八年级数学上册第十五章 第3节 分式方程 训练题 (9)(含答案解析)
人教版八年级数学上册《15.3 分式方程》练习题-附带有答案

人教版八年级数学上册《15.3 分式方程》练习题-附带有答案一、选择题1.下列关于x 的方程:①x−12=5 ,②1x =4x−1 ,③1x (x −1)+x =1 ,④x a =1b−1 中,分式方程有( ) A .4个B .3个C .2个D .1个 2.若分式 x 3x+4 的值为1,则x 的值是( )A .1B .2C .-1D .-2 3.解方程 1+2x−1=x−5x−3 时,去分母得( )A .(x −1)(x −3)+2(x −3)=(x −5)(x −1)B .(x −1)(x −3)+2(x −3)=(x +5)C .1+2(x −3)=(x −5)(x −1)D .(x −3)+2(x −3)=x −5 4.分式方程 3x−2=1 的解是 ( )A .x =5B .x =1C .x =−1D .x =2 5.关于x 的方程 m−1x−1+x 1−x =0 有增根,则m 的值是( )A .2B .1C .0D .-1 6.若关于x 的方程2x+m x−2+x−12−x =3的解是非负数,则m 的取值范围为( ) A .m ≤-7且m ≠-3B .m ≥-7且m ≠-3C .m ≤-7D .m ≥-77.一艘轮船在两个码头之间航行,顺水航行81km 所需的时间与逆水航行69km 所需的时间相同.已知水流速度是速度2km/h ,则轮船在静水中航行的速度是( )A .25km/hB .24km/hC .23km/hD .22km/h 8.若整数a 使关于y 的不等式组{2y−53≤y −13a −y +3≥0至少有3个整数解,且使得关于x 的分式方程3x(x−1)−a 1−x =2x 的解为正数,则所有符合条件的整数a 的和为( )A .-6B .-9C .-11D .-14 二、填空题9.关于x 的方程x−a x−1=12的解是x =3,则a = .10.当x = 时,分式32−x 比x−1x−2大2.11.若关于x 的方程1x−1+2x+m 1−x =1有增根,则m 的值是 . 12.若关于x 的分式方程2x−m x+1 =3的解是负数,则字母m 的取值范围是 .13.某校要建立两个计算机教室,为此要购买相同数量的A型计算机和B型计算机.已知一台A型计算机的售价比一台B型计算机的售价便宜400元,如果购买A型计算机需要224 000元,购买B型计算机需要240 000元.求一台A型计算机和一台B型计算机的售价分别是多少元.设一台B型计算机的售价是x元,依题意列方程为.三、解答题14.解方程:(1)3x =2x−2(2)2x2x−1+51−2x=315.冬季来临,某商场预购进一批毛衣.用9600元先购进一批毛衣,面市后因供不应求,商场决定又用16800元再次购进这批毛衣,所购数量是第一批购进量的2倍,但单价便宜了10元.该商场第一次购进这批毛衣的数量是多少?16.杭州国际动漫节开幕前,某动漫公司预测某种动漫玩具能够畅销,就用32000元购进了一批这种玩具,上市后很快脱销,动漫公司又用68000元购进第二批这种玩具,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该动漫公司两次共购进这种玩具多少套?(2)如果这两批玩具每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?17.某家电销售商城电冰箱的销售价为每台2100元,空调的销售价为每台1750元,每台电冰箱的进价比每台空调的进价多400元,商城用80000元购进电冰箱的数量与用64000元购进空调的数量相等.(1)求每台电冰箱与空调的进价分别是多少?(2)现在商城准备一次性购进这两种家电共100台,要求购进空调数量不超过电冰箱数量的2倍,总利润不低于13000元,一共有多少种合理的购买方案?参考答案1.C2.D3.A4.A5.A6.B7.A8.C9.210.2311.-112.m>-3且m≠-213.240000x =224000x−40014.(1)解:3x =2x−23(x-2)=2x3x-6=2x3x-2x=6x=6经检验,x=6是原方程的解.(2)解:2x2x−1+51−2x=32x-5=3(2x-1)2x-6x=5-3-4x=2x=−12.经检验,x=−12是原方程的解.15.解:设该商场第一次购进这批毛衣的数量是x件,则第二次购进这批毛衣的数量是2x件根据题意,得:9600x −168002x=10解得:x=120经检验,x=120是所列方程的解答:该商场第一次购进这批毛衣的数量是120件.16.(1)解:设动漫公司第一次购x套玩具,由题意得:=10解这个方程,x=200经检验x=200是原方程的根.∴2x+x=2×200+200=600答:动漫公司两次共购进这种玩具600套(2)解:设每套玩具的售价y元,由题意得:≥20%解这个不等式,y≥200答:每套玩具的售价至少是200元17.(1)解:设每台空调的进价为m元,每台电冰箱的进价为元.根据题意得解得经检验符合题意故每台空调进价为1600元,电冰箱进价为2000元;(2)解:设购进电冰箱x台,则进购空调台解得:∵购进空调数量不超过电冰箱数量的2倍解得∵为正整数、35、36、37、38、39、40 共有七种合理的购买方案。
八年级数学上册第十五章 第3节 分式方程 解答题专题训练 33含答案解析.docx

八年级数学上册第十五章第3节分式方程解答题专题训练(33)一、解答题x-6 x(2)已知关于x的一元二次方程-x2+-x-m^2无实数根,求m的取值范围.2 32.某书店老板去图书批发市场购买某种图书.第一次用12000元购书若干本,并按该书定价70元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用15000元所购该书数量比第一次多10本.(1)求两次购书的价格分别是多少?(2)若第二次购书按定价售出200本时,出现滞销,于是决定打折出售剩下这批书,那么该商家最低打几折才能保证剩下书的利润率不低于5% ?、 4 1 23.解方程:——-—I—= ;-2x x x-24.某校为美化校园,计划对面积为1100m2的区域进行绿化,安排甲、乙两个工程队完成. 已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为200m2区域的绿化时,甲队比乙队少用4天。
(1)求甲、乙两工程队每天能完成绿化的面积分别是多少?(2)若学校每天需付给甲队的绿化费用为0.35万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?5.足球是世界第一运动,参与足球运动可以锻炼身体,陶冶情操.“高新美少年,阳春蹴鞠忙”,让学生走出教室,走进阳光,让每一位学生健康、快乐成长,是高新一中初中校区一直秉承的理念.本月,我校第四届校园足球联赛落下了帷幕,并取得了四满成功.为了举办本次活动,我校在商场购买甲、乙两种不同的足球,购买甲种足球共花费2600元,购买乙种足球共花费1328元,购买甲种足球的数量是购买乙种足球数量的2.5倍,且购买一个乙种足球比购买一个甲种足球多花18元.求购买一个甲种足球、一个乙种足球各需多少元?6.为推进垃圾分类,推动绿色发展,某工厂购进甲乙两种型号的机器人用来进行垃圾分类,甲型机器人比乙型机器人每小时多分10kg,甲型机器人分类800千克垃圾所用的时间与乙型机器人分类600kg垃圾所用的时间相等.(1)两种机器人每小时分别分类多少垃圾?(2)现在两种机器人共同分类500kg垃圾,工作2小时后,甲型机器人因机器维修退出,求甲型机器人退出后,乙型机器人还需工作多长时间才能完成?7.解下列分式方程,、x + 1 4 1(2)------------ — = 1X-1 X' -1&某学校为鼓励学生积极参加体育锻炼,派王老师和李老师去购买一些篮球和排球.回校后,王老师和李老师编写了一道题:王老师说:"篮球的单价比排煤的单价多30元李老师说:“用1000元购买的排球个数和用】600元氏买 J的至■直个豪相等同学们,请求出篮球和排球的单价各是多少元.9.解方程(组):2x+7y=53x+y = -210.某工厂计划生产一种创新产品,若生产一件这种产品需A种原料1. 2千克、B种原料1千克.已知A种原料每千克的价格比B种原料每千克的价格多10元.(1)为使每件产品的成本价不超过34元,那么购入的B种原料每千克的价格最高不超过多少元?(2)将这种产品投放市场批发销售一段时间后,为拓展销路又开展了零售业务,每件产品的零售价比批发价多30元.现用10000元通过批发价购买该产品的件数与用16000元通过零售价购买该产品的件数相同,那么这种产品的批发价是多少元?11.为了迎接暑假的学生购物高峰,某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表甲乙进价(元/双)m m-20售价(元/双)240160已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.(1)求m的值(2)由于资金有限,该店能够购进的甲种运动鞋不超过105双,要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价-进价)不少于21700元,且总利润应不超过22300元,求该专卖店共有几种进货方案(只需计算种数,不用列举各种方案)?(3)在⑵的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a(50〈a〈70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货. 12.端午节期间,某校"慈善小组"筹集善款600元全部用于购买粽子到福利院送给老人.购买大枣粽子和豆沙粽子各花300元,已知大枣粽子比豆沙粽子每盒贵5元,结果购买的 大枣粽子比豆沙粽子少2盒.请求出两种口味的粽子每盒各多少元?13. 解方程:(每小题3分,共6分)16. 根据《佛山-环西拓规划方案》,三水区域内改造提升的道路约37公里,届时,沿线 将串联起狮山、乐平、三水新城、水都基地、白堀等城镇节点,在这项工程中,有一段 4000米的路段由甲、乙两个工程队负责完成.已知甲工程队每天完成的工作量是乙工程队 每天完成的工作量的2倍,且甲工程队单独完成此项工程比乙工程队单独完成此项工程少 用20天.求甲、乙两个工程队平均每天各完成多少米?17. 桐梓县"四抓四到位"确保教育均衡发展,加速城区新、扩建项目工程・,加快建设某间 小学,公司经过调查了解:甲、乙两个工程队有能力承包建校工程,甲工程队单独完成建 校工程的时间是乙工程队的2倍,甲、乙两队合作完成建校工程需要60•天.(1) 甲、乙两队单独完成建校工程各需多少天?(2) 若甲、乙两队共同工作了 10天后,乙队因其他工作停止施工,由甲队单独继续施 工,要使甲队总的工作量不少于乙队已做工作量的2倍,那么甲队至少再单独施工多少 天? 18. 解分式方程:(2) ---------- = ------- . 2x-l x+219. 台风“天鸽”登录珠海,距离珠海市180千米处的某武警部队立即派车前往救灾,按 原计划速度匀速行驶60千米后,接上级通知,需紧急赶往目的地.于是以原速度的1.2倍 匀速行驶,结果比原计划提前12分钟到达,求原计划的行驶速度.20. 解分式方程:,、x , 3 , 、 x+1 4 , (1) ---------- 1 — ----------- . (2) --------------- z ---- — 1. x — 1 2x — 2 x — 1 x — 121. 某校为了开展“阳光体育〃活动,购进一批体育用品.经了解,长绳的单价比短绳的单 价多5元,用12000元购进的长绳与用8000元购进的短绳的数量相等.问购进的长绳和14.按要求计算:(2)解分式方程:Y1 5+23 15.解下列方程:(1) ----------- 1 = ------ (2)— ------- =— x+2 x-2 x 2 + x x + 1小淇: 105 140------ 1 ------x 0.8%= 40;小尧:亜x0.8 14040 — y短绳的单价分别是多少元.22.甲、乙两名学生练习计算机打字,甲打一篇1000字的文章与乙打一篇900字的文章所用的时间相同.已知甲每分钟比乙每分钟多打5个字,则乙每分钟打________ 个字.23.关于x的方程:竺学一X-1 1-X(1)当a = 3时,求这个方程的解;(2)若这个方程有增根,求a的值.24.计算或解方程:(1)[―右]十[—六) (2)甘一士[ = 125.现用A、B两种机器人来搬运化工原料.A型机器人比B型机器人每小时少搬运3kg, A 型机器人搬运40kg与B型机器人搬运60kg所用时间相等,两种机器人每小时分别搬运多少化工原料?26.某服装店用960元购进一批服装,并以每件46元的价格全部售完•由于服装畅销,服装店又用2220元,再次以比第一次进价多5元的价格购进服装,数量是第一次购进服装的2倍,仍以每件46元的价格出售.(1)该服装店第一次购买了此种服装多少件?⑵两次出售服装共盈利多少元?27.2019年8月.山西龙城将迎来全国第二届青年运动会,盛会将至,整个城市已经进入了全力准备的状态.太职学院足球场作为一个重要比赛场馆.占地面积约24300平方米.总建筑面积4790平方米,设有2476个座位,整体建筑简洁大方,独具特色.2018年3月15日该场馆如期开工,某施工队负责安装该场馆所有座位,在安装完476个座位后,采用新技术,效率比原来提升了25%.结来比原计划提前4天完成安装任务.求原计划每天安装多少个座位.28.某县为践行“绿水青山就是金山银山”的理念,保护生态环境,某村计划在荒山上植树1200棵,实际每天植树的数量是原计划的1. 5倍,结果比原计划提前了5天完成任务,求原计划每天植树多少棵?29.下面是小淇、小尧对一道中考题目的部分解答.题目:刘阿姨到超市购买大米,第一次按原价购买,用了105元.几天后,遇上这种大米8折出售,她用140元又买了一些,两次一共购买了40kg.这种大米的原价是多少?根据以上信息,解答下列问题.⑴小淇同学所列方程中的X表示 _____ ,小尧同学所列方程中的y表示_______ ;(2)在上述两个方程中任选一个求解,并回答题目中的问题.30.长春外国语学校为了创建全省“最美书屋”,购买了一批图书,其中科普类图书平均每本的价格比文学类图书平均每本的价格多5元.已知学校用12000元购买的科普类图书的本数与用9000元购买的文学类图书的本数相等,求学校购买的科普类图书和文学类图书平均每本的价格各是多少元?【答案与解析】一、解答题1. (1) x=-12 ; (2) m< -----18分析:(1)去分母后解整式方程即可,注意要检验;(2)根据方程无实数根,结合根的判别式即可得出关于m 的一元一次不等式,解之即可 得出结论.详解:(1)方程两边乘以x (x-6)得:90x=60(x-6),解得:x=—12.经检验:x=-12是原方程的根.分式方程的根为x=—12.(2) •••关于x 的一元二次方程丄_? +丄兀—加=2没有实数根,2 3点睛:本题考查了解分式方程以及根的判别式,熟练掌握"当厶<0时,方程没有实数根" 是解题的关键.2. (1)第一次购书的进价是50元,第二次购书的进价是60元;(2)该商家最低打九折才能保证剩下书的利润率不低于5%(1) 设第一次购书的单价为x 元,根据第一次用12000元购书若干本,第二次购书时,每 本书的批发价已比第一次提高了 20%,他用15000元所购该书的数量比第一次多10本,列 出方程,求出x 的值即可得出答案;(2) 设该商家打y 折,依题意列出不等式,解不等式即可(1)设第一次购书的单价为x 元,则第二次购书单价是(1+20%) x 元,12000 15000x +1°=(l + 20%)x解得:x = 50,经检验,x = 50是原方程的解, /.(1+20%) x=60答:第一次购书的进价是50元,第二次购书的进价是60元;(2) 150004-60=250 (本) 解:设该商家打y 折,依题意得:® 話 60)x (詈°-200),(罟200)x60x5%解得:y>9答:该商家最低打九折才能保证剩下书的利润率不低于5%.•.△=(*)2_4X *X (—加―2)<0,解得: 37 m < ------- , 18 37 的值取值范围为m<- —18根据题意得:【点睛】此题考查了分式方程的应用、不等式的应用,分析题意,找到关键描述语,找到合适的等 量关系是解决问题的关键.3. 原分式方程无解.按照去分母、移项、合并同类项的步骤求解即可.方程两边同时乘以x(x-2),得:4+(兀—2)= 2%x = 2检验:当x = 2时,x(x-2)= 0•••原分式方程无解.【点睛】此题主要考查分式方程的求解,熟练掌握,即可解题.4. (1)甲、乙两工程队每天能完成绿化的面积分别是50m\ 25m 2; (2)至少安排甲队 工作20天.(1) 设乙工程队每天能完成绿化的面积是xrr?,则甲工程队每天能完成绿化的面积是 2xm 2,根据"独立完成面积为200加$区域的绿化时,甲队比乙队少用4天"列出方程,再解 即可;(2) 根据题意可得等量关系:绿化总费用=甲队的绿化总费用+乙队的绿化总费用,根据 "使这次的绿化总费用不超过8万元"列出不等式求解即可.解:(1)设乙工程队每天能完成绿化的面积是xrrA解得:x=25, 经检验x=25是原方程的解,则甲工程队每天能完成绿化的面积是25x2=50 (m?),答:甲、乙两工程队每天能完成绿化的面积分别是50n?、25m 2;(2)设至少应安排甲队工作y 天.根据题意得:解得y>20,所以至少安排甲队工作20天.【点睛】本题考查分式方程的应用,一元一次不等式的应用.解决此题的关键是正确理解题意,找 出题目中的等量关系和不等量关系,据此列出方程或不等式.5.购买一个甲种足球、一个乙种足球各需65和83元 设一个甲种足球需要x 元,根据题意列出方程即可求出答案.解:设一个甲种足球需要x 元,根据题意得:型一型=4 x 2x0.35y + 1100 —50y25 x 0.25 <8•I 一个乙种足球需要(x+18)元,解得:x = 65, 经检验,x = 65是原方程的解, /.x+18 = 83,答:购买一个甲种足球、一个乙种足球各需65和83元【点睛】本题考查分式方程的实际应用,解题的关键是正确找出题中的等量关系,本题属于基础题 型.6. (1)甲型机器人每小时分类40kg 垃圾.乙型机器人每小时分类30kg 垃圾;(2)甲型 机器人退出后乙型机器人还需要工作12小时.(1) 设甲型机器人每小时分类xkg 垃圾.则乙型机器人每小时分类(x- 10) kg 垃圾,根 据工作时间=工作总量十工作效率结合甲型机器人分类800千克垃圾所用的时间与乙型机 器人分类600kg 垃圾所用的时间相等,即可得出关于x 的分式方程,解之经检验后即可得 出结论;(2) 根据乙型机器人还需工作时间=剩余的工作总量宁乙型机器人的工作效率,即可求出 结论.解:(1)设甲型机器人每小时分类xkg 垃圾.则乙型机器人每小时分类(x- 10) kg 垃 圾, , 800 600依逆思,得: ---- =X x-10解得:x=40,经检验,x=40是原方程的根,且符合题意,.•.X - 10=40 - 10 = 30. 答:甲型机器人每小时分类40kg 垃圾.乙型机器人每小时分类30kg 垃圾.(2) [500 - (40+30) X214-30 = 12 (小时).答:甲型机器人退出后乙型机器人还需要工作12小时.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.2 7. (1) x=—; (2)无解 3(1) 先去分母化为整式方程,再解方程求出解后检验即可;(2) 先去分母化为整式方程,再解方程求出解后检验即可.3- x _ 14+7_2 2 (3-x) =4+x6-2x=4+x-3x=-2由题意可知:型竺 x % + 182x=—,3经检验,x= |•是原分式方程的解, •••原分式方程的解是x=|;(X +1)2-4= X2-1%2 + 2尢 +1 — 4 = — 12x=2x=l,检验:当x=l时,x2-l=0, /.x=l不是原分式方程的解,•••分式方程无解.【点睛】此题考查解分式方程,首先将分式方程去分母化为整式方程,求出整式方程的解后需检验是否符合分式方程,再确定分式方程的解.8.排球的单价为50元,则篮球的单价为80元.设排球的单价为x元,则篮球的单价为(x+30)元,根据总价宁单价=数量的关系建立方程求出其解即可.设排球的单价为x元,则篮球的单价为(x+30)元,根据题意,列方程得:1000 1600x x + 30解得:x=50.经检验,x=50是原方程的根,当x=50 时,x+30=80.答:排球的单价为50元,则篮球的单价为80元.【点睛】本题考查了列分式方程解实际问题的运用,分式方程的解法的运用,总价夕单价=数量的数量关系的运用,解答时根据排球和篮球的数量相等建立方程是关键.(1)利用加减消元法解方程组即可;(2)去分母、移项、解出X的值,最后验根即可.2x + 7y = 5 ①(1)\ …3x + y = -2(2)②x7-①得:19x=-19,解得x=-l把x=-l代入②解得:y=lx = -l ・・・原方程组的解为{ °卜=12x + 5 1 (2) ----- = _ x-3 2去分母得:2(2x+5)=x-3,去括号得:4x+10=x-3,移项得:3x=-13,13系数化为1得:X=-y.经检验,x=——是原方程的解.【点睛】本题考查解二元一次方程组及分式方程,解二元一次方程组的主要思想是消元,其解法有 加减消元法和代入消元法等,解分式方程主要是转化思想,把分式方程转化为整式方程求 解,注意,解分式方程时,最后要检验是否为增根.10. (1)购入B 种原料每千克的价格最高不超过10元;(2)这种产品的批发价为50 元.(1)设B 种原料每千克的价格为x 元,则A 种原料每千克的价格为(x + 10)元 根据使 每件产品的成本价不超过34元列出不等式求解即可;(2)设这种产品的批发价为a 元, 则零售价为(a + 30)元,根据“用10000元通过批发价购买该产品的件数与用16000元 通过零售价购买该产品的件数相同,”正确列出分式方程即可.(1)设B 种原料每千克的价格为X 元,则A 种原料每千克的价格为(X + 10)元, 根据题意得:1.2(兀+10)+兀34, 解得:兀,10.答:购入B 种原料每千克的价格最高不超过10元.(2)设这种产品的批发价为a 元,则零售价为(a+30)元,解得:a = 50, 经检验,a = 50是原方程的根,且符合实际.答:这种产品的批发价为50元.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)根据各数量 间的关系,正确列出一元一次不等式;(2)找准等量关系,正确列出分式方程.11. (1) m=100; (2)共有11种方案;(3)①当50<a<60时,应购进甲种运动鞋 105双,购进乙种运动鞋95双;②当a=60时,所有方案获利都一样;③当60<a<70 时,应购进甲种运动鞋95双,购进乙种运动鞋105双.(1)根据用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同,构根据题意得: 10000 a 16000a + 30建方程即可解决问题;(2) 根据题意,列出不等式组即可解决问题;(3) 设总利润为 W,则 W= (240-100-a) x+80 (200-x) = (60-a) x+16000 (95<x<105), 分三种情况:①当50<a<60时,②当a=60时,③当60<a<70时,进行讨论.解:(1)依题意得,2400 ,整理得,3000 (m-20) -2400m,解得 m=100, m m-20 经检验,m=100是原分式方程的解,所以,m=100; (2) 设购进甲种运动鞋x 双,则乙种运动鞋(200-x)双,(240 —100)x + (160 — 80)(200-%)> 21700①根据题思得,[go_go)* + (160-80)(200-x)< 22300②解不等式①得,x>95,解不等式②得,x<105,所以,不等式组的解集是95<x<105,Tx 是正整数,105-95+1=11, /.共有11种方案;(3) 设总利润为 W,则 W= (240-100-a) x+80 (200-x) = (60-a) x+16000 (95<x<105),① 当50<a<60时,60-a>0, W 随x 的增大而增大,所以,当x=105时,W 有最大值,即此时应购进甲种运动鞋105双,购进乙种运动鞋95 双; ② 当a=60时,60-a=0, W=16000, (2)中所有方案获利都一样;③ 当60<a<70时,60-a<0, W 随x 的增大而减小,所以,当x=95时,W 有最大值, 即此时应购进甲种运动鞋95双,购进乙种运动鞋105双.【点睛】本题考查一元一次不等式组的应用和分式方程的应用,解题的关键是读懂题意,掌握一元 一次不等式组的应用和分式方程的应用.12. 30; 25.试题分析:方程的应用解题关键是找出等量关系,列出方程求解.本题根据购买大枣粽子和 豆沙粽子各花300元,结果购买的大枣粽子比豆沙粽子少2盒,得到等量关系:购买豆沙 粽子的盒数-2=大枣粽子的盒数,由此列出方程,解方程即可.试题解析:设豆沙粽子每盒x 元,则大枣粽子每盒(x+5)元.解得 Xi=-30, X2=25.经检验血=-30, X2=25是原方程的解,但Xi=-30不符合题意,舍去.当 x=25 时,x+5=30.答:大枣粽子每盒30兀,51沙粽子每盒25兀.考点:分式方程的应用.13. {解析}试题分析:根据题意可知分式方程的解法步骤:去分母(同乘以最简公分母), 化为整式方程,解方程,检验,得到原方程的解.试题解析:(1)去分母,得2xx2 + 2 (x+3) =7,解得,x=-, 6经检验,x=Z 是原方程的解. 6依题意得^X300尤+5’(2)方程两边同乘(x-2)得,l-x=-l-2 (x-2), 解得,x=2.检验,当x=2时,X —2=0,所以x=2不是原方程的根,所以原分式方程无解.考点:解分式方程2a14. (1) ----------- ; (2)无解;(3) 1 a-b(1) 先把括号内的分式通分化简,再把除法运算转化为乘法运算,然后约分即可;(2) 先把分式方程化为整式方程求出x 的值,再代入最简公分母进行检验即可;(3) 根据绝对值、二次根式以及平方差公式计算,再合并即可.,2a —b b 、 2b —a (1)( ------------------ )- --------------- a + b a — b a + b_ (2a - b\a -b)- b(a + b)a +b (Q + b)(a - b) -(a - 2b)2a(a - 2b) a + b(Q + b)(o-b) a-2b laa-b (2)方程两边同乘(x-3),得 x-2 = 2(x-3)+ l,x-2 = 2x-6 +1解得:x = 3 ,检验:当x = 3时,最简公分母x-3 = 0,所以x = 3不是原方程的解,所以原方程无解;=5-2^6+276-4 =1【点睛】本题考查了分式的化简,实数的混合运算,解分式方程,解分式方程要注意:(1)解分式方 程的基本思想是“转化思想”,把分式方程转化为整式方程求解;(2)解分式方程一定注意-(3+同(3-同⑶ |2^6-5| + 12要验根.15. (1) x=— : (2)分式方程无解. 3根据解一元一次方程的方法去分母、去括号、移项、合并同类项、化系数为1的步骤求出 x 的值即可.解:(1)去分母得:x 2 - 2x - X 2+4=X +2,经检验% = |是分式方程的解;(2)去分母得:5x+2=3x,解得:x= - 1,经检验x= - 1是增根,分式方程无解.【点睛】考查分式方程的解法,熟练掌握解分式方程的步骤是解题的关键.注意检验.16.甲工程队平均每天完成200米,乙工程队平均每天完成100米.设乙工程队平均每天完成x 米,则甲工程队平均每天完成2x 米,根据工作时间=总工作量* 工作效率结合甲工程队单独完成此项工程比乙工程队单独完成此项工程少用20天,即可得 出关于x 的分式方程,解之经检验后即可得出结论.设乙工程队平均每天完成x 米,则甲工程队平均每天完成2x 米,解得:x=100, 经检验,x=100是原分式方程的解,且符合题意,.•.2x=200. 答:甲工程队平均每天完成200米,乙工程队平均每天完成100米.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.17. (1)甲工程队单独完成建校工程需要180天,乙工程队单独完成建校工程需要90天(2)甲队至少再单独施工30天(1)根据题意可设乙工程队单独完成建校工程需要x 天,则甲工程队单独完成建校工程需 要2x 天,利用甲乙合作工作量之和等于1,可列方程:60解得:x=90,所以 2x=180. (2)根据题意可设甲队再单独施工y 天,然后根据题意得:需兰 > 咯^,解得:y230. 180 90(1)设乙工程队单独完成建校工程需要X 天,则甲工程队单独完成建校工程需要2x 天, 根据题意得:60 (4占),=1,x 2x解得:x=90,经检验,x=90是原方程的解,且符合题意,2x=180.根据题意得: 4000 x 4000 2x'=1,答:甲工程队单独完成建校工程需要180天,乙工程队单独完成建校工程需要90天.(2)设甲队再单独施工y天,根据题意得:孕艮啓x2,180 90解得:y>30,答:甲队至少再单独施工30天.【点睛】本题主要考查分式方程的应用,不等式的应用,解决本题的关键是要熟练确定题目中的等量关系,正确列出方程和不等式.18.(1)方程无解;(2) x=13.(1)两边都乘以最简公分母(x+2) (x-2),把分式方程化为整式方程求解,求出x的值后要代入原方程验根;(2)两边都乘以最简公分母(x+2) (2x-l),把分式方程化为整式方程求解,求出x的值后要代入原方程验根(1)两边同乘以(x+2) (x-2)得:x (x+2) - (x+2) (x-2) =8,去括号,得:x2+2X-X1 +4=8,移项、合并同类项得:2x=4,解得:x=2.经检验,x=2是方程的增根,方程无解.(2)由题意可得:5 (x+2) =3 (2x-l),解得:x=13,经检验,当x=13 时,(x+2) 乂0, 2X-1H0,故x=13是原方程的解.【点睛】本题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出x的值后不要忘记检验.19.原计划的行驶速度为100千米/时.解题时利用“计划用时-实际用时小时”这一等量关系列出分式方程求解即可.60解:设原计划的行驶速度为x千米/时,, 180-60 180-60 12n则: ----------------- =一,x 1.2% 60解得x=100,经检验:x=100是原方程的解,且符合题意,所以x=100.答:原计划的行驶速度为100千米/时.【点睛】本题主要考查分式方程的应用,根据已知条件列出分式方程式解题的关键.20. (1) -; (2) x=l (是增根)4试题分析:(1)方程左右两边同时乘以2x —2,解出x 以后验证是否为增根即可;(2) 方程左右两边同时同时乘以x 2-l,解出x 以后验证是否为增根即可.试题解析:2x+2x —2=3, 4x=5,5 x 二一, 4 经检验X=』是分式方程的解;4(2)(x+1) 2-4=X 2-1, X 2+2X +1—4=x 2 —1, x=l,经检验,x=l 是分式方程的增根,所以方程无解.点睛:解分式方程先将分式方程化为整式方程,解出X 以后一定要验证X 是否为方程的增 根.21. 短绳的单价是10元,则长绳的单价是15元.设短绳的单价是x 元,用相等关系"用12000元购进的长绳与用8000元购进的短绳的数量 相等",列分式方程求解,注意检验.解:设短绳的单价是x 元,则长绳的单价是(x+5)元,由题意,得 12000x + 58000= ------- , 5 解得:x=10,经检验,x=10是原方程的根x+5=15 元,答:短绳的单价是10元,则长绳的单价是15元.22. 45设乙每分钟打字X 个,甲每分钟打(X + 5)个,根据题意可得:饕=弓,去分母可得:(1) X x-l 2x-21000x = 900(x+5),解得% = 45,经检验可得:x = 45,故答案为:45.23. (1) x=—2;(2) a=—3. Q . -1 ry (1)将沪3代入,求解丄〒一一=1的根,验根即可, x-1 1-x (2) 先求出增根是x=l,将分式化简为ax+l+2=x —1,代入x=l 即可求出a 的值.Q . 1 r\解:⑴当a=3时,原方程为上〒一一=1, x-1 1-x方程两边同乘x —1,得3x+l+2=x —1,解这个整式方程得x=—2,检验:将 x=—2 代入 x —1 = —2—1 = —3/0,•••x=—2是原分式方程的解.(2)方程两边同乘x ―1,得ax+l+2=x —1,若原方程有增根,则x —1=0,解得x=l,将x = l 代入整式方程得a+1+2=0,解得a= —3.【点睛】本题考查解分式方程,属于简单题,对分式方程的结果进行验根是解题关键.8尢424. (1) ----------- ; (2) x=l9y分析:(1)先算乘方,然后把除法转化为乘法约分化简;(2)两边都乘以最简公分母(x+l)(x-l),把分式方程转化为整式方程求解,解分式方程要验根;y 2 8x 6 8x 4二・——x --- = ------- -----9x 2 y 3 9y '(2)两边都乘以最简公分母(x+l)(x-l),得 (x + 1)2 - 4 = x 2 -1 .*.X 2+2X +1-4=X 2-1Z2x=2,x = 1.点睛:本题考查了分式的混合运算和分式方程的解法,熟练掌握分式运算的相关法则和解 分式方程的步骤是解答本题的关键.25. A 型机器人每小时搬运6千克化工原料分析:首先设A 型机器人每小时搬运x 千克化工原料,则B 型机器人每小时搬运(x+3)千克 化工原料,根据题意列出分式方程,从而得出答案.详解: (1)原式=詁。
人教版八年级上册数学第15章《分式》单元测试卷(含答案解析)

人教版八年级上册数学第15章《分式》单元测试卷一.选择题(共10小题,满分30分)1.下列式子中,属于分式的是()A.B.C.D.2.分式的值是零,则x的值为()A.3B.﹣3C.3或﹣3D.03.已知某新型感冒病毒的直径约为0.000002022米,将0.000002022用科学记数法表示为()A.2.022×10﹣5B.0.2022×10﹣5C.2.022×10﹣6D.20.22×10﹣74.计算的结果是()A.B.C.D.5.在①x2﹣x+,②﹣3=a+4,③+5x=6,④=1中,其中关于x的分式方程的个数为()A.1B.2C.3D.46.如果把分式中的x、y的值都扩大2倍,那么分式的值()A.扩大2倍B.扩大4倍C.扩大6倍D.不变7.若将分式与通分,则分式的分子应变为()A.6m2﹣6mn B.6m﹣6nC.2(m﹣n)D.2(m﹣n)(m+n)8.分式,的最简公分母是()A.a B.ab C.3a2b2D.3a3b39.计算结果等于2的是()A.|﹣2|B.﹣|2|C.2﹣1D.(﹣2)0 10.已知,则的值是()A.66B.64C.62D.60二.填空题(共10小题,满分30分)11.分式的最简公分母是.12.要使分式有意义,则分式中的字母b满足条件.13.若表示一个整数,则整数x可取的个数有个.14.约分:=.15.方程的解是.16.若解分式方程产生增根,则m=.17.用漫灌方式给绿地浇水,a天用水10吨,改用喷灌方式后,10吨水可以比原来多用5天,那么喷灌比漫灌平均每天节约用水吨.18.已知若x﹣=3,则x2+=.19.将分式化为最简分式,所得结果是.20.扶贫工作小组对果农进行精准扶贫,帮助果农将一种有机生态水果拓宽了市场.与去年相比,今年这种水果的产量增加了1000千克,每千克的平均批发价比去年降低了1元,批发销售总额比去年增加了20%.已知去年这种水果批发销售总额为10000元,则这种水果今年每千克的平均批发价是元.三.解答题(共7小题,满分90分)21.神舟十三号飞船搭载实验项目中,四川省农科院生物技术研究所共有a粒水稻种子,每粒种子质量大约0.0000325千克;甘肃省天水市元帅系苹果的b粒干燥种粒,每粒种子质量大约0.002275千克,参与航天搭载诱变选育.(1)用科学记数法表示上述两个数.(2)若参与航天搭载这两包种子的质量相等,求的值.(3)若这两包种子的质量总和为1.04千克,水稻种子粒数是苹果种子粒数10倍,求a,b的值.22.若式子无意义,求代数式(y+x)(y﹣x)+x2的值.23.下列分式中,哪些是最简分式?,,;,,,.24.(1)计算:;(2)解不等式组:.25.若关于x 的方程有增根,求实数m的值.26.一船在河流上游A港顺流而下直达B港,用一个小时将货物装船后返航,已知船在静水中的速度是50千米/时,A、B两地距离为150千米,则该船从A港出发到返回A港共用了7.25小时,如果设水流速度是x千米/时,那么x应满足怎样的方程?27.阅读理解材料:为了研究分式与分母x的变化关系,小明制作了表格,并得到如下数据:x…﹣4﹣3﹣2﹣101234…10.50.0.25……﹣0.25﹣0.﹣0.5﹣1无意义从表格数据观察,当x>0时,随着x 的增大,的值随之减小,并无限接近0;当x<0时,随着x 的增大,的值也随之减小.材料2:对于一个分子、分母都是多项式的分式,当分母的次数高于分子的次数时,我们把这个分式叫做真分式.当分母的次数不低于分子的次数时,我们把这个分式叫做假分式.有时候,需要把一个假分式化成整式和真分式的代数和,像这种恒等变形,称为将分式化为部分分式.如:.根据上述材料完成下列问题:(1)当x>0时,随着x的增大,1+的值(增大或减小);当x<0时,随着x的增大,的值(增大或减小);(2)当x>1时,随着x的增大,的值无限接近一个数,请求出这个数;(3)当0≤x≤2时,求代数式值的范围.。
人教版 八年级数学上册 第15章分式 分式方程及其应用专题(含答案)

人教版 八年级数学上册 第15章 分式方程及其应用(含答案) 例1. 解方程:x x x --+=1211 分析:首先要确定各分式分母的最简公分母,在方程两边乘这个公分母时不要漏乘,解完后记着要验根解:方程两边都乘以,得()()x x +-11 x x x x x x x x x 22221112123232--=+---=--∴==()()(),即,经检验:是原方程的根。
例2. 解方程x x x x x x x x +++++=+++++12672356 解:原方程变形为:x x x x x x x x ++-++=++-++67562312 方程两边通分,得 167123672383692()()()()()()()()x x x x x x x x x x ++=++++=++=-∴=-所以即 经检验:原方程的根是x =-92。
例3. 解方程:121043323489242387161945x x x x x x x x --+--=--+-- 解:由原方程得:3143428932874145--++-=--++-x x x x 即2892862810287x x x x ---=---于是,所以解得:经检验:是原方程的根。
1898618108789868108711()()()()()()()()x x x x x x x x x x --=----=--== 例4. 解方程:61244444402222y y y y y y y y +++---++-=2 解:原方程变形为:622222220222()()()()()()()y y y y y y y y ++-+--++-= 约分,得62222202y y y y y y +-+-++-=()()方程两边都乘以()()y y +-22,得 622022()()y y y --++= 整理,得经检验:是原方程的根。
21688y y y =∴==5、中考题解:例1.若解分式方程产生增根,则m 的值是( )2111x x m x x x x +-++=+A. B. --12或-12或C. D. 12或12或- 分析:分式方程产生的增根,是使分母为零的未知数的值。
八年级数学上册第十五章 第3节 分式方程 解答题专题训练 8含答案解析.doc

八年级数学上册第十五章第3节分式方程解答题专题训练(8)一、解答题1.解方程:^1x + 3 2x + 62.(1)分解因式:x(a-b)+y(a-b)3 4(2)解分式方程: ----- =—X-1 X3.在争创全国卫生城市的活动中,我县一青年突击队决定清运一重达50吨的垃圾,请根据以下信息,帮小刚计算青年突击队的实际清运速度。
(1)清运开工后,由于附近居民主动参加义务劳动,清运速度比原计划提高了一倍。
(2)结果比原计划提前了 2小时完成任务。
4.超市老板大宝第一次用1000元购进某种商品,由于畅销,这批商品很快售完,第二次去进货时发现批发价上涨了 5元,购买与第一次相同数量的这种商品需要1250元.(1)求第一次购买这种商品的进货价是多少元?(2)若这两批商品的售价均为32元,问这两次购进的商品全部售完(不考虑其它因素)能赚多少元钱?5.解方程:2-x 1 ,(1) ---- + ---- = 1x — 3 3 — x3 x + 2八(2) --------------- = 0%-1 %(% -1)6.根据以下信息,解答下列问题.(1)小华同学设乙型机器人每小时搬运xkg产品,可列方程为—小惠同学设甲型机器人搬运800kg 所用时间为v小时,可列方程为一(2)请你按照(1)中小华同学的解题思路,写出完整的解答过程.7.计算:(1)sin30° - (2)解方程;8.新冠肺炎疫情防控期间,学校为做好预防性消毒工作,开学初购进A、8两种消毒10.解方程: 6 x 2-l液,其中A 消毒液的单价比3消毒液的单价多40元,用3200元购买3消毒液的数量是用 2400元购买A 消毒液数量的2倍.(1) 求两种消毒液的单价;(2) 学校准备用不多于6800元的资金购买A 、3两种消毒液共70桶,问最多购买A 消 毒液多少桶?9. 甲乙两名工人各承包了一段500米的道路施工工程,已知甲每天可完成的工程比乙多5 米.两人同时开始施工,当乙还有100米没有完成时,甲已经完成全部工程.(1) 求甲、乙每天各可完成多少米道路施工工程?(2) 后来两人又承包了新的道路施工工程,施工速度均不变,乙承包了 500米,甲比乙多 承包了 100米,乙想:这次我们一定能同时完工了!请通过计算说明乙的想法正确吗?若 正确,求出两人的施工时间;若不正确,则应该如何调整其中一人的施工速度才能使两人 同时完工,请通过计算给出调整方案.3x+2y = -12x + 3y = T-9 1 4(2) -- = ------------- .4 — x 2 + 尤 2 — x11. 某商厦分别用600元购进甲、乙两种糖果,因为甲糖果的进价是乙糖果进价的1.2倍,所以进回的甲糖果的重量比乙糖果少10kg.(1) 甲、乙两种糖果的进价分别是多少?(2) 若两种糖果的销售利润率均为10%,则两种糖果的售价分别是多少?(3) 如果将两种糖果混合在一起销售,总利润不变,那么混合后的糖果单价应定为多少 元?12. 王老师从学校出发,到距学校2000m 的某商场去给学生买奖品,他先步行了 800m后,换骑上了共享单车,到达商场时,全程总共刚好花了 15min .已知王老师骑共享单车 的平均速度是步行速度的3倍(转换出行方式时,所需时间忽略不计).(1) 求王老师步行和骑共享单车的平均速度分别为多少?(2) 买完奖品后,王老师原路返回,为按时上班,路上所花时间最多只剩10分钟,若王 老师仍采取先步行,后换骑共享单车的方式返回,问:他最多可步行多少米?13. 某市从今年1月1日起调整居民用水价格,每立方米水费上涨S ,小丽家去年12月 的水费是15元,而今年7月的水费则是30元.已知小丽家今年7月的用水量比去年12 月的用水量多5m 3,求小丽家今年7月的用水量.14. 小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较 拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比 走路钱一少用10分钟到达.求小明走路线一时的平均速度./ 、 “、e x 1 2x + 215. (1)解万程:一+1 = ---------X+1 X, 7 3(2)解方程: -- C ------ 2x+x x-x记者:你们是用9天完成4800长的高架桥铺设任务的?眼(2)解方程:土 +: = 上19. (1)化、1 4 (1) ----- =—;x-2 x2 -4 (2) 1 -----3x-l 6x-222 . (本题共10当a为何值x-1x-2x-2_ 2x+ax + 1 (x-2)(x+ l)的解是负16.“绿水青山就是金山银山”,为了进一步优化河道环境,甲乙两工程队承担河道整治任务,甲、乙两个工程队每天共整治河道1500米,甲工程队整治3600米所用的时间与乙工程队整治2400米所用时间相等。
八年级数学上册第十五章 第3节 分式方程 解答题专题训练 7含答案解析.docx

八年级数学上册第十五章第3节分式方程解答题专题训练⑺一、解答题1.解方程(8分)x- 1 xX- 1 X2 - 12.为了创建全国卫生城市,某社区要清理一个卫生死角内的垃圾,租用甲、乙两车运送,若两车合作,各运12趟才能完成,需支付运费共4 800元.若甲、乙两车单独运完此堆垃圾,则乙车所运趟数是甲车的2倍,已知乙车每趟运费比甲车少200元.⑴分别求出甲、乙两车每趟的运费;(2)若单独租用甲车运完此堆垃圾,需多少趟?⑶若同时租用甲、乙两车,则甲车运x趟,乙车运y趟,才能运完此堆垃圾,其中x, y均为正整数.①当x=10 时,y=_;当y=10 时,x= _____:②用含x的代数式表示y;探究:⑷在⑶的条件下:①用含x的代数式表示总运费w;②要想总运费不大于4 000元,甲车最多需运多少趟?(1)化简:(2°; + 2°一_ )十互3.— 1 a~ — 2a +1 a— 1x + 1 2(2)解分式方程:- -------- =1x-3 x+34.某校服厂准备加工500套运动服,在加工200套后,改进工艺,使得工作效率比原计划提高20%,结果共用9天完成任务,问校服厂原计划每天加工多少套?5.列方程解下列实际问题某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天完成绿化的面积是乙队每天完成绿化面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.求甲、乙两工程队每天能完成绿化的面积分别是多少?6.某市组织学术研讨会,需租用客车接送参会人员往返宾馆和观摩地点,客车租赁公司现有45座和60座两种型号的客车可供租用,已知60座的客车每辆每天的租金比45座的贵100 元.(1)会务组第一天在这家公司租了2辆60座和5辆45座的客车,一天的租金为1600 元,求45座和60座的客车每辆每天的租金各是多少元?(2)由于第二天参会人员发生了变化,因此会务组需重新确定租车方案,方案1:若只租用45座的客车,会有一辆客车空出30个座位;方案2:若只租用60座客车,正好坐满且 比只租用45座的客车少用两辆① 请计算方案1,2的费用;② 如果你是会务组负责人,从经济角度考虑,还有其他方案吗?7. 解下列分式方程:(2) --------- 1 = -------------------- x-1 (x-l)(x + 2)&列方程解应用题:港珠澳大桥是中国中央政府支持香港、澳门和珠三角地区城市快速发展的一项重大举措, 港珠澳大桥东起香港国际机场附近的香港口岸人工岛,向西横跨伶仃洋海域后连接珠海和 澳门,止于珠海洪湾,总长55千米,是粤港澳三地首次合作共建的超大型跨海交通工 程.某天,甲乙两辆巴士均从香港口岸人工岛出发沿港珠澳大桥开往珠海洪湾,甲巴士平 均每小时比乙巴士多行驶10千米,其行驶时间是乙巴士行驶时间的丄.求乘坐甲巴士从香6港口岸人工岛出发到珠海洪湾需要多长时间.9. 2019年4月12日,安庆“筑梦号”自动驾驶公开试乘体验正式启动,让安庆成为全国 率先开通自动驾驶的城市,智能、绿色出行的时代即将到来.普通燃油车从A 地到B 地, 所需油费108元,而自动驾驶的纯电动车所需电费27元,已知每行驶I 千米,普通燃油汽 车所需的油费比自动的纯电动汽车所需的电费多0.54元,求自动驾驶的纯电动汽车每行驶 1千米所需的电费.10. 2020年新冠肺炎疫情影响全球,在我国疫情得到有效控制的同时,其他国家感染人 数持续攀升,呼吸机作为本次疫情中重要的治疗仪器,出现供不应求,而我国是全球最大 的呼吸机生产国•很多企业承担了大量生产呼吸机的任务.现某企业接到订单,需生产4,B 两种型号的呼吸机共7700台,并要求生产的A 型呼吸机数量比B 型呼吸机数量多 2100 台.(1)生产A, B 型两种呼吸机的数量分别是多少台?如果该生产厂家共有26套生产呼吸机的机床设备,同时生产这两种型号的呼吸机,每套设 备每天能生产A 型呼吸机90台或B 型呼吸机60台,应各分配多少套设备生产A 型呼吸机 和B 型呼吸机,才能确保同时完成各自的任务.12. 在国庆70周年之际,为表达对人民子弟兵的敬意,某班将募集到的60件小礼品邮寄11. (1)解不等式组 % + 2< 3%4%-2<x+4(2)解分式方程口x-2=1给某边防哨卡,计划每名战士分得数量相同的若干个小礼品,结果还剩5个;改为每名战士再多分1个,结果还差6个,这个哨卡共有多少名战士?13.动漫节开幕前,某动漫公司预测某种动漫玩具能够畅销,就分两批分别用32000元和68000元购进了这种玩具销售,其中第二批购进数量是第一批购进数量的2倍,但每套进价多了10元.(1)该动漫公司这两批各购进多少套玩具?(2)如果这两批玩具每套售价相同,且全部销售后总利润不少于20000元,那么每套售价至少是多少元?JQ 314.解分式方程:R —1 = (_1)(乂 + 2)15.某班班委主动为班上一位生病住院的同学筹集部分医药费,计划筹集450元,由全体班委同学分担,有5名同学闻讯后也自愿参加捐助,和班委同学一起平均分担,因此每个班委同学比原先少分担45元,问:该班班委有几个?16.甲、乙两公司为某基金会各捐款30 000元.已知甲公司的人数比乙公司的人数多20%,乙公司比甲公司人均多捐20元.甲、乙两公司各有多少人?17.解分式方程:x+4 3(2) ---------- —------I丿兀(兀一1) x-118.已知关于x的分式方程^-^-- = 1.x-2 x⑴若方程的增根为x=2,求a的值;⑵若方程有增根,求a的值;⑶若方程无解,求a的值.19.某文具厂加工一种学生画图工具2500套,在加工了1000套后,采用了新技术,使每天的工作效率是原来的1.5倍,结果提前5天完成任务.求该文具厂采用新技术前平均每天加工多少套这种学生画图工具.20.汽车比步行每小时快24千米,自行车比步行每小时快12千米,某人从A地先步行4 千米,然后乘汽车16千米到达B地,又骑自行车返回A地,往返所用时间相同,求此人步行速度.21 •阅读下列材料:在学习"分式方程及其解法"过程中,老师提出一个问题:若关于x的分式方程亠 + — = 1的解为正数,求a的取值范围?X-1 L-X经过小组交流讨论后,同学们逐渐形成了两种意见:小明说:解这个关于X的分式方程,得到方程的解为x=a-2.由题意可得a-2>0,所以a>2,问题解决.小强说:你考虑的不全面.还必须保证时3才行.老师说:小强所说完全正确.请回答:小明考虑问题不全面,主要体现在哪里?请你简要说明:完成下列问题:9 my — 1⑴已知关于X的方程勺解为负数,求m的取值范围;3 — 2x 2 —rix(2)若关于x的分式方程一+-—=-1无解.直接写出n的取值范围.x~3 3 — x22.一项工程,甲队单独做需40天完成,若乙队先做30天后,甲、乙两队一起合做20 天恰好完成任务,求乙队单独做需要多少天能完成任务?23.解下列方程3 x _(1)— _ — = 一2 ;x-2 2-x24.某商店第一次用600元购进2B铅笔若干支,第二次又用600元购进该款铅笔,但这次每支的进价是第一次进价的丄倍,购进数量比第一次少了30支.(1)求第一次每支铅笔的进价是多少元?(2)若要求这两次购进的铅笔按同一价格全部销售完毕后获利不低于420元,问每支售价至少是多少元?25.岳阳王家河流域综合治理工程已正式启动,其中某项工程,若由甲、乙两建筑队合做,6个月可以完成,若由甲、乙两队独做,甲队比乙队少用5个月的时间完成.(1)甲、乙两队单独完成这项工程各需几个月的时间?(2)已知甲队每月施工费用为15万元,比乙队多6万元,按要求该工程总费用不超过141万元,工程必须在一年内竣工(包括12个月).为了确保经费和工期,采取甲队做a 个月,乙队做b个月(a、b均为整数)分工合作的方式施工,问有哪几种施工方案?26.某班有45名同学参加紧急疏散演练.对比发现:经专家指导后,平均每秒撤离的人数是指导前的3倍,这45名同学全部撤离的时间比指导前快3秒.求指导前平均每秒撤离的人数. 27.东营市新建火车站站前广场需要绿化的面积为46000平方米,施工队在绿化了22000 平方米后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程,则该项绿化工程原计划每天完成多少平方米?28.解答下列各题:x+2y x+2y2x x + 129.当m为何值时关于x的方程竺+ —=的解是非负数?x-1 1-x丄3 2f2x+v = 5 30.(1)解方程:x x+2;(2)解方程组:丘-)=1【答案与解析】一、解答题1.(1) x=2;(2)无解试题分析:首先进行去分母,将分式方程转化为整式方程,然后进行求解,最后需要对所求的解进行验根.试题解析:(1) %2—2x+2=x"—x —x=—2 x=2经检验,x=2是原分式方程的解.x2+2x+l~4=x2 -1 2x=2 x=1经检验,x=l是原方程的增根原方程无解.考点:解分式方程2.(1)甲、乙两车每趟的运费分别为300元、100元;(2)单独租用甲车运完此堆垃圾,需运18 趟;(3) @16, 13, y=36 —2x; (4)①w=100x+3600,②甲车最多需运4 趟.(1)设甲、乙两车每趟的运费分别为m元,n元,根据题意列出二元一次方程组,求解即可;(2)设单独租用甲车运完此堆垃圾,需运a趟,由题意累出分式方程,求解即可;(3)①列出分式方程求解即可;②根据题意,列出分式方程转换形式即可;(4)①结合(1)和(3)的结论,列出函数关系式即可;②根据题意列出不等式,求解即可.⑴设甲、乙两车每趟的运费分别为m元,n元,由题意,得m-n = 20012(m+n) = 4800m = 300解得H = 100答:甲、乙两车每趟的运费分别为300元、100元;(2)设单独租用甲车运完此堆垃圾,需运a趟,由题意,得解得a = 18经检验,a = 18是原方程的解,且符合题意. 答:单独租用甲车运完此堆垃圾,需运18趟;⑶①由题意,得—= 1, y = 16; 1 = 1, x = 13;18 36 18 36②由题意,得話討,・*.y=36 — 2x ;(4)①由(1)和(3),得总运费为 w=300x+100y=300x+100(36—2x)=100x+3600,②由题意,得 100x+3600<4 000,/.x<4.答:甲车最多需运4趟.【点睛】此题主要考查了分式方程的应用以及一元一次方程、二元一次方程组、一元一次不等式的 应用,关键是正确理解题意,找出题目中的等量关系,列出方程求解.3. (1) — ;(2) x = —9 .2 (1)先提取公因式,再约分后进行分式的加减,最后计算分式的除法;(2)先化为整式 方程,解整式方程后注意检验是否为原方程的解./ 八 /2夕+2。
人教版 八年级上册数学 15.3 分式方程 同步课时训练(含答案)
人教版初二数学15.3 分式方程同步课时训练一、选择题1. 下列关于x的方程:+x=1,+===2,其中,分式方程有 ()A.1个B.2个C.3个D.4个2. 解分式方程+=,分以下四步,其中错误的一步是()A.最简公分母是(x-1)(x+1)B.方程两边乘(x-1)(x+1),得整式方程2(x-1)+3(x+1)=6C.解这个整式方程,得x=1D.原方程的解为x=13. 把分式方程2x+4=1x转化为一元一次方程时,方程两边需同乘()A.x B.2xC.x+4 D.x(x+4)4. 西宁市创建全国文明城市已经进入倒计时!某环卫公司为清理卫生死角内的垃圾,调用甲车3小时只清理了一半垃圾,为了加快进度,再调用乙车,两车合作1.2小时清理完另一半垃圾.设乙车单独清理全部垃圾所用的时间为x小时,根据题意可列出方程为()A.+=1B.+=C.+=D.+=15. [2018·益阳] 体育测试中,小进和小俊进行800米跑测试,小进的速度是小俊速度的1.25倍,小进比小俊少用了40秒.设小俊的速度是x米/秒,则下列所列方程正确的是()A.40×1.25x-40x=800B.-=40C.-=40D.-=406. 若关于x 的方程3x -2x +1=2+mx +1无解,则m 的值为( ) A .-5 B .-8C .-2D .57.从-3,-1,12,1,3这五个数中,随机抽取一个数,记为a .若数a 使关于x 的不等式组⎩⎪⎨⎪⎧13(2x +7)≥3x -a <0无解,且使关于x 的分式方程x x -3-a -23-x=-1有整数解,那么这5个数中所有满足条件的a 的值之和是( )A. -3B. -2C. -32D. 128. 若关于x 的方程=有增根,则m 的值与增根x 的值分别是( )A .-4,2B .4,2C .-4,-2D .4,-2二、填空题9. 分式方程5y -2=3y 的解为________.10. 若关于x 的方程ax +1x -1-1=0有增根,则a 的值为________.11. 若式子1x -2和32x +1的值相等,则x =________.12. 当a =________时,关于x 的方程x +1x -2=2a -3a +5的解为x =0.13. 若分式方程x -ax +1=a 无解,则a 的值为________.14. 在正数范围内定义一种运算“※”,其规则为a ※b=+,如2※4=+=.根据这个规则求得x ※(-2x )=的解为 .15. 当a=________时,关于x的方程axa-1-2x-1=1的解与方程x-4x=3的解相同.16. 拓广应用已知关于x的分式方程kx+1+x+kx-1=1的解为负数,则k的取值范围是________________.三、解答题17.甲、乙两同学的家与学校的距离均为3000米.甲同学先步行600米,然后乘公交车去学校.乙同学骑自行车去学校.已知甲步行速度是乙骑自行车速度的12,公交车的速度是乙骑自行车速度的2倍.甲乙两同学同时从家出发去学校,结果甲同学比乙同学早到2分钟.(1)求乙骑自行车的速度;(2)当甲到达学校时,乙同学离学校还有多远?18. 解分式方程:(1)23+x3x-1=19x-3;(2)xx+2=2x-1+1;(3)7x2+x+3x2-x=6x2-1.19. 小明用12元买软面笔记本,小丽用21元买硬面笔记本.(1)若每本硬面笔记本比每本软面笔记本贵1.2元,则小明和小丽能买到相同数量的笔记本吗?(2)已知每本硬面笔记本比每本软面笔记本贵a元,是否存在正整数a,使得硬面笔记本、软面笔记本的价格都是正整数,并且小明和小丽能买到相同数量的笔记本?若存在,求出a的值;若不存在,请说明理由.20. 甲、乙两商场自行定价销售同一种商品,销售时得到如下信息:信息1:甲商场将该商品提价15%后的售价为1.15元;信息2:乙商场将该商品提价20%后,用6元钱购买该商品的件数比提价前少买1件.(1)该商品在甲商场的原价为元.(2)求该商品在乙商场的原价是多少.(3)甲、乙两商场把该商品均按原价进行了两次价格调整.甲商场:第一次提价的百分率是a,第二次提价的百分率是b;乙商场:两次提价的百分率都是.(a>0,b>0,a≠b)甲、乙两商场中哪个商场提价较多?请说明理由.人教版初二数学15.3 分式方程同步课时训练-答案一、选择题1. 【答案】C2. 【答案】D3. 【答案】D4. 【答案】B[解析] 由甲、乙两车合作1.2小时完成整个工作的一半,可得+=.5. 【答案】C [解析] 小进跑800米用的时间为秒,小俊跑800米用的时间为秒.∵小进比小俊少用了40秒, ∴所列方程是-=40.6. 【答案】A[解析] 分式方程去分母转化为整式方程,由分式方程无解得到x+1=0,求出x 的值,代入整式方程求出m 的值即可.具体的解答过程如下: 去分母,得3x -2=2x +2+m.由分式方程无解,得到x +1=0,即x =-1. 代入整式方程,得-5=-2+2+m. 解得m =-5. 故选A.7.【答案】B【解析】解不等式组得⎩⎪⎨⎪⎧x ≥1x <a ,∵原不等式组无解,∴a ≤1,则a 不能取五个已知值中的3;解分式方程得x =5-a2,又∵分式方程有整数解,∴5-a 2为整数,且5-a 2≠3,∴a 只能从-3,-1,12,1中取-3,1,所以满足条件的a 的值的和为-3+1=-2.8. 【答案】B二、填空题9. 【答案】y =-3[解析] 去分母,得5y =3y -6,解得y =-3.经检验,y =-3是分式方程的解. 则分式方程的解为y =-3.10.【答案】-1【解析】将方程两边同时乘以x -1,得ax +1-x +1=0,则(a -1)x +2=0,∵原方程有增根,∴x =1,将x =1代入(a -1)x +2=0中,得a -1+2=0,a =-1.11. 【答案】7 11.1512. 【答案】±1[解析] 去分母,得x -a =a(x +1).整理,得(a -1)x =-2a.当a =1时,0·x =-2,该方程无解.当a≠1时,x =-2a a -1.若x =-1,则原分式方程无解,此时-1=-2a a -1,解得a =-1.综上可知,当a =±1时原分式方程无解. 故答案为±1.13. 【答案】17 [解析] 由方程x -4x =3得x -4=3x.解得x =-2.当x =-2时,x≠0.所以x =-2是方程x -4x =3的解.又因为方程ax a -1-2x -1=1的解与方程x -4x=3的解相同,因此x =-2也是方程ax a -1-2x -1=1的解.这时-2a a -1-2-2-1=1.解得a =17.当a =17时,a -1≠0,故a =17满足条件.14. 【答案】x=[解析] x ※(-2x )=+=,即-=,解得x=.经检验,x=是原分式方程的解.15. 【答案】解:(1)方程两边同乘(9x -3),得2(3x -1)+3x =1.解得x =13. 检验:当x =13时,9x -3=0, 所以x =13不是原方程的解. 所以原分式方程无解.(2)方程两边同乘(x -1)(x +2), 得x(x -1)=2(x +2)+(x -1)(x +2). 解得x =-12.检验:当x =-12时,(x -1)(x +2)≠0. 所以原分式方程的解为x =-12. (3)方程两边同乘x(x +1)(x -1),得16. 【答案】k>-12且k≠0 [解析] 去分母,得k(x -1)+(x +k)(x +1)=(x +1)(x -1).整理,得(2k +1)x =-1.因为方程kx +1+x +k x -1=1的解为负数,所以2k +1>0且x≠±1, 即2k +1>0且-12k +1≠±1. 解得k>-12且k≠0,即k 的取值范围为k>-12且k≠0. 故答案为k>-12且k≠0.三、解答题17. 【答案】解:(1)设乙骑自行车的速度为2x 米/分,则甲步行的速度为x 米/分,公交车的速度为4x 米/分.(1分)由题意列方程为:600x +3000-6004x +2=30002x ,(4分)解得: x =150,(5分)经检验得:当x =150时,等式成立, ∴2x =2×150=300 ,(6分)答:乙骑自行车的速度为300米/分.(2)甲到达学校的时间为600x +3000-6004x =600150+3000-6004×150=8(分),(7分)∴乙8分钟内骑车的路程为:300×8=2400(米),(8分) ∴乙离学校还有3000-2400=600(米).(9分)答:当甲到达学校时,乙同学离学校还有600米.18. 【答案】x-1)+3(x+1)=6x.解得x=1.检验:当x=1时,x(x+1)(x-1)=0,所以x=1不是原方程的解.故原分式方程无解.19. 【答案】解:(1)设买每本软面笔记本花费x元,则买每本硬面笔记本花费(x+1.2)元.由题意,得=,解得x=1.6.经检验,x=1.6是原分式方程的解.此时==7.5(不符合题意),∴小明和小丽不能买到相同数量的笔记本.(2)存在.设买每本软面笔记本花费m元(1≤m≤12,且m为整数),则买每本硬面笔记本花费(m+a)元.由题意,得=,解得a=m.∵a为正整数,∴m=4,a=3或m=8,a=6或m=12,a=9.当m=8,a=6时,==1.5(不符合题意).∴a的值为3或9.20. 【答案】解:(1)1(2)设该商品在乙商场的原价为x元.则-=1,解得x=1.经检验,x=1是原分式方程的解,且符合题意.答:该商品在乙商场的原价为1元.(3)乙商场提价较多.理由:由于原价均为1元,则甲商场两次提价后的价格为(1+a)(1+b)=(1+a+b+ab)元,乙商场两次提价后的价格为1+2=1+a+b+2元.因为2-ab=2>0,所以乙商场提价较多.。
人教版八年级数学上册第十五章《分式》15.3分式方程同步练习题
人教版八年级数学(上)第十五章《分式》15.3分式方程同步练习题学校:___________姓名:___________班级:___________得分:___________一、选择题(本大题共10小题,共30分)1.A,B两地相距80千米,甲由A去B,1小时后,乙用1.5倍的速度从A地出发追甲,追到B地时,甲已早到20分钟,则甲的速度为()。
A.40千米/小时B.45千米/小时C.50千米/小时D.60千米/小时2.某市开发区在一项工程招标时,接到甲、乙两个工程队的投标书,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案:①甲队单独完成这项工程,刚好如期完工;②乙队单独完成此项工程要比规定工期多用5天;③■,剩下的工程由乙队单独做,也正好如期完工.某同学设规定的工期为x天,根据题意列出了方程,则方案③中被墨水污染的部分应该是()。
A.甲先做4天B.甲、乙合做4天C.甲先做工程的D.甲、乙合做工程的3.关于方程的根,下列说法正确的是()。
A.x=0是它的增根B.x=-1是它的增根C.原方程无解D.x=1是它的根4.对于两个不相等的实数a,b,我们规定符号min{a,b}表示a,b中较小的数,如:min{3,5}=3.按照这个规定.方程的解为()。
A.-2B.-3C.D.5.已知点P(2a-1,a-2)关于x轴的对称点在第一象限内,且a为整数,则关于x的分式方程的解是()。
A.5B.1C.3D.不能确定6.下列方程中,不是分式方程的是()。
A. B. C. D.7.下列方程是关于x的分式方程的是()。
A. B. C. D.8.某中学为了创建“最美校园图书屋”,新购买了一批图书,其中科普类图书平均每本书的价格是文学类图书平均每本书价格的1.2倍.已知学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,那么学校购买文学类图书平均每本书的价格是多少元?设学校购买文学类图书平均每本书的价格是x元,则下面所列方程中正确的是()。
人教版八年级上册 第15章 分式 153 分式方程 同步训练题 含答案.doc
3言去分母,得到正确的整式方程是(A. 1—2x = 3B. x — 1—2x=3C. l + 2x=3D. x —l+2x=3 6.将分式方程1-刍 初二数学人教版八年级上册 第15章分式15.3分式方程同步训练题1. 下列方程中分式方程的个数有()©x 2+|=0;②:x+5x-6=0; (§)|+3=0;④母y-殆A. 1个B. 2个C. 3个D. 4个2. 下列方程不是分式方程的是( )A 」+x=l B.|■+今=§ C.W =2 D.°= 7 x 3 4 5 1+x 1+x x x —7X 23. 解分式方程1时,去分母后可得到( )A. x(2+x)-2(3+x)=lB. x(2+x) — 2 = 2+xC. x(2+x)-2(3+x) = (2+x)(3 + x)D. x —2(3+x) = 3+xx 34. 分式方程土一 1= 一 的解是( )x —1 (x —l) (x 十 2)2A. x=lB. x= — 1+^/5C. x=—^D.无解 2 15. 把分式方程土=;转化为一元一次方程时,方程两边需同乘以() A. x B. 2x C. x+4 D. x(x+4)7若关于X 的分式方程 W 无解, 则m 的值为()A. -1.5B. 1C. -1.5 或2 D. —0.5 或一1.5 A. x= — l B. x=l C. x =2 D.32 9.解分式方程•3 x+l X- x2我时会产生增根,则增根的值是() A 7 500 7 500 ,匚A. ------— 1。
= 15 x 1.2x 7 500 7 500 1 'x 1.2x 4 C.K-号=15 7.5 7.5 1 • x 1.2x —41 ? 11-分式方程表 的解是. 14,当 x 时’两分式K 与六的值相等.台机器. 3 48.分式方程广箱的解是(A. x=0B. x=0 和 x= —1C. x= —1D.无法确定 10.两个小组同时从甲地出发,匀速步行到乙地.甲、乙两地相距7 500米,第 一组的步行速度是第二组的1.2倍,并且比第二组早15分钟到达乙地.设第二 组的步行速度为x 千米/小时,根据题意可列方程是( )12,在数轴上,点A, B 对应的数分别为2,且A, B 两点关于原点对称,则x 的值为.k 一1 i k 一513.若分式方程有增根x=T ,那么k 的值为15.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需 时间与原计划生产450台机器所需时间相同,现在平均每天生产16. 国家实施了中央财政补贴条例支持高效节能电器的推广使用,某款定速空调 在条例实施后,每购买一台客户可获财政补贴200元,若同样用2.2万元所购买 的此款空调台数,条例实施后比条例实施前多10%,则条例实施前此款空调的售价为元.V x —I—1<17.已知关于x的分式方程专r+—=i的解为负数,则k的取值范围是x+1 X—118.解下列方程.^+1=^-X—2 2—x19.若关于x的方程一无解,求k的值.X—2 x+2 x z—420.甲、乙两地相距240千米,一辆小轿车的速度是货车速度的2倍,走完全程,小轿车比货车少用2小时,求货车的速度.参考答案1—10 CBCDD BDDCD11.x= — l12. 113.914.-815.20016.220017.k>-|< k#018.解:去分母,得:x—3+x—2=—3,整理,得:2x=2, /.x=l,经检验,x= 1是原方程得解319.k= — 1或一彳时,原分式方程无解240 24020.解:设货车速度是x千米/小时,根据题意得:皆2一笠=2,解得:x=60,经检验x=60是分式方程的解,且符合题意,答:货车的速度是60千米/小时。
八年级数学上册第十五章《分式方程》课时练习题(含答案)
八年级数学上册第十五章《15.3分式方程》课时练习题(含答案)一、选择题1.方程2152x x =+-的解是( ) A .=1x - B .5x = C .7x = D .9x = 2.若关于x 的分式方程322x m x x -=--有增根,则m 的值是( ) A .1B .﹣1C .2D .﹣2 3.关于x 的分式方程2m x x +--3=0有解,则实数m 应满足的条件是( ) A .m =﹣2B .m ≠﹣2C .m =2D .m ≠2 4.分式方程3262(2)x x x x =+--的解是( ) A .0 B .2 C .0或2 D .无解5.已知111,1a b b c=-=-,用a 表示c 的代数式为( ) A .11c b =- B .11a c =- C .1a c a -= D .1a c a -= 6.解方程21132x x a -+=-时,小刚在去分母的过程中,右边的“-1”漏乘了公分母6,因而求得方程的解为2x =,则方程正确的解是( )A .3x =-B .2x =-C .13x =D .13x 7.已知关于x 的分式方程21m x -+=1的解是负数,则m 的取值范围是( ) A .m≤3 B .m≤3且m≠2 C .m <3 D .m <3且m≠2 8.衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x 万千克,根据题意,列方程为( ) A .3036101.5x x -= B .3030101.5x x -= C .3630101.5x x -= D .3036101.5x x+= 二、填空题 9.方程11212x x =+-的解是______.10.定义一种新运算:对于任意的非零实数a ,b ,11b a b a ⊗=+.若21(1)++⊗=x x x x ,则x 的值为___________.11.若关于x 的分式方程211111k k x x x +-=--+有增根,则k 的值为______. 12.某校学生捐款支援地震灾区,第一次捐款的总额为6600元,第二次捐款的总额为7260元,第二次捐款的总人数比第一次多30人,而且两次人均捐款额恰好相等,则第一次捐款的总人数为________人.13.若方程2111ax a x -=+-的解与方程63x=的解相同,则=a ________. 14.若关于x 的方程2134416x m m x x ++=-+-无解,则m 的值为__. 三、解答题15.解分式方程:2312x x x --=-.16.为推动家乡学校篮球运动的发展,某公司计划出资12000元购买一批篮球赠送给家乡的学校.实际购买时,每个篮球的价格比原价降低了20元,结果该公司出资10000元就购买了和原计划一样多的篮球,每个篮球的原价是多少元?17.科学规范戴口罩是阻断新冠病毒传播的有效措施之一,某口罩生产厂家接到一公司的订单,生产一段时间后,还剩280万个口罩未生产,厂家因更换设备,生产效率比更换设备前提高了40%.结果刚好提前2天完成订单任务.求该厂家更换设备前和更换设备后每天各生产多少万个口罩?18.为了让学生崇尚劳动,尊重劳动,在劳动中提升综合素质,某校定期开展劳动实践活动.甲、乙两班在一次体验挖土豆的活动中,甲班挖1500千克土豆与乙班挖1200千克土豆所用的时间相同.已知甲班平均每小时比乙班多挖100千克土豆,问乙班平均每小时挖多少千克土豆?19.某校田径队的小明同学参加了两次有氧耐力训练,每一次训练内容都是在400米环形跑道上慢跑10圈.若第二次慢跑速度比第一次慢跑速度提高了20%,则第二次比第一次提前5分钟跑完.(1)小勇同学一次有氧耐力训练慢跑是米;(2)小勇同学两次慢跑的速度各是多少?20.某药店在今年3月份,购进了一批口罩,这批口罩包括有一次性医用外科口罩和N95口罩,且两种口罩的只数相同.其中购进一次性医用外科口罩花费1600元,N95口罩花费9600元.已知购进一次性医用外科口罩的单价比N95口罩的单价少10元.(1)求该药店购进的一次性医用外科口罩和N95口罩的单价各是多少元?(2)该药店计划再次购进两种口罩共2000只,预算购进的总费用不超过1万元,问至少购进一次性医用外科口罩多少只?参考答案1.D2.C3.B4.D5.D6.A7.D8.A9.-310.12-##0.5-11.1或13-##13-或112.30013.1 3 -14.-1或5或1 3 -15.方程2312xx x--=-,224432x x x x x-+-=-,54x-=-,45x=,经检验45x=是分式方程的解,∴原分式方程的解为45x=.16.解:设每个篮球的原价是x元,则每个篮球的实际价格是(x﹣20)元,根据题意,得12000x=1000020x-.解得x=120.经检验x=120是原方程的解.答:每个篮球的原价是120元.17.解:设该厂家更换设备前每天生产口罩x万只,则该厂家更换设备后每天生产口罩(1+40%)x万只,依题意得:2802(140%2)80x x-=+,解得:x=40,经检验,x=40是原方程的解,且符合题意.答:该厂家更换设备前每天生产口罩40万只,更换设备后每天生产口罩56万只.18.设乙班每小时挖x千克的土豆,则甲班每小时挖(100+x)千克的土豆,根据题意有:15001200100x x=+,解得:x=400,经检验,x=400是原方程的根,故乙班每小时挖400千克的土豆.19.(1)解:小勇一圈跑400米,一共跑了10圈,共400×10=4000米.(2)解:设第一次慢跑速度为每分钟x米,由于第二次慢跑速度比第一次慢跑速度提高了20%,故第二次慢跑速度为每分钟1.2x米.由题意可得:4000400051.2x x-= 解得:4003x = 经检验得:4003x =是原分式方程的解. ∴ 第一次慢跑速度为每分钟4003米,第二次慢跑速度为每分钟4001.21603⨯=米. 答:小勇同学两次慢跑的速度各是4003米/分、160米/分. 20.解:(1)设一次性医用口罩单价为x 元,则N95口罩的单价为()10x +元 由题意可知,1600960010x x =+, 解方程 得2x =.经检验2x =是原方程的解,当2x =时,1012x +=.答:一次性医用口罩和N95口单价分别是2元,12元.(2)设购进一次性医用口罩y 只根据题意得212(2000)10000y y +-≤,解不等式得1400y ≥.答:药店购进一次性医用口罩至少1400只.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学上册第十五章第3节分式方程训练题 (9)一、单选题1.甲,乙两个工程队,甲队修路300米与乙队修路400米所用的时间相等,乙队每天比甲队多修10米.若可列方程3004010x x=+表示题中的等量关系,则方程中x表示()A.甲队每天修路的长度B.乙队每天修路的长度C.甲队修路300米所用天数D.乙队修路400米所用天数2.现代科技的发展已经进入到了5G时代,温州地区将在2021年基本实现5G信号全覆盖.5G网络峰值速率为4G网络峰值速率的10倍,在峰值速率下传输4千兆数据,5G网络比4G网络快360秒.若设4G网络的峰值速率为每秒传输x千兆数据,则由题意可列方程( )A.410x—4x=360 B.4x—410x=360 C.40x—4x=360 D.4x—40x=3603.暑假期间,某科幻小说的销售量急剧上升.某书店分别用600元和800元两次购进该小说,第二次购进的数量比第一次多40套,且两次购书时,每套书的进价相同.若设书店第一次购进该科幻小说x套,由题意列方程正确的是()A.60080040=-x xB.6008004x x=-C.6008004x x=+D.60080040=+x x4.为了践行“绿水青山就是金山银山”的理念.地计划将420亩荒山进行绿化,实际绿化时,工作效率是原计划的1.5倍,进而比原计划提前2天完成绿化任务,设原来平均每天绿化荒山x亩,可列方程为()A.42042021.5x x-=B.42042021.5x x+=C.1.52420420x x-=D.1.52420420x x+=5.从甲地到乙地有两条同样长的路,一条是平路,另一条的13是上山,23是下山,如果上山的速度为平路速度的12,平路速度是下山速度的12,那么从甲地到乙地()A.走山路快B.走平路快C.走山路与平路一样快D.哪个快不能确定6.相距S千米的两个港口A、B分别位于河的上游和下游,货船在静水中的速度为a千米/时,水流的速度为b千米/时,一艘货船从A港口出发,在两港之间不停顿地往返一次所需的时间是()A.2Sa b+小时B.2Sa b-小时C.S Sa b⎛⎫+⎪⎝⎭小时D.S Sa b a b⎛⎫+⎪+-⎝⎭小时7.光明家具厂生产一批学生课椅,计划在30天内完成并交付使用.若每天多生产100把,则23天完成且还多生产200把.设原计划每天生产x 把,根据题意,可列分式方程为( ) A .3020023100x x +=+B .3020023100x x -=+C .3020023100x x +=-D .3020023100x x -=-8.龙华地铁4号线北延计划如期开工,由清湖站开始,到达观澜的牛湖站,长约10.770公里,其中需修建的高架线长1700m .在修建完400m 后,为了更快更好服务市民,采用新技术,工效比原来提升了25%.结果比原计划提前4天完成高架线的修建任务.设原计划每天修建xm ,依题意列方程得( ) A .170017004(125)x x -=+% B .170040017004004(125)x x ---=+%C .170017004004(125)x x --=+% D .170040017004004(125)x x ---=+% 9.分式方程21x --31x +=0的解为( ) A .x=3B .x=-5C .x=5D .无解10.施工队要铺设2000米的下水管道,因在中考期间需停工3天,每天要比原计划多施工40米才能按时完成任务.设原计划每天施工x 米,所列方程正确的是( ) A .20002000340x x -=+ B .20002000340x x -=+ C .20002000340x x -=- D .20002000340x x-=- 11.规定()()(),min ,,b a b a b a a b ⎧≥⎪=⎨<⎪⎩如min(2,4)=2.按照上面的规定,方程()21min ,x x x x+-=的根是( )A .1B .-1C .1±D .1±-112.解方程25113x x x -+=--时,去分母得( ) A .()()1325x x x --+=+B .()()()12351x x x +-=--C .()()()()()132351x x x x x --+-=+-D .()()3235x x x -+-=-二、填空题13.繁昌到南京大约150千米,由于开通了高铁,动车的的平均速度是汽车的2.5倍,这样乘动车到南京比坐汽车就要节省1.2小时,设汽车的平均速度为x 千米/时,根据题意列出方程_____.14.分式方程111x= -的解为x=______;15.分式方程的解是.16.方程3−xx−4+14−x=1的解是______.17.方程组325x216yx y⎧-=-⎪⎪⎨⎪+=⎪⎩的解是 _______.18.斑马线前“车让人”,不仅体现着一座城市对生命的尊重,也直接反映着城市的文明程度,如图,某路口的斑马线路段A B C--横穿双向行驶车道,其中6AB BC==米,在绿灯亮时,小明共用12秒通过AC,其中通过BC的速度是通过AB速度的1.5倍,求小明通过AB时的速度.设小明通过AB时的速度是x米/秒,根据题意列方程得:______.三、解答题19.从甲市到乙市乘坐高速列车的路程为180千米,乘坐普通列车的路程为240千米.高速列车的平均速度是普通列车的平均速度的3倍.高速列车的乘车时间比普通列车的乘车时间缩短了2小时.高速列车的平均速度是每小时多少千米?20.某工厂计划生产1800吨纯净水支援云南地震灾区,为了尽快把纯净水发往灾区,工人把每天的工作效率提高到原计划的1.5倍,结果比原计划提前3天完成了生产任务.求原计划每天生产多少吨纯净水?21.阅读:对于两个不等的非零实数a b、.若分式()()x a x bx--的值为零,则x a=或x b=又因为()()()()2x a x b x a b x ab abx a bx x x---++==+-+.所以关于x的方程abx a bx+=+有两个根分别为12,x a x b==.应用上面的结论解答下列问题:(1)方程65xx+=的两个解中较小的一个为.(2)关于解x的方程221xx+=+,首先我们两边同加1成21211xx++=++,则1+=x或1+=x,两个解分别为()1212,x x x x<,则1x=,2x=.(3)关于x的方程23222421n nx nx+++=+-的两个解分别为()1212,x x x x<,求12123xx--的值.22.解方程:24142xx x-=--23.某电器城经销A型号彩电,今年四月份每台彩电售价与去年同期相比降价500元,结果卖出彩电的数量相同,但去年销售额为5万元,今年销售额为4万元.(1)问去年四月份每台A型号彩电售价是多少元?(2)为了改善经营,电器城决定再经销B型号彩电.已知A型号彩电每台进货价为1800元,B型号彩电每台进货价为1500元,电器城预计用不多于3.3万元且不少于3.2万元的资金购进这两种彩电共20台,问有哪几种进货方案?(3)电器城准备把A型号彩电继续以原价出售,B型号彩电以每台1800元的价格出售,在这批彩电全部卖出的前提下,如何进货才能使电器城获利最大?最大利润是多少?24.某工厂制作甲、乙两种窗户边框,已知同样用12米材料制成甲种边框的个数比制乙种边框的个数少1个,且制成一个甲种边框比制成一个乙种边框需要多用20%的材料.(1)求制作每个甲种边框、乙种边框各用多少米材料?(2)如果制作甲、乙两种边框的材料共640米,要求制作乙种边框的数量不少于甲种边框数量的2倍,求应最多安排多少米材料制作甲种边框?(不计材料损耗)25.如图,某公司会计欲查询乙商品的进价,发现进货单已被墨水污染.商品采购员李阿姨和仓库保管员王师傅对采购情况回忆如下:李阿姨:我记得甲商品进价比乙商品进价每件高50%.王师傅:甲商品比乙商品的数量多40件.请你求出乙商品的进价,并帮助他们补全进货单.26.(1)计算:(3x﹣2)(2x+3)﹣(x﹣1)2(2)解方程:1﹣3522xx x-=--.【答案与解析】一、单选题1.A解析:A根据题意和所列方程即可得到结论.根据题意和所列方程得知:根据时间相等列出的分式方程,等量关系是:甲队修路300米所用时间=乙队修路400米所用时间,∴方程中x表示甲队每天修路的长度,故选:A.【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.2.B解析:B根据题意,找出等量关系,列出分式方程,即可得到答案.解:设4G网络的峰值速率为每秒传输x千兆数据,则5G网络的峰值速率为每秒传输10x 千兆数据,依题意,得:4436010xx-=.故选:B.【点睛】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.3.D解析:D由第一次购进该科幻小说x套,则第二次购进(x+40)套,再根据“两次购书时,每套书的进价相同”的等量关系即可列出分式方程.解:第一次购进该科幻小说x套,则第二次购进(x+40),根据题意可得:60080040=+x x.故答案为D.【点睛】本题考查了分式方程的应用,弄清题意、找准等量关系是解答本题的关键.4.A解析:A设原来平均每天绿化荒山x亩,则实际平均每天绿化荒山1.5 x亩,然后根据原计划绿化的天数-实际绿化的天数=2解答即可.解:设原来平均每天绿化荒山x 亩,则实际平均每天绿化荒山为1.5 x 亩, 依题意得:42042021.5x x-=. 故选:A . 【点睛】本题考查了分式方程的应用,属于基本题型,正确理解题意、找准相等关系是解题关键.5.C解析:C本题中无路程量,可设为1;根据路程与速度、时间的等量关系可得代数式,解可得答案.解:设从甲地到乙地的路程为1,平路速度为x ,则上山速度为12x ,下山的速度为2x , 则走平路所用的时间:1x ,走山路所用时间:12133122x x x +=故选:C . 【点睛】 本题考查了分式的实际应用,解题的关键是设出未知数,根据行程关系,表达出时间.6.D解析:D先分别算出顺水和逆水的速度,再根据时间=路程÷速度,算出往返时间. 依据顺水速度=静水速度+水流速度,逆水速度=静水速度-水流速度, 则顺水速度为+a b ,时间为Sa b +,逆水速度为-a b ,时间为S a b-, 所以往返时间为S S a b a b++-. 故选D 【点睛】本题主要考查了列代数式,熟练掌握顺水逆水速度,以及时间、路程、速度三者直接的关系是解题的关键.7.A解析:A原计划每天生产x 把,则实际每天生产(x+100)把,根据题意可得等量关系列出方程即可.解:原计划每天生产x 把,则实际每天生产(x+100)把, 根据题意得:3020023100x x +=+,故选:A . 【点睛】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,列出方程.8.C解析:C设原计划每天修建xm ,则实际每天修建(1+25%)xm ,根据题意可得,增加工作效率之后比原计划提前4天完成任务,据此列方程.解:设原计划每天修建xm ,则实际每天修建(1+25%)xm ,由题意得:170017004004(125%)x x --=+故选C.9.C解析:C解方程21x --31x +=0,方程两边同时乘以()()11x x -+可得:()() 21310x x +--=,去括号可得: 22330x x +-+=,移项合并同类项可得:5,x -=-解得5x =,经检验可得5x =是原分式方程的根,故选C.10.A解析:A根据“原计划所用时间-实际所用时间=3”可得方程. 解:设原计划每天施工x 米, 根据题意,可列方程:20002000340x x -=+, 故选择:A. 【点睛】本题考查了由实际问题抽象出分式方程,关键是读懂题意,找出合适的等量关系,列出方程.11.A解析:A由题意可知:方程21min(?)x x x x +-=,可化为以下两个分式方程:(1)21x x x+-=,此时0x >;(2)21x x x+=,此时0x <;解这两个分式方程即可求得原方程的根. 详解:由题意,原方程可化为: (1)21x x x +-=此时0x >;(2)21x x x+=,此时0x <;解方程:21x x x+-= 得:121x x ==-(不合题意,舍去);解方程:21x x x+=得:11x =(不合题意,舍去),21x =∴方程21min(?)x x x x+-=,的解为1x =- 故选A.点睛:读懂题意,根据“规定()()(),min ,,b a b a b a a b ⎧≥⎪=⎨<⎪⎩”把方程“21min(?)x x x x +-=,”化为两个分式方程:“(1)21x x x +-=此时0x >;(2)21x x x+=,此时0x <”是解答本题的关键.12.C解析:C观察可得最简公分母是(x-1)(x-3),方程两边都乘最简公分母,即可把分式方程转换为整式方程.方程两边同乘(x-1)(x-3)得(x-1)(x-3)+2(x-3)=(x-5)(x-1), 故选C.二、填空题13.1501501.22.5x x=+. 设汽车的平均速度为x 千米/时,则动车的平均速度为2.5x ,根据题意可得:由乘动车到南京比坐汽车就要节省1.2小时,列方程即可.设原来火车的平均速度为x 千米/时,则动车运行后的平均速度为1.8x , 由题意得,1501501.22.5x x =+. 故答案为:150150 1.22.5x x=+. 【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.14.2解析:2方程两边同时乘以x-1,得,1=x-1,解得x=2, 检验:当x=2时,x-1≠0,所以x=1是原方程的根.15.1解析:1试题分析:公分母为(x ﹣2),两边同乘以公分母,转化为整式方程求解,结果要检验. 去分母,得2x ﹣5=﹣3, 移项,得2x=﹣3+5, 合并,得2x=2, 化系数为1,得x=1, 检验:当x=1时,x ﹣2≠0, 所以,原方程的解为x=1. 考点:解分式方程.16.x=3解析:x =3.解:去分母得:3﹣x ﹣1=x ﹣4,﹣2x =﹣6,x =3.经检验x =3是原方程的解.故答案为:x =3.17.{解析}利用加减消元法求出xy 的值经检验即可得到分式方程组的解解:②×2+①得:解得:把代入①得:解得:经检验是分式方程的解故原方程组的解是【点睛】本题考查了解分式方程组熟练掌握加减消元法和分式方程解析:114x y =⎧⎪⎨=⎪⎩{解析}利用加减消元法求出x ,y 的值,经检验即可得到分式方程组的解.解:325x 216y x y⎧-=-⎪⎪⎨⎪+=⎪⎩①②,②×2+①得:347x x+=,解得:1x =, 把1x =代入①得:235y -=-,解得:14y =, 经检验,1x =,14y =是分式方程的解, 故原方程组的解是114x y =⎧⎪⎨=⎪⎩.【点睛】本题考查了解分式方程组,熟练掌握加减消元法和分式方程的解法是解题的关键.18.{解析}设小明通过AB 时的速度是x 米/秒根据题意列出分式方程解答即可解:设小明通过AB 时的速度是x 米/秒由共用12秒通过可得:故答案为:【点睛】此题考查由实际问题抽象分式方程关键是根据题意列出分式方解析:66121.5x x+= {解析}设小明通过AB 时的速度是x 米/秒,根据题意列出分式方程解答即可.解:设小明通过AB 时的速度是x 米/秒,由共用12秒通过AC 可得:66121.5x x += .故答案为:66121.5x x+=. 【点睛】此题考查由实际问题抽象分式方程,关键是根据题意列出分式方程解答.三、解答题19.270千米.试题分析:由题意可间接设未知数,找到等量关系,根据高速列车的乘车时间比普通列车的乘车时间缩短2小时列分式方程,求出解值并检验,然后求出问题中的值并作答. 试题解析:设普通列车平均速度每小时x 千米,则高速列车平均速度每小时3x 千米,根据题意,得,解这个方程得x=90,经检验,x=90是所列方程的根,∴3x=3×90=270,∴高速列车平均速度为每小时270千米. 考点:列分式方程解应用题. 20.原计划每天生产200吨纯净水.分析:根据题意设原计划每天生产x 吨纯净水,由提高效率后提前三天完成任务可列出分式方程,解方程并检验结果是否为分式方程的增根即可。