径指向阳极.RrhABR 2 R 1四 研讨题1. 真空中点电荷q 的静电场场强大小为的静电场场强大小为 241rq E pe=式中r 为场点离点电荷的距离.当r →0时,E →∞,这一推论显然是没有物理意义的,应如何解释?何解释?参考解答:参考解答:点电荷的场强公式仅适用于点电荷,当r →0时,任何带电体都不能视为点电荷,所以点电荷场强公式已不适用.点电荷场强公式已不适用.若仍用此式求场强E ,其结论必然是错误的.当r →0时,需要具体考虑带电体的大小和电荷分布,这样求得的E 就有确定值.就有确定值.2. 用静电场的环路定理证明电场线如图分布的电场不可能是静电场.参考解答:参考解答:证:在电场中作如图所示的扇形环路abcda .在ab 和cd 段场强方向与路径方向垂直.在bc 和da 段场强大小不相等(电力线疏密程度不同)而路径相等.因而同)而路径相等.因而d d d ¹×¢-×=×òòòc ba d l E l E l E 按静电场环路定理应有0d =×òl E , 此场不满足静电场环路定理,所以不可能是静电场.此场不满足静电场环路定理,所以不可能是静电场.3. 如果只知道电场中某点的场强,能否求出该点的电势?如果只知道电场中某点的电势,能否求出该点的场强?为什么?能否求出该点的场强?为什么?参考解答:参考解答:由电势的定义:由电势的定义: ò×=零势点场点l E U d式中E为所选场点到零势点的积分路径上各点的场强,所以,如果只知道电场中某点的场强,而不知道路径上各点的场强表达式,不能求出该点的电势。

大学物理第二版习题答案

大学物理第二版习题答案

13级应用化学(2)班物理习题详解习题精解1-1某质点的速度为j t i v 82-=,已知t=0时它经过点(3,7),则该质点的运动方程为( )A.j t i t 242-B.()()j t i t 74322+-+ C.j 8- D.不能确定解:本题答案为B.因为 dt rd v =所以 ()dt j t i r d82-=于是有()d t j t i r d t rr ⎰⎰-=0820即 j t i t r r2042-=-亦即 ()j t i t j i r 24273-=-- 故 ()()j t i t r 74322+-+=1-2 一质点在平面上作曲线运动,1t 时刻位置矢量为j i r 621+-=,2t 时刻的位置矢量为j i r 422+=,求:(1)在12t t t -=∆时间内质点的位移矢量式;(2)该段时间内位移的大小和方向;(3)在坐标图上画出21,r r及r∆。

解 (1)在12t t t -=∆时间内质点的位移矢量式为()()m j i r r r 2412-=-=∆ (2)该段时间内位移的大小 ()()m r 522422=+=∆该段时间内位移的方向与轴的夹角为 ︒-=⎪⎭⎫⎝⎛-=-6.2642tan 1α (3)坐标图上的表示如图1.1所示1-3某质点作直线运动,其运动方程为214x t t =+- ,其中x 以m 计,t 以s 计,求:(1)第3s 末质点的位置;(2)头3s 的位移大小;(3)头3s 内经过的路程。

解 (1)第3s 末质点的位置为2(3)14334()x m =+⨯-=(2)头3s 的位移大小为 ()(3)03()x x m -=(3)因为质点做反向运动是有()0v t =,所以令0dxdt=,即420,2t t s -==因此头3s 内经过的路程为 (3)(2)(2)(0)45515()x x x x m -+-=-+-=1-4 已知某质点的运动方程为22,2x t y t ==-,式中t 以s 计,x 和y 以m 计。

《大学物理学(第二版)》(李乃伯主编)第一至第五单元课后习题指导

《大学物理学(第二版)》(李乃伯主编)第一至第五单元课后习题指导

《物理学(第二版)》(李迺伯主编)第一章:过关测试第一关1.判断下列哪一种说法是正确的A.你用手关一扇门,此门可以看成质点;B.开枪后子弹在空中飞行,子弹可看成质点;C.讨论地球自转,地球可看成质点;D.一列火车在半径为800m的圆轨道上行驶,火车可看成质点。

答案:B2.下列哪一种说法是正确的A.加速度恒定不变时,物体的运动方向必定不变;B.平均速率等于平均速度的大小;C.不论加速度如何,平均速率的表达式总可以写成。

上式中为初始速率,为末了速率;D.运动物体的速率不变时,速度可以变化。

答案:D3.某质点的运动学方程为,以为单位,以为单位。

则该质点作A.匀加速直线运动,加速度为正值;B.匀加速直线运动,加速度为负值;C.变加速直线运动,加速度为正值;D.变加速直线运动,加速度为负值。

答案:D (解:速度加速度)4.质点作匀加速圆周运动,它的A.切向加速度的大小和方向都在变化;B.法向加速度的大小和方向都在变化;C.法向加速度的方向变化,大小不变;D.切向加速度的方向不变,大小变化。

答案:B5.气球正在上升,气球下系有一重物,当气球上升到离地面100 m高处,系绳突然断裂,最后重物下落到地面。

与另一物体从100 m高处自由下落到地面的运动相比,下列结论正确的是A.运动的时间相同;B.运动的路程相同;C.运动的位移相同;D.落地时的速度相同。

答案:C(解:由于重物在100 m高处有向上的初速度,先上升,到达最高点后再下落。

与物体从100 m高处自由落体到地面的运动相比,运动的时间、路程,落地时的速度均不相同,仅位移相同。

)6.用细绳系一小球,使之在竖直平面内作圆周运动,当小球运动到最高点时A.小球受到重力、绳的拉力和向心力的作用;B.小球受到重力、绳的拉力和离心力的作用;C.绳子的拉力可能为零;D.小球可能处于受力平衡状态。

答案:C(解:小球所受合力的法向分量有时称作向心力,它是“合力的分量”,不是其它物体施加的,故A不正确。

大学物理同步训练第2版第七章静电场中的导体详解

大学物理同步训练第2版第七章静电场中的导体详解

第七章 静电场中的导体和电介质一、选择题1. (★★)一个不带电的空腔导体球壳,内半径为R 。

在腔内离球心的距离为a 处(a <R )放一点电荷+q ,如图1所示。

用导线把球壳接地后,再把地线撤去。

选无穷远处为电势零点,则球心O 处的电势为(A )q 2πε0a ⁄ (B )0(C )−q 4πε0R ⁄ (D )q 4πε0⁄∙(1a ⁄−1R ⁄)答案:D分析:由静电平衡的知识可知:①当空腔导体内放入点电荷+q 时,空腔导体的内表面会带上等量异号的电荷−q ,由电荷守恒可知不带电的空腔导体的外表面带有的+q 电荷;②当球壳接地后,球壳电势变为零,故球壳外表面电量变为零。

因此接地后去掉地线,该体系的电荷分布如图所示,球壳内表面带有−q 的电量,外表面不带电。

由电势叠加原理可得球心O 处的电势为V O =q 4πε0a +∫dq 4πε0R 内=q 4πε0a +14πε0R ∫dq 内=q 4πε0(1a −1R ) 故选项D 正确。

注:式中∫dq 内=−q 为内表面的电量之和。

【补充】带电量为Q 半径为R 的球面(电荷分布无论均匀或不均匀)在球心处产生的电势为V =Q 4πε0R ⁄。

2. 三块互相平行的导体板之间的距离d 1和d 2比板间面积线度小得多,如果d 2=2d 1,外面二板用导线连接,中间板上带电。

设左右两面上电荷面密度分别为σ1和σ2,如图2所示,则σ1σ2⁄为(A )1 (B )2 (C )3 (D )4答案:B分析:【知识点】达到静电平衡的导体:①内部电场强度为E =0,表面附近电场强度垂直于导体表面,大小为E =σε0⁄,其中σ为导体表面电荷面密度;②导体是一个等势体,导体表面为等势面;③导体内部处处无净电荷,即电荷只分布在导体的表面上,电荷面密度与导体表面的曲率有关,曲率越大(越尖)电荷面密度越大。

由静电平衡的知识点①可知,中间导体板左侧电场强度为σ1ε0⁄,右侧为σ2ε0⁄;由静电平衡的知识点②可知,用导线连接起来的左右两个导体板等势,即中间导体板与左右两导体板的电势差U 相同,由U =Ed 可得σ1ε0⁄∙d 1=σ2ε0⁄∙d 2,故σ1σ2⁄=d 2d 1⁄=2,故选项B 正确。

大学物理课后习题册答案 第二版王建邦主编

大学物理课后习题册答案  第二版王建邦主编

参考答案 第一章1-1 已知质点运动学方程分量式为2x t =262y t =- (1)求轨道方程,并画出轨迹图;(2)求1t =到2t =之间的∆r ,r ∆和v ;(本题中x ,y的单位是m ,t 的单位是s ,v 的单位为1s m -⋅。

)[答案] (1)262x y =-,(2)26-i j ,0,26-i j .(1)由质点在水平方向、竖直方向的位置-时间函数关系:2x t=262y t =-消去t ,得轨道方程为262x y =-轨迹为抛物线,如题1-1图所示。

(2)将质点的位矢分量式:2x t =262y t =-代入位矢()()()t x t y t ==+r r i j ,可得质点的位置矢量22(62)t t =+-r i j 。

代入时间参量t ,得质点在某一时刻的位置r 。

由质点位移和平均速度的定义,可求得21∆=-r r r 21r r r ∆=- t∆=∆r v1-2 如图1-2所示,一足球运动员在正对球门前25.0m 处以120.0m s -⋅的初速/y率罚任意球,已知球门高为3.44m 。

若要在垂直于球门竖直平面内将足球直接踢进球门,问他应在与地面成什么角度的范围内踢出足球(足球可视为质点)?[答案] 171.1169.92θ≥≥,127.9218.89θ≥≥. 以踢球点为坐标原点取平面坐标系xOy 。

按高中物理,设斜抛小球初速度0v ,斜抛仰角0θ,写出小球水平方向、竖直方向的位置-时间函数关系:00cos x v t θ= (1)2001sin 2y v t gt θ=- (2)消去t 得足球的轨迹方程 202200tan 2cos gy x x v θθ=-依题意以25.0x m =,120.0v m s -=⋅及3.440m y ≥≥代入后,可解得 171.1169.92θ≥≥ 127.9218.89θ≥≥。

1-3 一质点在xy 平面内运动,在某一时刻它的位置矢量(45)m =-+r i j ,经5s t ∆=后,其位移(68)m ∆=-r i j 。

大学物理同步训练第2版第三章刚体定轴转动详解

大学物理同步训练第2版第三章刚体定轴转动详解

mg
3g 1 cos L 1 1 1 cos mL2 2 2 2 3 L
可知当 从 0 至 90 度的过程中,角速度从小到大。 5. (☆)如图 3 所示,A、B 为两个相同的绕着轻绳的定滑轮。A 滑 轮挂一质量为 m 的物体,B 滑轮受拉力 G,而且 G=mg。设 A、B 两 滑轮的角加速度分别为βA 和βB,不计滑轮轴的摩擦,则有 (A) A B (C) A B 答案:C 分析: (定性)由于物体 m 有向下的加速度,故作用于物体上的绳子张力小于 mg,即小于 右边绳子的张力(=mg) ,故 A 滑轮受到的力矩小于 B 滑轮,故 A B 。 (定量)设圆盘转动惯量为 I ,参考计算题第 1 题的计算过程,可得 A、B 圆盘的转动角加 速度为 (B) A B (D)开始时 A B ,以后 A B
mg TA ma mgR mgR A ; GR I B B TA R I A 2 I mR I R a A
故 A B 。 6. 一轻绳跨过一具有水平光滑轴、转动惯量为 J 的定滑轮, 绳的两端分别悬 有质量为 m1 和 m2 的物体 (m1<m2) , 如图 4 所示。 绳与轮之间无相对滑动。 若某时刻滑轮沿逆时针方向转动,则绳中的张力 (A)处处相等 (C)右边大于左边 答案:C 分析: (定性)由于重的物体 m2 最终必然下落,可知圆盘最后将做顺时针转动,因此圆盘 受到的合外力矩应为顺时针,即右边绳子的张力要大于左边绳子的张力。 (定量)参考课本例题( (★)阿特伍德机:P84,例 3-5)可得 (B)左边大于右边 (D)无法判断哪边大
A J B A
6. (☆)如图 10 所示,一静止的均匀细棒,长为 L,质量为 m1,可绕通过棒的端点且垂直 于棒长的光滑固定轴 O 在水平面内转动,转动惯量为 m1L2/3。一质量为 m、速率为 v 的子 弹在水平面内沿与棒垂直的方向射出并穿出棒的自由端,设穿过棒后子弹的速率为 v/2,则 此时棒的角速度应为 答案: 。

大学物理同步训练1-15章(第2版)-2

大学物理同步训练1-15章(第2版)-2

质点运动学答案一、选择题1、C2、C3、B4、B5、B6、A7、D8、C 二、填空题1、42、3m s ;9m s3、2m;6m 4/s/s5、239y x =+ 6、7、s t ∆;02tυ∆ 8、6.28m; 0;0; 6.28m/s 9、圆周运动;匀速率圆周运动 10、3.811、sin sin R ti R tj ωωωω-+;0;半径为R 的圆周 三、计算题(2)(1)(2)(1)(1.5)(1)(1)00640, 1.511(2)2642x x x xtdxt dtt ss x x x x m sms tt s υυυυυ∆-=∆=∆==-==∆=-+-=∆=∆=⨯位移==令第二秒内路程平均速率=m 时,=-=-2s负号表示速度方向沿平均速度x 轴负向2223058.365.12x y t n tn gtd a dt a ga t s ma m s ma ss υυυυ⎧=⎪⎨=⎪⎩=========时,3、2222222464(34)164002.5t n t n dsst t dt d sa t dtt t a R R m a s a Rm a s R mυυυ==+==++========当t=2s 时m=20s4、解:0230300044002232()3114366vttv xttx dv a dt dv adt dv adt t dtv v t dx v dt dx vdtdx vdt v t dt x x v t t t t =====+====+=++=++⎰⎰⎰⎰⎰⎰质点动力学答案一、选择题1、C2、C 二、填空题1、980J2、9J 三、计算题1、解:0220322202213624txtF a tmd tdtt dx t dtx t dx t dtW Fdx t t dt Jυυυ==========⎰⎰⎰⎰⎰⎰2、解:()2215030145W Fdx x x dx J ==+=⎰⎰刚体定轴转动习题答案一、选择题 1、(A ) 2、(C )3(C )4、(A )5、 (C) 6、 (C) 7、(B ) 8、(A ) 9、(B ) 10、(B ) 二、填空题1、答:刚体的质量、刚体的质量分布、刚体的转轴的位置。

大学物理同步训练第09章热力学基础

大学物理同步训练第09章热力学基础

第九章 热力学基础一、选择题1. 如图1所示,一定量的理想气体,由平衡状态A 变到平衡状态B (p A =p B ),则无论经过的是什么过程,系统必然(A )对外做正功(B )内能增加 (C )从外界吸热(D )向外界放热答案:B分析:功和热量为过程量,其大小、正负与过程有关,故A 、C 、D 选项错误;内能(温度)为状态量,与过程无关。

由图可知,B 点内能高于A 点(由内能公式E =ipV 2⁄可得,式中i 为气体分子自由度,见《气体动理论》选择题1)。

2. 对于室温下的单原子分子理想气体,在等压膨胀的情况下,系统对外所做的功与从外界吸收的热量之比W Q ⁄等于(A )23⁄(B )12⁄ (C )25⁄ (D )27⁄ 答案:C分析:由等压过程公式∆Q:∆E:∆W =(i +2):i:2可得W Q ⁄=2(3+2)=25⁄⁄。

3. 压强、体积、温度都相等的常温下的氧气和氦气,分别在等压过程中吸收了相等的热量,它们对外做的功之比为(A )1:1(B )5:9 (C )5:7 (D )9:5 答案:C分析:(参考选择题2)可得∆W =2i +2∆Q → ∆W O 2∆W He =2∆Q (i O 2+2)⁄2∆Q (i He +2)⁄=3+25+2=57 关于自由度i 可参考《气体动理论》选择题1。

4. 在下列理想气体过程中,哪些过程可能发生?(A )等体积加热时,内能减少,同时压强升高(B )等温压缩时,压强升高,同时吸热(C )等压压缩时,内能增加,同时吸热(D )绝热压缩时,压强升高,同时内能增加答案:D分析:热力学第一定律∆Q =∆E +∆W (其中∆Q 为系统吸收的热量,∆E 为系统内能的增量,∆W 为系统对外所做的功)。

等体过程,∆W =0,吸收热量∆Q >0,则∆E >0,系统内能增加,故A 错误;等温压缩,∆W <0,温度不变即∆E =0,故∆Q <0,系统放热,故B 错误;等压压缩,∆W <0,由等压过程公式(见选择题2)可知∆E <0,∆Q <0,系统内能减小,且系统放热,故C 错误;绝热压缩时,∆Q =0,∆W <0,故∆E >0,系统内能增加,由绝热过程曲线可知压强升高,故D 正确。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

质点动力学答案一、选择题1、C2、C 二、填空题1、980J2、9J 三、计算题1、解:00220322202213624txtF a tmd tdttdx t dtx tdx t dtW Fdx t t dt Jυυυ==========⎰⎰⎰⎰⎰⎰2、解:()2215030145W Fdx x x dx J ==+=⎰⎰质点运动学答案一、选择题1、C2、C3、B4、B5、B6、A7、D8、C 二、填空题1、42、3m s ;9m s3、2m;6m 4/s/s5、239yx =+ 6、 7、st∆;02tυ∆ 8、6.28m; 0;0; 6.28m/s 9、圆周运动;匀速率圆周运动 10、3.811、sin sin R ti R tjωωωω-+;0;半径为R 的圆周三、计算题(2)(1)(2)(1)(1.5)(1)(1)00640, 1.511(2)2642x x x x tdx tdtt ss x x x x m s mstt s υυυυυ∆-=∆=∆==-==∆=-+-=∆=∆=⨯位移==令第二秒内路程平均速率=m 时,=-=-2s负号表示速度方向沿平均速度x 轴负向刚体定轴转动习题答案一、选择题 1、(A ) 2、(C )3(C )4、(A )5、 (C) 6、 (C) 7、(B ) 8、(A ) 9、(B ) 10、(B ) 二、填空题1、答:刚体的质量、刚体的质量分布、刚体的转轴的位置。

2、14ml 23、lg 43,lg 23 4、 2ω0 5、ωωωω--B A A J )( 6、MLm 23v.7、L76v8、02ωmrJ J+三、计算题1、解:对水桶和圆柱形辘轳分别用牛顿运动定律和转动定律列方程mg -T =ma ① 1分 TR =J β ② 1分 a =R β ③ 1分由此可得 T =m (g -a )=m ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-J TR g /2那么 mg J mRT =⎪⎪⎭⎫⎝⎛+21 将 J =21MR 2代入上式,得mM m M g T 2+=2分 图2分2、解:(1) 各物体受力情况如图 图2分T -mg =ma 1分 mg -T '=m a ' 1分 T ' (3r )-Tr =14mr 2β 2分 a =r β 1分 a '=(3r )β 1分 由上述方程组解得:β=g / (12r )=16.33 rad ²s -2 2分3、解:以小球为研究对象,由转动定律βJ M =得:水平位置时:lg ml mgl ==002ββ 5分杆与水平方向夹角为60°时:' a ' m ´g静电场答案选择题1、C2、 B3、A 和D4、 C5、 C6、A7、 C8、 A9、 B 10、A 11、D 12、 B 13、 D 填空题1、单位正试验电荷置于该点时所受到的2、2N / C ; 向下3、-2ε0E 0 / 3 ; 4ε0E 0 / 34、包围在曲面内的净电荷 ;曲面外电荷5、高斯面上各点6、qQ / (4πε0R ) .7、-3.2³10-15 J ;2³104 V 8、-140 V . 9、⎪⎪⎭⎫⎝⎛-πa b r r q q 11400ε.计算题1、解: 选取圆心O 为原点,坐标Oxy 如图所示,其中Ox 轴沿半圆环的对称轴.在环上任意取一小段圆弧d l =R d θ,其上电荷d q =(Q d l ) / (πR )=(Q d θ) / π,它在O 点产生的场强为202204d 4d d R Q R q E εθεπ=π= 在x 、y 轴方向的两个分量 θθεθd c o s 4c o s 202R Q dE dE x π== θθεθd s i n 4s i n 202RQ dE dEyπ==对两个分量分别积分2022/2/2022d cos 4RQ RQ dE E x x εθθεπ=π==⎰⎰ππ-2分0d s i n 42/2/202=π==⎰⎰ππ-θθεRQ dEE yy由此得i RQi E E x2022επ==i为x 轴正向的单位矢量.2、解:r ≤R 时,在球内作一半径为r 的高斯球面,按高斯定理有3123414r E r πρε=π得 r E 013ερ=1E方向沿半径向外.r >R 时,x在球体外作半径为r 的高斯球面,按高斯定理有022/4εq E r =π334R q πρ=得20320234rRrq E ερε=π=2E方向沿半径向外.3、 解:设坐标原点位于杆中心O 点,x 轴沿杆的方向,如图所示.细杆的电荷线密度λ=q / (2l ),在x 处取电荷元d q = λd x =q d x / (2l ),它在P 点产生的电势为()()x a l l x q x a l q U P -+π=-+π=008d 4d d εε整个杆上电荷在P 点产生的电势()⎰--+π=llP x a l xlq U d 80ε()ll x a l lq --+π-=ln 80ε⎪⎭⎫ ⎝⎛+π=a l l q21ln 80ε4、解:设内球上所带电荷为Q ,则两球间的电场强度的大小为204rQ E επ=(R 1<r <R 2)两球的电势差 ⎰⎰π==21212124d R R R R rdr Q r E U ε⎪⎪⎭⎫ ⎝⎛-π=210114R R Qε ∴ 12122104R R U R R Q -π=ε=2.14³10-9 C静电场中的导体和电介质答案选择题1、. D2、 B3、 B4、 D5、 D6、C7、A8、 D9、 D 10、 C 11、[ D ] 填空题1、 )2/()(21S Q Q + ; )2/()(21S Q Q - ; )S /()Q Q (212-; )2/()(21S Q Q +2、)4/()(22R Q q π+ 3、 9.1³105 C 4、 U 0 5、无极分子;电偶极子6、 E D rεε0= 7、εr ; 1 ; εr 8、σ ; σ / ( ε 0ε r )9、不变 ,减小 计算题1、图示为一半径为a 的、带有正电荷Q 的导体球.球外有一内半径为b 、外半径为c 的不带电的同心导体球壳.设无限远处为电势零点,试求内球和球壳的电势.解:球壳内表面将出现负的感生电荷-Q ,外表面为正的感生电荷Q .按电势叠加原理(也可由高斯定理求场强,用场强的线积分计算)导体球的电势为c Qb Qa QU 0001444εεεπ+π-π=Q abc ac bc ab ⎪⎪⎭⎫⎝⎛-+=04πε 球壳电势 cQU 024επ=2、 一空气平行板电容器,两极板面积均为S ,板间距离为d (d 远小于极板线度),在两极板间平行地插入一面积也是S 、厚度为t (<d )的金属片,如图所示. 试求:(1) 电容C 的值(2) 金属片放在两极板间的位置对电容值有无影响?解:设极板上分别带电荷+q 和-q ;金属片与A 板距离为d 1,与B 板距离为d 2;金属片与A 板间场强为 )/(01S q E ε=金属板与B 板间场强为 )/(02S q E ε= 金属片内部场强为 0='E 则两极板间的电势差为 2211d E d E U U B A +=- )(210d d Sq+=ε)(0t d Sq-=ε由此得 )/()/(0t d S U Uq C B A-=-=ε因C 值仅与d 、t 有关,与d 1、d 2无关,故金属片的安放位置对电容值 无影响. 3、 三个电容器如图联接,其中C 1 = 10³10-6 F ,C 2 = 5³10-6 F ,C 3 = 4³10-6 F ,当A 、B 间电压U =100 V 时,试求:(1) A 、B 之间的电容;(2) 当C 3被击穿时,在电容C 1上的电荷和电压各变为多少?解:(1) =+++=321321)(C C C C C C C 3.16³10-6 F(2) C 1上电压升到U = 100 V ,电荷增加到==U C Q 111³10-3 C4、 一平行板电容器,其极板面积为S ,两板间距离为d (d <<S ),中间充有两种各向同性的均匀电介质,其界面与极板平行,相对介电常量分别为εr 1和εr 2,厚度分别为d 1和d 2,且d 1+d 2=d ,如图所示.设两极板上所带电荷分别为+Q 和-Q ,求: (1) 电容器的电容.(2) 电容器储存的能量.解:(1) 两极板间电位移的大小为 D =σ=Q / S 在介质中的场强大小分别为E 1 = D / (ε0εr 1) = Q / (ε0εr 1S ) E 2 = D / (ε0εr 2) = Q / (ε0εr 2S )⎪⎪⎭⎫ ⎝⎛+=+=22110221112r r d d S Q d E d E U εεε()S d d Q r r r r 2101221εεεεε+= 电容 C = Q / U 121221210r r r r d d S εεεεε+=(2) 电场能量 21221CUW =()SQd d r r r r 210212212εεεεε+=恒定磁场答案一 选择题1.解:选取以O 为圆心以r 为半径宽度为dr 的圆环的微元 圆环所带电量为rdr dq πσ2= )(2122R R Q-=πσ圆环以角速度ω绕O 转动时等效的圆电流为rdr rdrTdq dI σωππσω===22圆电流在P 点的磁感应强度d B 232230232220)(2)(2x r drr x r dIr dB +=+=σωμμ整个转盘在P 点的磁感应强度B)]()[(21)(222122222221222023223021xR xx R xx R x R x r drr dBB R R +-+++-+=+==⎰⎰σωμσωμ方向沿x 轴正方向2.解:54321B B B B B B ++++=2014R I B πμ=方向向外;202024221R I R I B μμ==方向向里;03=B;101044221R I R I B μμ==方向向里;1054R I B πμ=方向向外102010204444R I R I R I R I B μμπμπμ--+=方向向外3.解:各边受力:(1)B l d I F d ⨯=21dx x I I dF πμ21021=⇒dld I I F +=⇒ln 22101πμ方向:竖直向下(2)θπμθtan )(2tan 21022l l d I I l BI F +== 方向:水平相右(3)B l d I F d ⨯=23dl xII dF πμ21023=⇒⎰+=⇒ld dx dx I I F θπμcos 22103d l d I I F +=⇒lncos 22103θπμ 方向:垂直杆斜向上θπμt a n ln22103d l d I I F x +-= dl d I I F y +=ln22103πμ0=y F θπμt a n )ln(2210dl d dl l I I F x +-+=方向水平相左4.解:(1)n I R S I m 241π== 21sin()42M m B R IB t k ππω=⨯=-(2)max f =电磁感应答案一.选择题1. B2. A3.D4.A5.D6.D7.D 8A 9.D 10.B 二.填空题 1.t r m nIωωμsin 2π 2.229R B ω ;O 点3.导线端点;导线中点 4. 221R B ω;沿曲线由外指向中心5.答案见图.6.20 J 7. 1:2 ;1:28.2A 9.不能 三.计算题1.解:长直导线在如图坐标x 处所产生的磁场为)(20xIB π=μ)d (20⎰⎰+==bd dxx IaBdS πμΦ)l n (20dbd Ia+π=μ∴εtI d b d a dt d d d ])(ln[20+π=Φ=μ2. 解:t 时刻通过半圆的磁通量为t rBm ωπcos 22=Φ2sin 2tr B dtd m ωωπε=Φ-=LORtr B Ri 2sin 2ωωπε==3.解:建立坐标(如图)则:xIB π=20μ, B方向⊙εd x xI x B d )1(2v d v 0π==με⎰⎰+π==x x I ba d )1(2v d a0μ☜ab a I +π=ln 2v0μ4.解:(1) B a U U U E O OE 221ω=-=(2) 添加辅助线OF ,由于整个△OEF 内感应电动势为零,所以OFEF OE ☜☜☜=+即可直接由辅助线上的电动势 OF 来代替OE 、EF 两段内的电动势.aa OF 245cos 2=︒=B a a B U U U F O OF 22)2(21ωω==-=(3) O 点电势最高 .《机械振动》答案一、选择题CDBBB CACAA DC 二、填空题1、n T /2、T 4,2/2S3、0sin A ωϕ,-02cos ϕωA4、2rad/s ,0,t x 2cos 2=(SI ),212N ,负方向I C DvO5、10cm ,π32,4.8s ,)32125cos(1.0ππ+=t x (SI )6、如图所示7、k m π221+,02x mk8、mk π1,mk π19、238kA10、π 三、计算题1、 解:处于平衡位置时,弹簧的伸长量L ∆满足如下关系Mg L k =∆(1)对滑块m ,M 进行受力分析,设绳子的张力为T ,则当滑块M 位移为x 时,有Ma T Mg =- a m T L x k '=+∆+-)(由于绳子不可伸长,故有a a =',则上述两式联立消去T 并考虑(1)式可得a m M kx )(+=-由上式可知滑块M 做简谐振动,其振动原频率为mM k +=ω已知0=t 时滑块M 处于负的最大位移处,即M 滑块的振幅及初相为kMg L A =∆=,πϕ=则可得M 滑块的运动方程⎪⎪⎭⎫⎝⎛++=πt m M kk Mg x cos (SI )2、 解:设该质点的简谐运动方程为)cos(ϕω+=t A x (SI )则可以知道该质点的速度满足)2cos(πϕωωυ++=t A (SI )由图可以看出速度振幅为10=A ω,利用旋转矢量法可得速度方程的初相与圆频率为ππϕ322=+→ 6πϕ=14433tωππ∆Φ===∆ → 1030/3A ππ==因此可以得到该质点的振动方程30cos 36x t πππ⎛⎫=+ ⎪⎝⎭(SI ) 3、 解:如图所示,画出旋转矢量图,可以知道质点从2/A 处(速度为正)运动到2/A 处(速度为正)时旋转矢量转过的角度为π1219=∆Φ已知旋转矢量的旋转角速度(即质点振动圆频率)为4/πω=,故需要的时间为319=∆Φ=∆ωt (s )4、 解:将振动方程2x 写为t x πcos 32=(SI )画出三个旋转矢量,如右图所示。

相关文档
最新文档