甘油法制作谷氨酸棒杆菌感受态
农杆菌感受态细胞的制备原理和实验步骤及验证

农杆菌电击感受态的制备及电击转化表达载体pB-2mb-FRO-1.7A和pB-2mb-1.7A空载体的农杆菌(EHA105)电击转化(1)抽提纯化pB-2mb-FRO-1.7A和pB-2mb-1.7A空载体的重组质粒pB-2mb-FRO-1.7A重组载体和pB-2mβ-1.7A空载体的(DH5α)菌种接种于5ml LB(含卡那霉素50mg/L)液体培养基中,37℃,200rpm震荡培养过夜。
按V-GENE公司的质粒提取试剂盒提取pB-2mb-FRO-1.7A重组质粒。
(2)取200ml型号的电击杯用无水乙醇浸泡,晾干。
(3)农杆菌EHA105电击预备处理。
I. 接种于5ml YEP(含链霉素Sm50mg/L)液体培养基中,28℃,200rpm震荡培养过夜至OD600值为0.4。
EHA105II. 离心管中收集1ml菌液,4℃,8000rpm,离心30s。
1.5mlIII. 去残液,沉淀用200μl ddH2O充分悬浮,4℃,8000rpm,离心30s。
IV. 重复步骤ⅲ三次。
V. 去残液,沉淀用200ml ddH2O充分悬浮,即为电击用农杆菌EHA105感受态。
加入200μl灭菌甘油混匀后置于-80℃备用。
(4)电击I. 分别取10ml pB-2mb-FRO1-1.7A和pB-2mb-1.7A重组质粒至200μl EHA105感受态中,轻打混匀,然后转移至电击杯中,置冰上。
II. 准备好电击装置(BioRad),电压为2.5V,用手按住电击按钮,直到啪的一声电击完毕。
III. 室温静置2min后加入800ml YEP培养液,28℃静置1h,然后28℃,200rpm培养2h。
IV. 离心30s,收集菌液,沉淀用200ml ddH2O悬浮,用玻璃棒涂布含含卡那霉素50mg/L 和含链霉素Sm50mg/L的YEP固体培养基平板,28℃培养48h。
8000rpm1.制备农杆菌电转感受态(1)挑取根癌农杆菌EHA 105单菌落,接种于5mlLB〔含利福平(Rif) 50mg/L,;链霉素100mg/L)液体培养基中,28'C, 220rpm震荡培养过夜。
谷氨酸发酵 实验报告(1)

兰州大学生命科学学院发酵工程实验谷氨酸发酵实验摘要:谷氨酸棒杆菌在合适的培养基中经摇瓶培养能快速生长,为发酵实验准备菌种。
还原糖的消耗和谷氨酸的生成是衡量谷氨酸发酵是否正常的重要标志,所以在发酵过程中,要求每两个小时测定一次还原糖的含量,并据此作出发酵的糖耗曲线。
关键字:种子的制备、发酵罐、谷氨酸棒杆菌、PH的调节引言:了解发酵工业菌种制备工艺和质量控制,为发酵实验准备菌种。
了解发酵罐罐体构造和管道系统,掌握对发酵罐及其管道系统的灭菌方法。
了解发酵罐的操作,完成谷氨酸发酵的全过程。
还原糖的消耗和谷氨酸的生成是衡量谷氨酸发酵是否正常的重要标志,在发酵后期当还原糖降至1%以下时,表明谷氨酸发酵已经完成。
所以在发酵过程中,要定时测定还原糖的含量,要求每两个小时测定一次,并据此作出发酵的糖耗曲线。
掌握还原糖和总糖的测定原理,学习用比色法测定还原糖的方法。
学习使用茚三酮比色法检测发酵液中谷氨酸浓度的方法。
谷氨酸棒杆菌通常在0-12小时为生长期,12小时后为产酸期,所以应该从12小时以后开始检测谷氨酸的含量,每两个小时取一次样。
原理:谷氨酸棒杆菌在合适的培养基中经摇瓶培养能快速生长,得到大量健壮的种子。
谷氨酸棒杆菌生长速度较快,接种量一般在1-2%。
谷氨酸发酵是有氧发酵,发酵罐由蒸汽管道、空气管道、加料出料管道等组成,在实验之前必须先对发酵罐进行空消。
谷氨酸产生菌是代谢异常化的菌种,对环境因素的变化很敏感,在适宜的培养条件下,谷氨酸产生菌能够将50%以上的糖转化成谷氨酸,而只有极少量的副产物。
如果培养条件不适宜,则几乎不产生谷氨酸,仅得到大量的菌体或者由发酵产生的乳酸、琥珀酸、а-酮戊二酸、丙氨酸、谷氨酰胺、乙酰谷氨酰胺等产物。
生产上的中间分析只测定一些主要数据,只能显示微生物代谢的一般概况而不能反映细微的生化变化。
因此,进一步完善生化分析项目,从生化角度对发酵进行控制,从而确定最适宜的工艺条件是提高发酵水平的重要课题之一。
甘油法制作谷氨酸棒杆菌感受态

甘油法制作谷氨酸棒杆菌感受态1,培养基LBG培养基(g/l):酵母膏5,蛋白胨10,氯化钠10,ph7.0,用于培养谷氨酸棒状杆菌制备感受态的种子液。
EPO培养基(g/l):酵母膏5,蛋白胨10,氯化钠10,甘氨酸30,Tween80 1。
用于谷氨酸棒状杆菌感受态的制备。
LBHIS培养基(g/l):酵母膏2.5,蛋白胨5,氯化钠5,脑心浸液18.5,山梨醇91,用于谷氨酸棒状杆菌转化子的培养。
谷氨酸棒杆菌的培养条件:30℃,200rpm,需要卡那霉素时,加入的终浓度为30ug/ml,相应的固体培养基中加入2%的琼脂粉。
2 ,谷氨酸棒状杆菌感受态的制备:(1)将一环谷氨酸棒状杆菌的种子接种于种子培养基中,200rpm,30℃过夜培养。
(2)以10%的比例转接于100ml培养基中,使初始细胞OD达到0.3,200rpm 30℃培养3-5h至OD达到0.6-0.9。
(3)将所有菌液放入50ml离心管中冰浴15min,4000rpm,4℃离心10min。
(4)取预冷的10%甘油约30ml,充分悬浮菌体,4000rpm,4℃离心10min。
(5)再次取预冷的10%甘油重复洗涤两次。
(6)用400ul预冷的10%甘油重悬细胞,1.5ml离心管分装,每管80ul,-70℃保存或者点击转化。
3 谷氨酸棒状杆菌的电转化法:(1)将新鲜制备(或者冰箱取出)感受态细胞和连接产物置于冰上,轻弹管壁使其混匀。
(2)吸取5ul冰上预冷的质粒加入感受态细胞中,轻弹管壁使其混匀,然后冰浴5-10min。
(3)加入预冷的0.1cm电击杯中,1.8kv,5ms电击。
加入恢复用培养基LBHISml,混匀46℃水浴6min。
(4)30℃,100rpm培养1h。
(5)涂布含有抗生素的平板,30℃过夜培养观察。
感受态细胞的制备的实验步骤

感受态细胞的制备的实验步骤CaCl2感受态细胞的制备的实验步骤1.前夜接种受体菌(DH5α或DH10B),挑取单菌落于LB培养基中37℃摇床培养过夜(约16小时);2.取1ml过夜培养物转接于100ml LB培养基中,在37℃摇床上剧烈振荡培养约2.5-3小时(250-300rpm);3.将0.1M CaCl2溶液置于冰上预冷;以下步骤需在超净工作台和冰上操作4.吸取1.5ml培养好的菌液至1.5ml离心管中,在冰上冷却10分钟;5.4℃下3000g冷冻离心5分钟;6.弃去上清,加入100μl预冷0.1M CaCl2溶液,用移液枪轻轻上下吸动打匀,使细胞重新悬浮,在冰放置20分钟;7.4℃下3000g冷冻离心5分钟;8.弃去上清,加入100μl预冷0.1M CaCl2溶液,用移液枪轻轻上下吸动打匀,使细胞重新悬浮;9.细胞悬浮液可立即用于转化实验或添加冷冻保护剂(15% - 20%甘油)后超低温冷冻贮存备用(-70℃)。
·电转化法制备大肠杆菌感受态细胞的实验步骤1.前夜接种受体菌(DH5α或DH10B),挑取单菌落于LB培养基中37℃摇床培养过夜;2.取2ml过夜培养物转接于200ml LB培养基中,在37℃摇床上剧烈振荡培养至OD600=0.6(约2.5-3小时);3.将菌液迅速置于冰上。
以下步骤务必在超净工作台和冰上操作4.吸取1.5ml培养好的菌液至1.5ml离心管中,在冰上冷却10分钟;5.4℃下3000g冷冻离心5分钟;6.弃去上清,加入1500μl冰冷的10%甘油,用移液枪轻轻上下吸动打匀,使细胞重新悬浮;7.4℃下3000g冷冻离心5分钟8.弃去上清,加入750μl冰冷的10%甘油,用移液枪轻轻上下吸动打匀,使细胞重新悬浮;9.4℃下3000g冷冻离心5分钟10.加入20μl冰冷10%的甘油,用移液器轻轻上下吸动打匀,使细胞重新悬浮;11.立即使用或迅速置于-70℃超低温保存。
甘油对聚谷氨酸合成的贡献

Contribution of glycerol on production of poly(γ-glutamicacid) in Bacillus subtilis NX-21Wu Qun,Xu Hong *,Liang Jinfeng,Yao JunCollege of Life Science and Pharmacy,Nanjing University of Technology,Nanjing (210009)AbstractGlycerol would stimulate the production of poly(γ-glutamic acid) (γ-PGA) and decrease its molecular weight in B. subtilis NX-2. The yield of γ-PGA increased from 26.7 to 31.7 g/l when 20 g/l glycerol was added in medium, and the molecular weight of γ-PGA could be regulated between 2.43×106 and 1.42×106 Da with glycerol concentration ranging from 0 to 60 g/l. The effect of glycerol on molecular weight of γ-PGA had never been reported, and it would be developed to be an approach for the regulation of microbial γ-PGA chain length.Keywords: B. subtilis NX-2;fermentation;glycerol;molecular weight;poly(γ-glutamic acid)1. IntroductionPoly(γ-glutamic acid), γ-PGA, is a homopolymer of D- and L-glutamic acid units produced by microbes, and it has broad applications in fields of medicine, foods, plastics and many others (Shih and Van 2001). Molecular weight is an important feature of microbial γ-PGA for the effect that molecular size has on polymer properties (Richard and Margarities 2001). However, γ-PGA produced by Bacillus sp. generally has relatively high molecular weight, and such a high molecular size polymer is too viscous, rheologically unmanageable and difficult to be modified by chemical reagents (Shih and Van 2001). Therefore, it is useful to decrease γ-PGA molecular weight during fermentation course to obtain the polymer with relatively low molecular weight.In this work, we found that glycerol present in medium would not only decrease the molecular weight of γ-PGA, but also increase the yield of γ-PGA in B. subtilis NX-2. This was the first time to discover such contribution of glycerol on γ-PGA production by Bacillus sp., and it could be used to establish a general foundation for regulation of microbial γ-PGA molecular weight.2. Materials and methodsBacterial strainsB. subtilis NX-2 was isolated from soil sample (Xu et al. 2005). It was deposited in China General Microbiological Culture Collection Center with the accession number of CGMCC No.0833.Production of γ-PGA by flask culture was performed as reported (Wu et al. 2006).Analytical methodsGlucose and glutamate were measured enzymatically using a bioanalyzer (SBA-40C, Shandong Academy of Sciences). Glycerol was determined enzymatically using analysis kit (Sigma). The volumetric yield and molecular weight of γ-PGA was measured by gel permeation chromatography system following the method reported previously (Wu et al. 2006). Every experiment was repeated for 3 times.3. ResultsImprovement of γ-PGA production with the addition of glycerol1This work was supported by the National Basic Research Program of China (973 Program, 2003CB716004), the National Nature Science Foundation of China (20674038, 20336010) and the Graduate Student Innovation Project of Jiangsu Province.As shown in Fig. 1A, glycerol had positive effect on γ-PGA fermentation in B. subtilis NX-2. When 20 g/l glycerol was added at the beginning of fermentation, the yield of γ-PGA increased from 26.7 to 31.7 g/l, and the biomass was also comparatively higher than that without glycerol. On the other hand, glycerol could decrease the molecular weight of γ-PGA (Fig. 1B), and it seemed that glycerol began to take effect at the very beginning of γ-PGA formation. This was a unique discovery in γ-PGA production, as to our knowledge, there was no report about decreasing of γ-PGA molecular weight by the addition of glycerol in medium. In addition, glycerol could effectively decrease the fermentation viscosity (Fig. 1C). When glycerol was added in medium, both the extracellular glucose and glutamate were consumed faster than those without glycerol (Fig. 1D), indicating decreasing of fermentation viscosity would relieve the mass transfer limitation, and stimulate the uptake of extracellular substrates, which would not only improve cell growth, but also stimulate γ-PGA production in B. subtilis NX-2. (Fig. 1)Effect of initial concentration of glycerol on γ-PGA productionGlycerol had positive effect on both cell growth and γ-PGA biosynthesis in B. subtilis NX-2 with the initial concentration ranging from 0 to 50 g/l, and the optimum concentration for γ-PGA production was 20 g/l (Fig. 2). While in the case of B.1icheniformis ATCC9945a, high level of glycerol was used (80 g/l) (Cromwick and Gross 1995), this was also the advantage of this strain, as the low concentration of glycerol required would efficiently lower the industrial cost. On the other hand, γ-PGA molecular weight decreased remarkably from 2.43×106 to 1.42×106 Da with glycerol concentration increased from 0 to 60 g/l, and it kept nearly constant despite further increase of glycerol concentration to 80 g/l. Therefore it was convenient for us to effectively modulate γ-PGA molecular weight by altering glycerol concentration between 0 to 60 g/l to meet different requirements in different fields.(Fig. 2)Effect of glycerol addition time on γ-PGA productionThe effect of glycerol addition time on γ-PGA production in B. subtilis NX-2 was shown in Table 1. Glycerol showed nearly the same effect on γ-PGA molecular weight as long as it was added before 16 h, and the effect gradually weakened when it was added thereafter. It seemed that the effect of glycerol might be related to the process of γ-PGA biosynthesis. On the other hand, since glycerol with high concentration would bring inhibition to cell growth (Fig. 2), it was suggested glycerol could be added in medium around 16 h, which would lessen the initial inhibition on cell growth.(Table 1)Utilization of glycerolWhen 20 and 80 g/l glycerol was added in medium, respectively, no glycerol was consumed by B. subtilis NX-2 during the whole fermentation process (data not shown). While in B. licheniformis ATCC 9945a, glycerol was utilized from the very beginning, and a total of 30 to 40 g/l glycerol had been consumed until the end of fermentation when 80 g/l glycerol was added in medium (Birrer et al. 1994; Cromwick et al. 1996). The difference of glycerol consumption between the two strains might be due to the differences of species and medium composition.In fact, it has been reported that glycerol added in medium could also decrease molecular weight of some other biopolymers, for example, poly(hydroxyalkanoate) and ε-poly-L-lysine. And the mechanism was that the esterification of glycerol and theses biopolymers occurred, which led to the inhibition of monomers incorporation into the carboxyl terminus (Ashby et al. 2005; Nishikawa and Ogawa 2006). As no glycerol was consumed by B. subtilis NX-2, glycerol would not be covalently bonded to γ-PGA. Then glycerol might have another particular effect mechanism in γ-PGA production in this strain.4. DiscussionGlycerol could decrease the molecular weight of γ-PGA in B. subtilis NX-2, and then decreased the broth viscosity, enhanced the uptake of substrates, which was beneficial for cell growth and γ-PGA production in this strain. This was the first time to discover such contribution of glycerol on γ-PGAproduction by Bacillus sp.. In addition, it was expected that glycerol would modulate γ-PGA molecular weight more effectively through further investigation for the mechanism features, which would not only deepen the knowledge of γ-PGA biosynthesis process, but also establish a general foundation for regulation of microbial γ-PGA molecular weight.ReferencesAshby RD, Solaiman DKY, Foglia TA (2005) Synthesis of short-/medium-chain-length poly(hydroxyalkanoate) blends by mixed culture fermentation of glycerol. Biomacromolecules 6:2106-2112Birrer GA, Cromwick A, Gross RA (1994) γ-Poly(glutamic acid) formation by Bacillus licheniformis 9945a: physiological and biochemical studies. Int J Biol Macromol 16:265–275Cromwick AM, Birrer GA, Gross RA (1996) Effects of pH and aeration on γ-poly(glutamic acid) formation by Bacillus licheniformis in controlled batch fermentor cultures. Biotechnol Bioeng 50:222 - 227Cromwick AM, Gross RA (1995) Effects of manganese (II) on Bacillus licheniformis ATCC 9945A physiology and γ-poly(glutamic acid) formation. Int J Biol Macromol 17:259-267Nishikawa M, Ogawa K (2006) Inhibition of epsilon-poly-L-lysine biosynthesis in Streptomycetaceae Bacteria by short-chain polyols. Appl Environ Microb 72:2306-2312Richard A, Margaritis A (2003) Rheology, oxygen transfer and molecular weight characteristics of poly(glutamic acid) fermentation by Bacillus subtilis. Biotech Bioeng 82:299–305Shih IL, Van YT (2001) The production of poly-(γ-glutamic acid) from microorganisms and its various applications. Bioresource Technol 79:207-225Xu H, Jiang M, Li H, Lu D, Ouyang P (2005) Efficient production of poly(γ-glutamic acid) by newly isolated Bacillus subtilis NX-2. Process Biochem 40:519-523Wu Q, Xu H, Xu L, Ouyang P (2006) Biosynthesis of poly(g-glutamic acid) in Bacillus subtilis NX-2: Regulation of stereochemical composition of poly(g-glutamic acid). Process Biochem 41:1650–1655Table 1 Effect of glycerol (20 g/l) addition time on poly(γ-glutamic acid) (γ-PGA) molecular weight Glycerol addition time (h) γ-PGA yield (g/l) Molecular weight (×106 Da)26.7 + 1.0 2.43 + 0.07+ 1.3 1.86 + 0.060 31.7+ 1.3 1.86 + 0.068 31.6+ 1.2 1.89 + 0.0616 31.2+ 1.2 1.95 + 0.0624 30.2+ 1.2 2.13 + 0.0632 29.1+ 1.2 2.38 + 0.0740 27.8Figure captionsFig. 1 Time profile of poly(γ-glutamic acid) (γ-PGA) fermentation, (A) biomass without glycerol (■), biomass with 20 g/l glycerol (□), yield of γ-PGA without glycerol (●), yield of γ-PGA with 20 g/l glycerol (○); (B) Molecular weight of γ-PGA without glycerol (■), molecular weight of γ-PGA with 20 g/l glycerol (●); (C) Broth viscosity without glycerol (■), broth viscosity with 20 g/l glycerol (●); (D) Residual glucose without glycerol (■), residual glucose with 20 g/l glycerol (□), residual glutamate without glycerol (●), residual glutamate with 20 g/l glycerol(○), both the initial concentrations of glucose and glutamate were 40 g/l.Fig. 2 Effect of glycerol concentration on poly(γ-glutamic acid) (γ-PGA) fermentation, Biomass (□), yield of γγwere incubated for 48h.C DB A。
感受态大肠杆菌的制备(DH5a)

制备感受态大肠杆菌(DH5α)
一.原理和用途
1.利用CaCl2对大肠杆菌细胞膜的作用,使细菌产生短暂的可摄取外源DNA的过程
2.用于质粒DNA或连接产物转化大肠杆菌,构建重组克隆
二.材料
1.高压灭菌:50ml离心管,枪头等
2.试剂:0.1M CaCl2,无菌甘油
三.
《精编分子生物学》,科学出版社,第三版
一步法(TSS)制备感受态大肠杆菌(DH5α)
一. 准备工作
冻存菌株,LB液体培养基,Transform Storage Solution(TSS)
消毒:三角瓶(50ml、500ml),50ml一次性离心管(预冷),1.5ml EP管(预冷)
低温离心机,超低温冰箱,冰盒,冰水浴,移液器(1000μl,200μl),枪头
二. 操作步骤
1.活化菌株:-80℃取出保存菌株(如DH5α、BL21、BG5183等),37℃摇菌过夜。
或:-80℃取出保存菌株,(可选:EP管摇菌)涂板,37℃培养过夜,复壮菌株,然后再挑菌并活化菌株。
2.三角瓶(500ml)中加入100ml LB,加1-2ml 活化好的菌液,37℃摇置约3h,使菌生长
至对数生长中期,OD值至0.3-0.4(不超过0.6)(菌液成半透明状)。
3.冰水浴30min,分装至50ml离心管,4℃,3000rpm(1000g),10min。
4.弃尽上清,沉淀用约10倍体积2×TSS重悬菌体,100-200μl分装至预冷的EP管中,
-80℃保存。
大肠杆菌感受态细胞的几种制备方法

大肠杆菌感受态细胞的几种制备方法感受态细胞(Competent cells) :常态的细胞不能摄入外部溶液中的DNA,所以要转化质粒DNA进入大肠杆菌必须首先制备感受态的大肠杆菌细胞。
受体细胞经过一些特殊方法(如:CaCl,RuCl等化学试剂法)的处理后,细胞膜的通透性发生变化,成为能容许多有外源DNA 的载体分子通过的感受态细胞(competent cell) 。
转化:是将异源DNA分子引入一细胞株系,使受体细胞获得新的遗传性状的一种手段,是基因工程等研究领域的基本实验技术。
进入细胞的DNA分子通过复制表达,才能实现遗传信息的转移,使受体细胞出现新的遗传性状。
转化过程所用的受体细胞一般是限制-修饰系统缺陷的变异株,即不含限制性内切酶和甲基化酶的突变株。
α-互补现象:因为许多载体都带有一个LacZ基因的调控序列和头146个氨基酸的编码信息,编码α-互补肽,该肽段能与宿主编码的缺陷型β-半乳糖苷酶实现基因内互补(α-互补)。
当这种载体转入可编码?-半乳糖苷酶C端部分序列的宿主细胞中时,在异丙基-β-D硫代半乳糖苷(IPTG)的诱导下,宿主可同时合成这两种肽段,虽然它们各自都没有酶活性,但它们可以融为一体形成具有酶活性的蛋白质。
所以称这种现象为α-互补现象。
由互补产生的α-半乳糖苷酶(LacZ)能够作用于生色底物5-溴-4-氯-3-吲哚-β-D-半乳糖苷(X-gal)而产生蓝色的菌落,所以利用这个特点,在载体的该基因编码序列之间人工放入一个多克隆位点,当插入一个外源DNA片段时,会造成LacZ(α)基因的失活,破坏α-互补作用,就不能产生具有活性的酶。
所以,有重组质粒的菌落为白色,而没有重组质粒的菌落为蓝色。
方法一:TSS方法制备感受态细菌(又称一步法)一、准备工作1、缓冲液1×TSS的配制事先配制1M的氯化镁:20.3g氯化镁(6分子水结晶),定容于100ml去离子水后封装,不用灭菌。
取干净的100ml 量筒和100ml 烧杯,用量筒量取100ml去离子水,加入至烧杯中,取1 g 蛋白胨,0.5g 酵母抽提物,0.5g 氯化钠,10 g PEG(MW= 3350),5ml DMSO,5ml 的1 M氯化镁,溶解后用盐酸或者氢氧化钠调整pH为6.5,混匀后用0.22um 滤器过滤除菌。
谷氨酸发酵工艺流程1

-----WORD格式--可编辑--专业资料-----目录一、谷氨酸简介 (2)二、谷氨酸发酵的工艺流程 (3)2.1谷氨酸生产菌种 (4)2.2生产原料 (4)2.3培养基制备 (4)2.3.1碳源 (4)2.3.2氮源 (5)2.3.3生物素 (5)2.4培养基 (5)2.5菌种的保藏 (6)2.6灭菌的方法 (8)2.7菌种如何选育 (8)2.8种子的扩大培养 (8)2.9谷氨酸的发酵 (8)3.0谷氨酸的分离 (9)三、谷氨酸发酵的工艺控制 (9)3.1环境控制 (9)3.1.1pH (9)3.1.2温度 (9)3.1.3通风量 (9)3.1.4泡沫 (9)3.1.5染菌的防治和染菌后的处理方法 (9)3.2.细胞膜渗透性控制 (10)3.3提取工艺的进展 (10)3.4鉴别 (12)3.5发酵终点的判断 (12)四、小结 (12)五、参考文献 (12)谷氨酸发酵工艺秦岭内蒙古工业大学化工学院 08级生物工程2班摘要:众所周知,日常所用调味料味精就是L一谷氨酸单钠盐(monosodiuo gluamate,MsG)。
自1909年日本发明并工业化生产味情以来,几经变迁,已发展成为以谷氨酸发酵为主体的世界性氨基酸发酵工业。
1956年从日本开始,以后先后由面二筋豆粕和废糖蜜浓缩物水解的方向,转向以糖质为原料的细菌发酵法。
生产味精谷氨酸之类氨基酸的发酵,区别于传统的酿酒和抗菌素发游,是一种改变微生物代谢的代谢控制发酵。
本文则就谷氨酸发酵生产过程、谷氨酸发酵机制和研究动向等方面,说明谷氨酸发酵的发展。
[1]关键词:谷氨酸;发酵;工艺;研究;发展一、谷氨酸简介谷氨酸一种酸性氨基酸,分子内含两个羧基,化学名称为α-氨基戊二酸。
为无色晶体,有鲜味,微溶于水,而溶于盐酸溶液,等电点3.22。
大量存在于谷类蛋白质中,动物脑中含量也较多。
分子式C5H9NO4、分子量147.13076。
谷氨酸在生物体内的蛋白质代谢过程中占重要地位,参与动物、植物和微生物中的许多重要化学反应。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1,培养基
LBG培养基(g/l):酵母膏5,蛋白胨10,氯化钠10,ph7.0,用于培养谷氨酸棒状
杆菌制备感受态的种子液。
EPO培养基(g/l):酵母膏5,蛋白胨10,氯化钠10,甘氨酸30,Tween80 1。
用
于谷氨酸棒状杆菌感受态的制备。
LBHIS培养基(g/l):酵母膏2.5,蛋白胨5,氯化钠5,脑心浸液18.5,山梨醇91,用于谷氨酸棒状杆菌转化子的培养。
谷氨酸棒杆菌的培养条件:30℃,200rpm,需要卡那霉素时,加入的终浓度为
30ug/ml,相应的固体培养基中加入2%的琼脂粉。
2 ,谷氨酸棒状杆菌感受态的制备:
(1)将一环谷氨酸棒状杆菌的种子接种于种子培养基中,200rpm,30℃过夜培养。
(2)以10%的比例转接于100ml培养基中,使初始细胞OD达到0.3,200rpm 30℃培养3-5h至OD达到0.6-0.9。
(3)将所有菌液放入50ml离心管中冰浴15min,4000rpm,4℃离心10min。
(4)取预冷的10%甘油约30ml,充分悬浮菌体,4000rpm,4℃离心10min。
(5)再次取预冷的10%甘油重复洗涤两次。
(6)用400ul预冷的10%甘油重悬细胞,1.5ml离心管分装,每管80ul,-70℃保存或者点击转化。
3 谷氨酸棒状杆菌的电转化法:
(1)将新鲜制备(或者冰箱取出)感受态细胞和连接产物置于冰上,轻弹管壁使其混匀。
(2)吸取5ul冰上预冷的质粒加入感受态细胞中,轻弹管壁使其混匀,然后冰浴5-10min。
(3)加入预冷的0.1cm电击杯中,1.8kv,5ms电击。
加入恢复用培养基LBHISml,混匀46℃水浴6min。
(4)30℃,100rpm培养1h。
(5)涂布含有抗生素的平板,30℃过夜培养观察。