人教初中数学七下代入消元法解二元一次方程组教案
人教版七年级数学8.2《代入消元法解二元一次方程组》优秀教学案例

2.教师讲解代入消元法的步骤和技巧,让学生理解并掌握解题方法。例如,讲解如何选择合适的方程进行代入,如何化简方程,如何求解未知数等。
3.教师对学生的学习情况进行评价,给予肯定和鼓励。例如,对学生在解决问题过程中的表现进行表扬,增强学生的自信心。
(五)作业小结
1.教师布置具有挑战性的作业,让学生在实践中巩固和提高代入消元法的应用能力。例如,提供一些综合性的练习题,让学生在解决实际问题的过程中,运用代入消元法。
2.教师要求学生在作业中反思学习过程,总结经验教训。例如,让学生在作业中写一篇反思日记,记录自己在学习代入消元法过程中的收获、困惑和改进措施。
人教版七年级数学8.2《代入消元法解二元一次方程组》优秀教学案例
一、案例背景
在我国基础教育课程改革的大背景下,人教版七年级数学教材第八章第二节《代入消元法解二元一次方程组》的教学显得尤为重要。这一节内容是学生继一元一次方程之后,首次接触二元一次方程组,是培养学生逻辑思维、抽象思维的关键时期。同时,代入消元法是解决二元一次方程组的常用方法之一,对于学生掌握解方程组的技巧,培养解决实际问题的能力具有重要意义。
4.反思与评价培养学生的自我学习能力:本节课教师在课后引导学生进行反思,总结经验教训。通过让学生写反思日记,记录自己在学习代入消元法过程中的收获、困惑和改进措施,培养学生自我学习的能力。
5.作业小结巩固知识:本节课教师布置具有挑战性的作业,让学生在实践中巩固和提高代入消元法的应用能力。同时,教师要求学生在作业中反思学习过程,总结经验教训。这种作业小结的方式既巩固了所学知识,又提高了学生的自我学习能力。
人教版七年级下册数学代入法解二元一次方程组 说课稿

《代入法解二元一次方程组》说课稿各位老师,各位评委大家下午好。
我是XX号选手。
今天我所讲的课题是《代入法解二元一次方程组》。
主要从以下几个方面进行说明,即教材分析、教学任务分析、教学方法分析。
其中教学方法分析亦是代入消元法的构建过程。
一、教材分析(一)教材地位与作用《代入法解二元一次方程组》是人教版七年级下册第八章第二节的内容。
本节主要内容是在上节已认识二元一次方程组和二元一次方程组的解等概念的基础上,来探究解方程组的第一种方法——代入消元法。
并初步体会“将未知数的个数由多化少、逐一解决”、“由未知向已知转化、用已知解决未知”的化归思想。
代入法解二元一次方程组,既是前面学习一元一次方程的解法的一个延伸,又是为后续学习加减消元法、利用方程组来解决实际问题、求一次函数图像的交点等重要内容奠定基础,同时蕴含着丰富的函数与方程思想。
因此本节课在中学数学体系中处于重要地位。
(二)学情分析八年级的学生已具备了整体代入的认识能力,并初步掌握了逻辑推理能力的认知基础;也掌握了一元一次方程求解的方法与策略;学习了代数式,体验了整体代入思想的数学基础;加上对待事物有自己的见解;探究新鲜事物的欲望强的年龄特征。
这些都为顺利完成本节课的教学任务打下了知识、能力基础。
二、说教学任务(一)教学目标根据2011年义务教育数学课程标准的要求,及本教材的地位和作用,结合初中学生的认知特点确定教学目标如下:(1)知识目标:学生熟悉的掌握利用代入消元法解二元一次方程组。
(2)能力目标:通过对方程组中的未知数特点的观察和分析,明确解二元一次方程组的主要思路是“消元”,从而促成由未知向已知转化,培养学生观察能力和体会化归思想。
(3)情感目标:通过主动探究,合作交流,感受探索的乐趣和成功的体验,体会数学的合理性和严谨性,使学生养成积极思考、独立思考的好习惯,并且同时培养学生积极参与对数学问题的讨论并敢于表达自己的观点勇气。
(二)教学重难点根据本节课内容特点和学生现有知识水平,本节课的教学重难点:1.重 点:代入消元法的构建过程;2.难 点:进一步理解利用代入消元法解方程组是所体现的化归思想。
二元一次方程组的解法代入消元法教案

消元——解二元一次方程组(第1课时)——代入消元法一、教学目标:1、能较熟练地用代入消元法解二元一次方程组;2、理解解二元一次方程组时的“消元”思想,和“化未知为已知、化复杂为简单”的化归思想;3、引导学生自由讨论,养成检查的习惯,培养联想旧知识解决新知识的能力。
二、教学重、难点:1、用代入消元法解二元一次方程组的基本步骤;2、解二元一次方程组过程中“二元”转化为“一元”的消元思想。
三、教学方法:讨论法、归纳法四、教学工具:教案、多媒体五、教学过程:1、知识回顾:什么叫二元一次方程?什么叫二元一次方程组?什么叫二元一次方程组的解?2、新课讲解:问题一:有一个矩形草坪,周长是36米,已知长是宽的两倍,求长、宽各多少米?如果用之前一元一次方程的知识,我们可以设宽为x米,而长为2x米,由题目已知可得一元一次方程:2(2x+x)=36按解一元一次方程的步骤,解得x=6,所以草坪的长为12米,宽为6米。
但是,如果用二元一次方程组的知识,我们可以假设长为y米,宽为x米,由题目两个等量关系,我们可以得到一个二元一次方程组:y=2x (1)2(x+y)=36 (2)讨论一:应该怎么解这个二元一次方程组?它跟上面的一元一次方程有什么关系?对比上面的一元一次方程和二元一次方程组,我们发现,如果把二元一次方程组里的方程(1)代入到方程(2)中,我们就得到了一模一样的一元一次方程: 2(2x+x )=36按照一元一次方程的解法,我们解得x=6,再把x=6代入到方程(1)中,得到y=12。
经过检验, 就是原二元一次方程组的解。
这样,我们运用了代入、 消元的方法,就把一个二元一次方程组解出来了。
讨论二:在解上面的二元一次方程组的过程中,非常关键的一步是把方程(1)代入到方程(2)中,把二元一次方程组化归为一元一次方程,从而把复杂的问题化为简单化。
那么这种代入、消元的方法能否适合其它二元一次方程组呢?问题二:一个班级总人数有52人,需要佩戴眼镜的有20人,其中男生x 人,女生y 人,又有3x+2y=52,求x ,y 各为多少?讲解:根据题目的两个等量关系,我们可以得到一个二元一次方程组:首先,我们可以把方程(1)进行移项变换,得到:y=20-x (3)接着,把方程(3)代入到方程(2),得到:3x+2(20-x )=52这样,就把二元一次方程组化归为一元一次方程,解这个一元一次方程,得到x=12。
代入消元法解二元一次方程组教案

代入消元法解二元一次方程组教学目标1、会用代入消元法解一些简单的二元一次方程组。
2、理解解二元一次方程组的思路是消元,体会化归思想。
教学重难点教学重点:会用代入消元法解一些简单的二元一次方程组,体会解二元一次方程组的思路是消元。
教学难点:把二元向一元的转化,掌握代入消元法解二元一次方程组的一般步骤。
体会代入消元法和化未知为已知的数学思想。
教学过程设计一、创设情境,提出问题问题1:篮球联赛中,每场都要分出胜负,每队胜1场得2分,负1场得1分,某队10场比赛中得到16分,那么这个队胜负场数分别是多少?你能用一元一次方程解决这个问题吗?师生活动:学生回答:能。
设胜x场,负(10-x)场。
根据题意,得2x+(10-x)=16x=6,则胜6场,负4场。
教师追问:你能根据问题中的等量关系列出二元一次方程组吗?师生活动:学生回答:能.设胜x场,负y场.根据题意,得我们在上节课,通过列表找公共解的方法得到了这个方程组的解,x=6,y=4显然这样的方法需要一个个尝试,有些麻烦,能不能像解一元一次方程那样来求出方程组的解呢?这节课我们就来探究如何解二元一次方程组.二、互动新授问题2:对比上面的方程和方程组,你能发现它们之间的关系吗?师生活动:通过对实际问题的分析,认识方程组中的两个y 都是这个队的负场数,由此可以由一个方程得到y 的表达式,并把它代入另一个方程,变二元为一元,把陌生知识转化为熟悉的知识。
师生活动:根据上面分析,你们会解这个方程组了吗?学生回答:会.⎩⎨⎧16 =y +2x 10 =y +x 由①,得y=10-x ③把③代入②,得2x+(10-x)=16x=6问题3:教师追问:你能把③代入①吗?试一试?师生活动:学生回答:不能,通过尝试,x 抵消了.设计意图:由于方程③是由方程①,得来的,它不能又代回到它本身。
让学生实际操作,得到体验,更好地认识这一点.教师追问:你能求y 的值吗?师生活动:学生回答:把x=6代入③得y=4教师追问:还能代入别的方程吗?学生回答:能,但是没有代入③简便教师追问:你能写出这个方程组的解,并给出问题的答案吗?学生回答:x=6,y=4,这个队胜6场,负4场设计意图:让学生考虑求另一个未知数的过程,并如何优化解法。
《8.2消元——解二元一次方程组》第1课时教案

《8.2消元——解二元一次方程组》第1课时教案《《8.2消元——解二元一次方程组》第1课时教案》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!一、内容及内容解析:1.内容:“用代入法解二元一次方程组”是人教实验版教科书七年级下册第八章第二节的第一课时.2.内容解析:本节内容是在学习了一元一次方程的基础上的进一步深入,本节对比根据题意列出的二元一次方程组和一元一次方程,发现把方程组中一个方程变形为用含一个未知数的式子表示另一个未知数后,将它代入方程组中的另一个方程,原来的二元一次方程组就转化为一元一次方程.这种转化对解二元一次方程很重要,它的基本思路是“将未知数的个数由多化少,逐一解决”的消元思想. 通过代入法,减少了未知数的个数,使多元方程最终转化为一元方程,达到消元的目的.在提出消元思想后,又归纳得出代入法的基本步骤,既渗透了算法中程序化的思想,又有助于培养学生良好的学习习惯,提高思考的深度.基于此,本节课的教学重点是:会用代入消元法解简单的二元一次方程组,能体会“代入法”解二元一次方程组的基本思路是“消元“.二、目标及目标解析:1.目标(1).会运用代入消元法解二元一次方程组.(2).理解代入消元法的基本思想体现的“化未知为已知”的化归思想方法.2.目标解析达成目标(1)的标志是:学生掌握代入消元法解二元一次方程组的一般步骤,并能正确的求出二元一次方程组的解.培养学生的分析能力,能迅速在所给的二元一次方程组中,选择一个系数较简单的方程进行变形.达成目标(2)的标志是:学生通过探索,逐步发现解方程的基本思想是“消元”,化二元一次方程组为一元一次方程.通过代入消元,使学生初步理解把未知转化为已知和复杂问题转化为简单问题的思想方法.三、问题诊断分析:1、教学时,应结合具体的例子指出这里解二元一次方程组的关键在于消元,即把“二元”转化为“一元”.我们是通过等量代换的方法,消去一个未知数,从而求得原方程组的解.2、用代入法解二元一次方程组时,学生选择哪一个方程进行变形,容易出现不一样的选择.因此,教师讲解例题时要注意由简到繁,由易到难,逐步加深,而且要特别强调解方程组时应努力使变形后的方程比较简单和代入后化简比较容易.这样不仅可以迅速解方程,而且可以减少错误.基于此,本节的教学难点是:灵活运用代入法解二元一次方程组.四、教学过程设计:1.创设情境,复习导入二元一次方程组:有___个未知数,含有每个未知数的项的次数都是____,并且一共有____个方程的方程组.二元一次方程的解:使二元一次方程两边的值相等的______________.二元一次方程组的解:二元一次方程组的两个方程的________.2.探究新知问题:篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队为了争取较好名次,想在全部22场比赛中得到40分,那么这个队胜负场数应分别是多少?问题一:你会用一元一次方程解决这个问题吗?解:设胜x场,则有:.问题二:你会用二元一次方程组解决这个问题吗?解:设胜x场,负y场,则问题三:怎样求得二元一次方程组的解呢?(设计意图:这题说明要想求出两个未知数的值,必须先知道其中一个未知数的值.这为用代入法解二元一次方程组打下基础:即消去一个未知数的值,转化为一元一次方程去解。
人教版初中数学教案7篇

人教版初中数学教案7篇教学内容:人教版七年级数学下册第八章二元一次方程组第2节P96页教学目标(1)根底学问与技能目标:会用代入消元法解简洁的二元一次方程组。
(2)过程与方法目标:经受探究代入消元法解二元一次方程的过程,理解代入消元法的根本思想所表达的化归思想方法。
(3)情感、态度与价值观目标:通过供应适当的情境资料,吸引学生的留意力,激发学生的学习兴趣;在合作争论中学会沟通与合作,培育良好的数学思想,逐步渗透类比、化归的意识。
教学重、难点关键教学重点:用代入消元法解二元一次方程组教学难点:探究如何用代入消元法解二元一次方程组,感受“消元”思想。
教学关键:把方程组中的某个方程变形,而后代入另一个方程中去,消去一个未知数,转化成一元一次方程。
学生分析授课对象为少数民族地区的七年级学生,根底学问薄弱,特殊是对一元一次方程内容把握的不够透彻,再加上厌学现象严峻,团结协作的力量差,本节课设计了他们感兴趣的篮球竞赛和常用的消毒液作为题材来讨论二元一次方程组,既能调动他们的学习兴趣,又能解决本节课所涉及到的问题,为以后的进一步学习二元一次方程组做好铺垫。
教学内容分析:本节主要内容是在上节已熟悉二元一次方程(组)和二元一次方程(组)的解等概念的根底上,来学习解方程组的第一种方法——代入消元法。
并初步体会解二元一次方程组的根本思想“消元”。
二元一次方程组的求解,不但用到了前面学过的一元一次方程的解法,是对过去所学学问的一个回忆和提高,同时,也为后面的利用方程组来解决实际问题打下了根底。
通过实际问题中二元一次方程组的应用,进一步增加学生学习数学、用数学的意识,体会学数学的价值和意义。
初中阶段要把握的二元一次方程组的消元解法有代入消元法和加减消元法两种,教材都是按先求解后应用的挨次安排,这样安排既可以在前一小节中有针对性的学习解法,又可在后一小节的应用中稳固前面的学问,但教材相对应的练习安排较少,不过这样也给了学生一较大的发挥空间。
七年级数学《用代入消元法解二元一次方程组》教学设计
(一) 创设情境 新课引入
公主被困住了城堡了,我们去看一看吧.
(录音)公主的话:同学们好! 我是公主,我被困在城堡里了,你们 来解救我,好吗?首先去搜集小蘑菇,你 们中间有九个小蘑菇,线索就在小蘑菇的 身后. 问:每组的式子有什么特点?
学生参加游戏 并思考回答问 题.
在游戏的同时 复习二元一次 方程,用含一个 未知数的式子 表示另一个未 知数.
一次方程组的
方法.
⑤ 验——口头检验.
教学过程
教师活动
学生活动
设计意图
6
闯关游戏
在教师的
我们已经获得了知识,要想救出公主, 引导下,让学
大家有没有信心?孩子们,加油吧!
生自己选题来
1.已知 3x y 1,用含 x 的式子表示 y , 做,体验竞赛
则 y = ______________.
的乐趣.
另一个未知数; ② 代——消去一个元; ③ 解——分别求出两个未知数的值; ④ 写——写出方程组的解;
通过尝试完成
练习题,及时巩
固新知,规范做 学 生 独 立 完 题格式. 成,黑板演示,
多媒体展示,
教师纠正错误 并规范书写.
总结归纳代入 消元法解二元
体会合并同类 项对化简方程 的作用. 通过对“变、代、 解、写、验”的 归纳,完善解题 步骤.
教学过程
教师活动
5
学生活动
设计意图
问题:
1.可以用含 y 的式子表示 x 吗? 2.把③式代入①式中可以吗?可以求解
吗?为什么要代入③式中呢?
提出问题,让 学生更为透彻
进一步挖掘,提 出问题,突破学 习中的重难点.
3.解出的 x 的值代入①、②两式中可以求 的理解代入消 元法的解二元
《代入法解二元一次方程组》教学设计(推荐五篇)[修改版]
第一篇:《代入法解二元一次方程组》教学设计消元——二元一次方程组的解法(代入消元法)学情分析: 因为学生已经学过一元一次方程的解法,求二元一次方程组的解关键是化二元方程为一元方程,故在求解过程中始终应抓住消元的思想方法。
讲解时以学生为主体,创设恰当的问题情境和铺设合适的台阶,尽可能激发学生通过自己的观察、比较、思考和归纳概括,发现和总结出消元化归的思想方法。
三维目标知识与技能1、会用代入法解二元一次方程组2、初步体会二元一次方程组的基本思想---“消元”过程与方法: 通过对方程组中的未知数特点的观察和分析,明确解二元一次方程组的主要思路是“消元”,从而促成未知向已知的转化,培养学生观察能力,体会化归思想。
情感态度与价值观:通过研究解决问题的方法,培养学生合作交流意识和探究精神。
教学重点:用加减消元法解二元一次方程组。
教学难点:理解加减消元思想和选择适当的消元方法解二元一次方程组。
教学过程(一)创设情境,激趣导入在8.1中我们已经看到,直接设两个未知数(设胜x场,负y场),x y22可以列方程组2x y40 表示本章引言中问题的数量关系。
如果只设一个未知数(设胜x场),这个问题也可以用一元一次方程________________________[1]来解。
分析:[1]2x+(22-x)=40。
观察上面的二元一次方程组和一元一次方程有什么关系?[2] [2]通过观察对照,可以发现,把方程组中第一个方程变形后代入第二个方程,二元一次方程组就转化为一元一次方程。
这正是下面要讨论的内容。
(二)新课教学可以发现,二元一次方程组中第1个方程x+y=22说明y=22-x,将第2个方程2x+y=40的y换为22-x,这个方程就化为一元一次方程2x+(22-x)=40。
解这个方程,得x=18。
把x=18代入y=22-x,得y=4。
从而得到这个方程组的解。
二元一次方程组中有两个未知数,如果消去其中一个未知数,将二元一次方程组转化为我们熟悉的一元一次方程,我们就可以先解出一个未知数,然后再设法求另一未知数。
七年级数学下册《代入消元法解二元一次方程组》教案、教学设计
(4)实践:让学生独立完成练习题,巩固代入消元法的应用,教师巡回指导,解答学生的疑问。
(5)总结:引导学生总结代入消元法的解题步骤和注意事项,提高学生的归纳总结能力。
3.教学评价:
(1)关注学生在课堂上的参与程度,评价学生在小组合作中的表现,了解学生的学习效果。
1.学生对方程组的理解程度,部分学生可能对方程组的结构及解法仍存在疑惑,需要教师耐心引导和讲解。
2.学生在解题过程中可能遇到代入、替换等操作上的困难,教师应适时给予指导和鼓励,帮助学生克服困难,提高解题能力。
3.学生的自主学习能力尚在培养中,需要教师在教学过程中注重引导,激发学生的学习兴趣和探究欲望。
(三)情感态度与价值观
1.培养学生面对数学问题时的积极态度,增强学生解决问题的信心和决心。
2.通过代入消元法的学习,让学生体会到数学的简洁美和逻辑美,提高学生对数学学科的兴趣。
3.引导学生关注生活中的数学问题,认识到数学在现实生活中的重要作用,培养学生的应用意识。
4.培养学生勇于探索、不断创新的精神,激发学生的学习潜能。
(2)教师巡回指导,解答学生的疑问。
(3)学生互相讨论,交流解题方法。
(4)教师对学生的解题过程进行评价,指出存在的问题。
2.设计意图:让学生在练习中巩固代入消元法的应用,提高解题能力。
(五)总结归纳
1.教学内容:引导学生总结本节课所学知识,提高归纳总结能力。
教学过程:
(1)教师提问:本节课我们学习了什么内容?请简要概括。
2.难点:
(1)理解代入消元法的原理,明确代入、替换的步骤。
(2)能够根据方程组的特点选择合适的代入方法,提高解题效率。
人教版数学七年级下册8.2消元—解二元一次方程组代入消元法教学设计
(5)拓展提高:引导学生思考代入消元法的局限性,探讨其他解题方法,提高学生的思维品质。
3.教学评价:
(1)关注学生的学习过程,从学生的课堂表现、作业完成情况等方面,全面评价学生的学习效果。
(2)注重学生个体差异,针对不同学生的学习需求,给予有针对性的评价和指导。
(3)组织小组合作学习,让学生在讨论交流中,相互启发,共同解决难题。
2.教学过程:
(1)导入:通过回顾已学的二元一次方程组知识,为新课的学习做好铺垫。
(2)新课导入:以实际问题为背景,引导学生建立二元一次方程组,进而引出代入消元法。
(3)新课讲解:详细讲解代入消元法的步骤,结合具体例子进行演示,让学生体会代入消元法的解题过程。
3.评价反馈:对学生的练习成果进行评价,鼓励他们继续努力,提高解题能力。
(五)总结归纳
在这一阶段,我将带领学生进行以下总结归纳:
1.回顾本节课所学内容:让学生明确代入消元法的概念、步骤和应用。
2.强调代入消元法的注意事项:提醒学生在解题过程中应注意选择合适的方程进行代入,简化计算过程。
3.拓展思维:引导学生思考代入消元法的局限性,探讨其他解题方法,提高学生的思维品质。
2.演示代入消元法的解题过程:以导入新课中的问题为例,逐步演示代入消元法的解题过程,让学生理解并掌握该方法。
3.解释代入消元法的选择原则:告诉学生,在选择代入消元法时,应优先选择方程中未知数系数较小的那个方程进行求解,这样可以简化计算过程。
(三)学生小组讨论
在这一阶段,我将组织学生进行小组讨论:
1.分组讨论:将学生分成若干小组,让他们共同探讨代入消元法的解题过程和注意事项。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题8.2.1代入消元法解二元一次方程组
教学目标知识与技能:会用代入法解二元一次方程组。
过程与方法:初步体会解二元一次方程组的基本思想――“消元”。
情感、态度与价值观:通过研究解决问题的方法,培养学生合作交流意识与探究精神。
教学重难点重点:用代入消元法解二元一次方程组
难点:探究如何用代入法将“二元”化为“一元
教学过程
教学内容
师生
互动
一、预习导学
1、什么叫二元一次方程组的解?
2、把下列方程写成用含x的式子表示y的形式:
(1)2x-y=3 (2)3x+y-1=0
二、新课探究
1、x+y=22
2x+y=40
二元一次方程组中第1个方程x+y=22说明y=,
将第2个方程2x+y=38的y换为,这个方程就化为一
元一次方程 2x+(22-x) =40
由此可见二元一次方程组中有两个未知数,如果消去其中一个
未知数,就可将二元一次方程组转化为我们熟悉的一元一次方程,
我们就可以先解出一个未知数,然后再设法求另一未知数.这种将
未知数的个数由多化少、逐一解决的想法,叫做消元思想.
归纳:上面的解法,是由二元一次方程组中一个方程,将一个未
知数用含另一未知数的式子表示出来,再代入另一方程,实现消
元,进而求得这个二元一次方程组的解.这种方法叫做代入消元法,
简称代入法.
三、例练结合
2、用代入法解方程组
x-y=3 ①
3x-8y=14 ②
解:由①得x=③
将③代入②得
解得y=
将y=代入③中得x=
原方程组的解为:
3、用代入消元法解二元一次方程组的步骤:
(1)从方程组中选取一个系数比较简单的方程,把其中的某一个未知数用含另一个未知数的式子表示出来.
(2)把(1)中所得的方程代入,消去一个 .
(3)解所得到的方程,求得一个的值.
(4)把所求得的一个未知数的值代入(1)中求得的方程,求出另一个未知数的值,从而确定方程组的解
四、课堂训练
1、用代入消元法解方程组
4x-y=5 3x+4y=16
3(x-1)=2y-3 5x-6y=33
2、根据市场调查,某种消毒液的大瓶装(500g)和小瓶装(250g)两种产品的销售数量比(按瓶计算)为2:5.某厂每天生产这种消毒液22.5吨,这些消毒液应该分装大、小瓶装两种产品各多少瓶?
五、布置作业
习题8.2复习巩固第一题、第二题。
六、课堂小结(以提问进行):
(1)、解二元一次方程组的方法是什么?
(2)、用代入消元法解二元一次方程组的步骤?
课堂检测题
1、已知方程x-2y=8,用含x的式子表示y,则y =_____________,用含y的式子表示x,
则x =_____________已知3
2
x-
3
1
4
y=,用含x的代数式表示y,则y=______________.
2、若x、y互为相反数,且x+3y=4,,3x-2y=_____________.
3、(x+2y+5)2+|2x-y-3|=0,则x=_____________,y=_______________。
4、若
3
2
x
y
=
⎧
⎨
=
⎩
是方程组
1
8
kx my
mx ky
-=
⎧
⎨
+=
⎩
的解,则k=_______,m=______。
5、用代入法解二元一次方程组:
(1)y =2x-3 (2) 2x-y=5 3x+2y=8 3x+4y=2。