1 化学元素周期表 元素周期律 化学键
元素周期表与化学键

元素周期表与化学键元素周期表是一种分类化学元素的图表,其中包含了所有已知元素。
它的创立被认为是现代化学的重要里程碑。
化学键是指化学元素通过电子的共享或转移而结合在一起的方式。
元素周期表与化学键在理解和研究化学过程中起着至关重要的作用。
一、元素周期表的基本概念元素周期表按照元素的原子序数进行排列,原子序数是指元素核中质子的数量。
元素周期表的每一个水平行称为一个周期,垂直列称为一个族。
周期表中的元素按照物理和化学性质的相似性进行排列。
元素周期表的开创者是俄罗斯化学家门捷列夫。
他提出的周期表按照元素的原子量排列,但其后根据元素性质的系统的变动进行了许多修订。
二、元素周期表的组织结构元素周期表根据化学元素的性质,将元素分为金属、非金属和过渡金属三大类。
金属元素主要位于周期表的左侧,具有良好的导电性和热传导性。
非金属元素主要位于周期表的右上角,通常具有较低的电导率和热传导率。
过渡金属元素则位于周期表中央的区域,具有较高的导电性和热传导性。
除了这三大类元素外,周期表还包括稀有气体和人工合成的人工元素。
三、化学键的类型化学键分为离子键、共价键和金属键三种类型。
离子键是指两个原子之间通过电子的转移而产生的化学键。
通过电子捐赠和接受,形成了阴离子和阳离子之间的强烈吸引力。
共价键是指通过原子之间的电子共享而形成的化学键。
两个原子共享一对或多对电子,以保持化学稳定性。
金属键是指金属元素之间通过电子云的共享而形成的化学键。
金属元素的电子云在整个金属晶格中流动,形成了强大的金属结构。
四、元素周期表对化学键的影响元素周期表为化学键的形成和性质提供了重要的理论基础。
化学键的类型和特性可以通过周期表上元素的位置和属性得出。
例如,金属与非金属元素之间通常形成离子键,而非金属元素之间通常形成共价键。
周期表还可以用来预测化学反应和化学物质的性质。
通过对元素周期表的分析,化学家能够快速了解元素之间的相互作用和反应模式,从而指导化学实验和应用。
高中化学元素周期表

b.位于过渡元素右侧的主族元素,即ⅢA~ⅦA族,同 主族、邻周期元素原子序数之差为下一周期元素所 在周期所含元素种数.例如,氯和溴的原子序数之差 为:三五-一七=一八[溴所在第四周期所含元素的 种数].
原子核外电子排布规律
基础回归 一.电子层的表示方法及能量变化
电子层数
由内向外
数字表 示法
一二三四五六七
正价,Na、Mg、Al等无负价.
二.元素、核素、同位素
三.元素的相对原子质量 [一]目前已发现的一一0多种元素中,大多数都有同 位素. [二]一种天然存在的元素的各种核素分占的比例不 一定相同,但所占的百分比组成不变. [三]元素的相对原子质量是按各种天然同位素原子 所占的一定百分比算出来的平均值.元素周期表和 相对原子质量表中的数值就是元素的相对原子质量, 而非核素[或原子]的相对原子质量.
字母表 示法
K L MNO P Q
离核远近
由近到 远
电子能量
由低 到 高
二.原子核外电子排布规律
[一]能量最低原理:核外电子总是尽可能先排布在
能量 最低的[离原子核
]的电最子近层里.
[二]每层最多容纳的电子数为: 个
[三]最外层电子数最多不超过 个[二k层n二为最外层
时不超过 个]
八
[四]次外层电子数二最多不超过 个.
[二]性质与位置互推是解题的关键 熟悉元素周期表中同周期、同主族元素性质的递变规 律,主要包括: 一元素的金属性、非金属性. 二气态氢化物的稳定性. 三最高价氧化物对应水化物的酸碱性. [三]结构和性质的互推是解题的要素 一电子层数和最外层电子数决定元素原子的氧化性和 还原性. 二同主族元素最外层电子数相同,性质相似. 三正确推断原子半径和离子半径的大小及结构特点. 四判断元素金属性和非金属性的方法.
化学元素周期表及其规律

化学元素周期表及其规律化学元素周期表是化学领域中最重要的概念之一,它描述了所有已知元素的特性和物理化学性质。
元素周期表的创立离不开化学家梅德莱杰夫的贡献,他在1869年首次提出了元素周期律。
元素周期表的基本结构由7个周期和18个族组成,每个周期由横向排列的元素构成,而族则由纵向排列的元素构成。
这些元素按照原子序数的递增排列,从左至右,从上到下不断增加。
周期表中每个元素都用其原子序数和符号表示出来,同时列出了各种物化性质数据,如原子量、密度、熔点和沸点等。
元素周期表并不仅仅是一种排列元素的方式,它也提供了描述元素周期性变化的框架。
这个周期性可以通过周期表的外观来很容易地看出来。
周期表中,元素周期性变化一般来说是指周期性地自增或自减某些物理和化学性质的趋势。
这些性质包括原子的大小、电子亲和力、电离能、化学反应活性等。
元素周期表的周期性变化是由元素的电子构型所决定的。
元素的电子构型是指元素原子中所有电子的状态的描述,它可以被用来解释元素的各种性质。
元素的电子结构可以用一种简单的方式描述出来,即通过元素的原子序数来表达。
当电子的数量增加时,原子的化学和物理性质发生周期性的变化。
元素周期表中的周期性变化中最显著的是原子半径的变化。
在周期表中,从左到右每一个周期中,半径都减小了,因为电子数量增加,原子核的电子吸引力也随之增强。
而在某一周期的末尾和另一组的开始处,原子半径又会因为增加价层的影响而增大。
除了原子半径,还有其他一些物理化学性质也具有周期性的变化趋势。
例如,元素的电子亲和力、电离能和化学反应活性等都与电子构型有关。
在周期表中,从左到右电子亲和力和电离能都会增加,而化学反应活性则相反,会随着周期下降而增加,具有周期性的变化趋势。
细心的读者可能已经发现,周期表中有一些明显的缺失,例如舱门素、钷等元素并没有出现在表中。
原因是这些元素的原子序数过高,常见的元素周期表并没有包括这些元素。
人们通过不断探索发现新元素,不断进行元素周期表的更新和完善。
人教版高中化学元素周期表和元素周期律

第讲元素周期表和元素周期律知识必备(一)一、元素周期表的结构1、1869年俄国门捷列夫制作了元素周期表2、元素周期表3、元素周期表的排列原则横排:电子层数相同,并且从左往右原子序数增加竖排:最外层电子数相同,从上往下电子层数增加4、元素周期表的结构(1)周期①一个横排称为一个周期,同一周期的原子具有相同的电子层②共有7个周期,1、2、3为短周期,4、5、6为长周期,第7周期称为不完全周期。
③1周期有2个元素;2和3周期各有8个元素;4、5周期各有18个元素;6周期有32个元素,其中镧系有15个元素;7周期有锕系,也有15个元素。
(2)族①有18个纵行,16个族②有7个主族、7个副族、1个第VIII族、1个零族③第IA族(除H外)又称碱金属元素、第VIIA族外称为卤族元素、0族元素也称为稀有气体元素。
(3)区域:金属元素、非金属元素、分界线5、结构与原子结构的关系 ①周期序数=电子层数②主族序数=最外层电子数=元素的最高正价(除O 和F ) 6、元素符号周围不同位置的含义阴阳离子的电荷数原子数目表示构成分子或离子的化合价质量数质子数R二、推断元素在元素周期表中的位置1、根据以0族为基准给元素定位稀有气体元素 氦 氖 氩 氪 氙 氡周期数 一 二 三 四 五 六 原子序数 2 10 18 36 54 862、原子序数-稀有气体原子序数(相近且小)=元素的纵行数,从而推出族数。
周期数为稀有气体元素的周期+1。
【特别提醒】若为六、七周期的元素,3—17为镧系和锕系元素(即III B ),若大于17,它的纵行数需再减14。
三、利用元素周期表的结构推断元素1、根据每周期元素的种类给元素定位周期数 一 二 三 四 五 六 元素种类 2 8 8 18 18 32 ①一、二周期同族元素原子序数相差2 ②二、三周期同族元素原子序数相差8③三、四周期同族元素中,1、2主族原子序数相差8,其他相差18 ④四、五周期同族元素原子序数相差18⑤五、六周期同族元素中,1、2主族原子序数相差18,其他相差32 ⑥六、七周期同族元素原子序数相差32 2、设未知数列式求解知识必备(二)一、元素周期律1、元素周期律:元素的性质随着原子序数的递增而呈周期性的变化。
高中化学元素周期律知识点总结

高中化学元素周期律知识点总结-CAL-FENGHAI.-(YICAI)-Company One1第一节课时1元素周期表的结构一、元素周期表的发展历程二、现行元素周期表的编排与结构1.原子序数(1)含义:按照元素在元素周期表中的顺序给元素编号,得到原子序数。
(2)原子序数与原子结构的关系原子序数=核电荷数=质子数=核外电子数。
2.元素周期表的编排原则(1)原子核外电子层数目相同的元素,按原子序数递增的顺序从左到右排成横行,称为周期。
(2)原子核外最外层电子数相同的元素,按电子层数递增的顺序由上而下排成纵行,称为族。
3.元素周期表的结构(1)周期(横行)①个数:元素周期表中有7个周期。
②特点:每一周期中元素的电子层数相同。
③分类(3短4长)短周期:包括第一、二、三周期(3短)。
长周期:包括第四、五、六、七周期(4长)。
(2)族(纵行)①个数:元素周期表中有18个纵行,但只有16个族。
②特点:元素周期表中主族元素的族序数等于其最外层电子数。
③分类④常见族的特别名称 第ⅠA 族(除H):碱金属元素;第ⅦA 族:卤族元素;0族:稀有气体元素;ⅣA 族:碳族元素;ⅥA 族:氧族元素。
课时2 元素的性质与原子结构一、碱金属元素——锂(Li)、钠(Na)、钾(K)、铷(Rb)、铯(Cs)、钫(Fr) 1.原子结构(1)相似性:最外层电子数都是__1__。
(2)递变性:Li ―→Cs ,核电荷数增加,电子层数增多,原子半径增大。
2.碱金属单质的物理性质3.碱金属元素单质化学性质的相似性和递变性 (1)相似性(用R 表示碱金属元素)单质R —⎩⎪⎨⎪⎧与非金属单质反应:如Cl 2+2R===2RCl 与水反应:如2R +2H 2O===2ROH +H 2↑与酸溶液反应:如2R +2H +===2R ++H 2↑化合物:最高价氧化物对应水化物的化学式为ROH ,且均呈碱性。
(2)递变性具体表现如下(按从Li→Cs 的顺序)①与O 2的反应越来越剧烈,产物越来越复杂,如Li 与O 2反应只能生成Li 2O ,Na 与O 2反应还可以生成Na 2O 2,而K 与O 2反应能够生成KO 2等。
初三化学元素周期表(完整版)

初三化学元素周期表(完整版)元素周期表是一张反映元素周期律的图表。
它将所有已知的化学元素按照一定的顺序排列在一个矩阵中,每个元素占据一个唯一的位置。
元素周期表上方有一行元素称为“气体行”,其下方则有两行元素称为“镧系元素”和“锕系元素”,它们比较特殊,常常被单独列出来。
元素周期表以水平行和垂直列的方式给出了元素名称、符号、原子序数、原子量和一些其他元素特性的数据。
元素周期表的发现是人类对元素周期律的深刻认识,是化学科学史上的重要成就之一。
尤其是俄国化学家门捷列夫于1869年发现元素周期律,将化学元素按照原子序数从小到大依次排列,并按照一定的规律分组。
他所发现的周期性定律,开启了元素周期表的研究之路。
元素周期表的基本结构是由一系列水平行和垂直列构成。
其中,垂直列被称为“族”,水平行被称为“周期”。
按照元素周期律的规律,同一族内的元素具有相同的电子排布方式,因此具有相似的化学性质。
同一周期内的元素原子半径逐渐递增,但化学性质的变化比较不规则性。
下面我们将对每一个元素周期表中的周期和族进行详细的解释。
一、第1周期第1周期只有两个元素,它们是氢(H)和氦(He)。
氮原子是宇宙中最常见的元素之一,它是一种具有最简单的原子结构的气体,含有一个质子和一个电子。
氦原子质量略大于氢原子,它含有两个质子和两个中子,并在外层能级拥有两个电子。
这种单质几乎不化学反应,因为它和其它元素几乎没有化学亲和力。
二、第2周期第2周期有八个元素,它们是锂(Li)、铍(Be)、硼(B)、碳(C)、氮(N)、氧(O)、氟(F)和氖(Ne)。
其中,锂、铍、碳、氮和氧是非金属元素,它们的化学性质大多相似。
氟是最活泼的非金属元素,氩是某些光谱灯泡和医疗设备中的一种惰性气体。
三、第3周期第3周期有八个元素,它们是钠(Na)、镁(Mg)、铝(Al)、硅(Si)、磷(P)、硫(S)、氯(Cl)和氩(Ar)。
钠和镁是典型的金属元素,它们具有与水反应所形成的氢气的比热、导电性和光谱性质。
元素周期律
02
生物分子的结构和功能与其组成的元素密切相关,如蛋白质中的氨基酸种类和 顺序、DNA中的碱基种类和排列顺序等。
03
通过元素周期律可以深入了解生物分子的结构和功能之间的关系,为生物分子 的设计和改造提供理论依据和方法指导。
05
结论
元素周期律的意义
元素周期律对化学元素的性质进行了 归纳和预测,为化学学科的发展提供 了重要的理论基础。
元素周期律的重要性
科学意义
元素周期律是揭示元素之间内在联系和规 律的重要发现,为现代化学和物理学的发 展提供了重要的理论基础。
应用领域
元素周期律在材料科学、生物学、医学等 领域有着广泛的应用。例如,根据元素周 期律可以预测新材料的性质和功能,有助 于材料科学的发展;同时,元素周期律也 提供了生物体内元素的相互作用和影响规 律,有助于生物学和医学的研究。
元素周期律帮助人们更好地理解了化 学元素的性质、结构和反应性能,为 材料科学、生物学、药学等学科的发 展提供了有力支撑。
元素周期律的发现推进了现代科学的 发展,也为其他学科的研究提供了新 的思路和方法。
对未来科学的启示
元素周期律的研究为未来科学的发展 提材料 的发现和制备。
特点
副族元素的最外层电子数不固定,它们的电子构型较为 复杂,因此具有不同的化学性质。
惰性气体元素
定义
惰性气体元素是周期表中的零族元素,包括氦、氖、氩、氪 、氙和氡等。
特点
惰性气体元素的原子具有稳定的电子构型,它们不易与其他 元素形成化学键,因此具有非常稳定的化学性质。
04
元素周期律的应用
化学工业
02
元素周期表
元素周期表的组成
横行
称为周期,表示原子核外电子排布的周期性变化 。
2023届高考化学一轮复习 第4讲 元素周期表 化学键 分子结构与性质 课件(103张PPT)
逐渐__增_强___
逐渐__减_弱___
酸性_增__强___
酸性_减__弱___
碱性_减__弱___
碱性_增__强___
_增_强__
_减_弱__
(1) 元素主要化合价 ①F 无正价,O 无最高正价。 ②主族元素最高正价=原子核外最外层电子数(O、F 除外)。 ③非金属元素的最低化合价=原子核外最外层电子数-8(H 除外);最高正化合价 +|最低负化合价|=8(H、B 除外)。
族序数等于周期序数 3 倍的元素 根据金属性、非 金属性最强的元素
金属性推断
非金属性最强的元素
空气中含量最多的元素
根据含量推断 地壳中含量最多的元素
地壳中含量最多的金属元素
元素 _____H_、_B_e_、__A_l ______
___C_、_S_____ __O____
___N_a____ ___F___ ___N___ ___O___
类型 6 利用元素在周期表中的位置推断元素 (2021·南京、盐城一模)图为元素周期表中短周期的一部分,下列说法不正
确的是( A ) A. 离子半径:M->Z2->Y- B. 电负性:Y>M>Z C. 简单气态氢化物的稳定性: Y>M>Z D. Y 元素基态原子的简化电子排布式:[X]2s22p5
逐渐_减__弱___
逐渐__增_强___
非金属性
逐渐__增_强___
逐渐__减_弱___
元素性质 化合物性质
内容 第一电离能 电负性
最高价氧化物对应水化物 氢化物稳定性
同周期(从左到右) 同主族(自上而下)
总体呈现__增__大____的
趋势,但__Ⅱ_A___族和 逐渐__减__小__
高考化学元素周期表常见考点总结
高考化学元素周期表常见考点总结在高考化学中,元素周期表是一个极其重要的知识点,几乎贯穿了化学学习的各个方面。
下面就为大家详细总结一下高考中关于元素周期表的常见考点。
一、元素周期表的结构首先要清楚元素周期表的排列原则。
元素周期表是按照原子序数递增的顺序排列的,将电子层数相同的元素排成一个横行,称为周期;把最外层电子数相同的元素按电子层数递增的顺序从上到下排成纵行,称为族。
周期分为短周期(第一、二、三周期)、长周期(第四、五、六、七周期)。
短周期元素相对较为常见,需要重点掌握。
族分为主族(ⅠA 族ⅦA 族)、副族(ⅠB 族ⅦB 族)、第Ⅷ族(包含三个纵行)和 0 族(稀有气体元素)。
主族元素的化学性质具有一定的相似性和递变性。
二、原子结构与元素周期表的关系原子序数=质子数=核电荷数=核外电子数。
元素所在的周期数等于其原子的电子层数,主族元素所在的族序数等于其原子的最外层电子数。
同一周期从左到右,原子半径逐渐减小,金属性逐渐减弱,非金属性逐渐增强;同一主族从上到下,原子半径逐渐增大,金属性逐渐增强,非金属性逐渐减弱。
三、元素周期律1、金属性和非金属性的递变规律金属性:元素的金属性越强,其单质与水或酸反应置换出氢气越容易,最高价氧化物对应的水化物碱性越强。
非金属性:元素的非金属性越强,其单质与氢气化合越容易,气态氢化物越稳定,最高价氧化物对应的水化物酸性越强。
例如,在第三周期中,钠、镁、铝的金属性逐渐减弱,硅、磷、硫、氯的非金属性逐渐增强。
2、化合价规律主族元素的最高正化合价等于其族序数(O、F 除外),最低负化合价=最高正化合价 8。
四、常见元素的性质1、碱金属元素(Li、Na、K、Rb、Cs)碱金属元素的原子最外层电子数都是 1,化学性质活泼,具有强还原性。
随着原子序数的增大,碱金属元素的原子半径逐渐增大,单质的密度逐渐增大(钾除外),熔沸点逐渐降低。
2、卤族元素(F、Cl、Br、I)卤族元素的原子最外层电子数都是 7,具有强氧化性。
化学元素周期表
钠 Na 镁 Mg
铌 Nb 钼 Mo
钕 Nd 钷 Pm 钐 Sm 92 铀U 93 镎 Np 94 钚 Pu
镝 Dy 钬 Ho 98 锏 Cf 99 锿 Es
**锕系元素
镅 Am 锔 Cm
Ⅳ
Ⅴ
Ⅵ
Ⅶ
0 2 氦 He
6 碳C 14 硅 Si 32 锗 Ge 50 锡 Sn 82 铅 Pb 114 Uuq 68 铒 Er 100
元素周期表 Ⅰ 1 2 3 4 5 6 7 1 氢H 3 锂 Li 11 19 钾K 37 铷 Rb 55 铯 Cs 87 钫 Fr 4 铍 Be 12 20 钙 Ca 38 锶 Sr 56 钡 Ba 88 镭 Ra 21 钪 Sc 39 钇Y * 镧系 ** 锕系 57 *镧系元素 镧 La 89 锕 Ac 22 钛 Ti 40 锆 Zr 72 铪 Hf 104 Rf 58 铈 Ce 90 钍 Th 23 钒V 41 73 钽 Ta 105 Db 59 镨 Pr 91 镤 Pa 24 铬 Cr 42 74 钨W 106 Sg 60 25 锰 Mn 43 锝 Tc 75 铼 Re 107 Bh 61 26 铁 Fe 44 钌 Ru 76 锇 Os 108 Hs 62 27 钴 Co 45 铑 Rh 77 铱 Ir 109 Mt 63 铕 Eu 95 28 镍 Ni 46 钯 Pd 78 铂 Pt 110 Uun 64 钆 Gd 96 29 铜 Cu 47 银 Ag 79 金 Au 111 Uuu 65 铽 Tb 97 锫 Bk 30 锌 Zn 48 镉 Cd 80 汞 Hg 112 Uub 66 5 硼B 13 铝 Al 31 镓 Ga 49 铟 In 81 铊 Tl 113 Uut 67 Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅶ Ⅷ Ⅰ Ⅱ Ⅲ
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4、已知破坏1mol N≡N键、H-H键和N-H键分别需要吸收的能量为946kJ、436kJ、391kJ。试计算1molN2(g)和3 molH2(g)完全转化为NH3(g)的反应热的理论值,并写出反应的热化学方程式。
7单质的氧化性、还原性
一般元素的金属性越强,其单质的还原性越强,其氧化物的阳离子氧化性越弱;元素的非金属性越强,其单质的氧化性越强,其简单阴离子的还原性越弱。
[编辑本段]推断元素位置的规律
判断元素在周期表中位置应牢记的规律:
(1)元素周期数等于核外电子层数;
(2)主族元素的序数等于最外层电子数。
阴阳离子的半径大小辨别规律
这张表揭示了物质世界的秘密,把一些看来似乎互不相关的元素统一起来,组成了一个完整的自然体系。
[编辑本段]元素周期表的记忆
先背熟元素周期表,然后就会慢慢找出各族元素的规律,以后见到没有学过的元素,只要是同一族的都会知道有什么特点,有什么化学性质,那就不是可以举一反三了。
元素周期表中元素及其化合物的递变性规律
3、中和热:酸与碱发生中和反应生成1mol水所释放的热量称为中和热。
4、要精确地测定反应中的能量变化,一是要注重“量的问题”,二是要最大限度地
减小实验误差。化学反应的本质是反应物中化学键的断裂和生成物中化学键的形成。化学键是物质内部微粒之间强烈的相互作用,断开反应物中的化学键需要吸收能量,形成生成物中的化学键要放出能量。氢气和氯气反应的本质是在一定的条件下,氢气分子和氯气分子中的H-H键和Cl-Cl键断开,氢原子和氯原子通过形成H-Cl键而结合成HCl分子。1molH2中含有1molH-H键,1mol Cl2中含有1mol Cl-Cl键,在25℃和101kPa的条件下,断开1molH-H键要吸收436kJ的能量,断开1mol Cl-Cl键要吸收242 kJ的能量,而形成1molHCl分子中的H-Cl键会放出431 kJ的能量。这样,由于破坏旧键吸收的能量少于形成新键放出的能量,根据“能量守恒定律”,多余的能量就会以热量的形式释放出来。
反应中要持续加热才能进行的反应是吸热反应。你认为他们的说法正确吗?为什么?
答案:1.D2.BC3.(1)C+H2O CO+H2吸热(2) 70:11 4.石油液化气>天然气>水煤气5.略
第一节化学能与热能
第2课时
教学目标:
1、能从化学键的角度理解化学反应中能量变化的主要原因,初步学会热化学方程式的书写。
化学反应伴随能量变化是化学反应的一大特征。我们可以利用化学能与热能及其它
能量的相互转变为人类的生产、生活及科学研究服务。化学在能源的开发、利用及解决
日益严重的全球能源危机中必将起带越来越重要的作用,同学们平时可以通过各种渠道来关心、了解这方面的进展,从而深切体会化学的实用性和创造性。
补充练习:
1、下列说法不正确的是()
1原子半径
(1)除第1周期外,其他周期元素(惰性气体元素除外)的原子半径随原子序数的递增而减小;
(2)同一族的元素从上到下,随电子层数增多,原子半径增大。
2元素化合价
(1)除第1周期外,同周期从左到右,元素Байду номын сангаас高正价由碱金属+1递增到+7,非金属元素负价由碳族-4递增到-1(氟无正价,氧无+6价,除外);
化学键的概念是在总结长期实践经验的基础上建立和发展起来的,用来概括观察到的大量化学事实,特别是用来说明原子为何以一定的比例结合成具有确定几何形状的、相对稳定和相对独立的、性质与其组成原子完全不同的分子。开始时,人们在相互结合的两个原子之间画一根短线作为化学键的符号;电子发现以后,1916年G.N.路易斯提出通过填满电子稳定壳层形成离子和离子键或者通过两个原子共有一对电子形成共价键的概念,建立化学键的电子理论。
1化学元素周期表元素周期律化学键:
元素周期表是元素周期律用表格表达的具体形式,它反映元素原子的内部结构和它们之间相互联系的规律。元素周期表简称周期表。元素周期表有很多种表达形式,目前最常用的是维尔纳长式周期表。元素周期表有7个周期,有16个族和4个区。元素在周期表中的位置能反映该元素的原子结构。周期表中同一横列元素构成一个周期。同周期元素原子的电子层数等于该周期的序数。同一纵行(第Ⅷ族包括3个纵行)的元素称“族”。族是原子内部外电子层构型的反映。例如外电子构型,IA族是ns1,IIIA族是ns2 np1,O族是ns2 np4,IIIB族是(n-1)d1·ns2等。元素周期表能形象地体现元素周期律。根据元素周期表可以推测各种元素的原子结构以及元素及其化合物性质的递变规律。当年,门捷列夫根据元素周期表中未知元素的周围元素和化合物的性质,经过综合推测,成功地预言未知元素及其化合物的性质。现在科学家利用元素周期表,指导寻找制取半导体、催化剂、化学农药、新型材料的元素及化合物。
A化学反应除了生成新物质外,还伴随着能量的变化
B物质燃烧和中和反应均放出热量
C分解反应肯定是吸热反应
D化学反应是吸热还是放热决定于生成物具有的总能量和反应物具有的总能量
2、已知金刚石在一定条件下转化为石墨是放热的。据此,以下判断或说法正确的是()
A需要加热方能发生的反应一定是吸热反应B放热反应在常温下一定很容易发生
1、离子键[1]是右正负离子之间通过静电引力吸引而形成的,正负离子为球形或者近似球形,电荷球形对称分布,那么离子键就可以在各个方向上发生静电作用,因此是没有方向性的。
2、一个离子可以同时与多个带相反电荷的离子互相吸引成键,虽然在离子晶体中,一个离子只能与几个带相反电荷的离子直接作用(如NaCl中Na+可以与6个Cl-直接作用),但是这是由于空间因素造成的。在距离较远的地方,同样有比较弱的作用存在,因此是没有饱和性的。
[归纳小结]
1、化学键的断裂和形成是化学反应中能量变化的主要原因。
2、能量是守恒的。
补充练习
1、下列反应中属吸热反应的是()
A镁与盐酸反应放出氢气B氢氧化钠与盐酸的反应
C硫在空气或氧气中燃烧D Ba(OH)2•8H2O与NH4Cl反应
2、下列说法不正确的是()
A化学反应除了生成新物质外,还伴随着能量的变化
2、旧理论:共价键形成的条件是原子中必须有成单电子,自旋方向必须相反,由于一个原子的一个成单电子只能与另一个成单电子配对,因此共价键有饱和性。如原子与Cl原子形成HCl分子后,不能再与另外一个Cl形成HCl2了。
3、新理论:共价键形成时,成键电子所在的原子轨道发生重叠并分裂,成键电子填入能量较低的轨道即成键轨道。如果还有其他的原子参与成键的话,其所提供的电子将会填入能量较高的反键轨道,形成的分子也将不稳定。像HCL这样的共用电子对形成分子的化合物叫做共价化合物
(2)同一主族的元素的最高正价、负价均相同
(3)所有单质都显零价
3单质的熔点
(1)同一周期元素随原子序数的递增,元素组成的金属单质的熔点递增,非金属单质的熔点递减;
(2)同一族元素从上到下,元素组成的金属单质的熔点递减,非金属单质的熔点递增
4元素的金属性与非金属性
(1)同一周期的元素电子层数相同。因此随着核电荷数的增加,原子越容易得电子,从左到右金属性递减,非金属性递增;
由于阴离子是电子最外层得到了电子而阳离子是失去了电子
所以,总的说来
(1)阳离子半径<原子半径
(2)阴离子半径>原子半径
(3)阴离子半径>阳离子半径
(4)或者一句话总结,对于具有相同核外电子排布的离子,原子序数越大,其离子半径越小。
以上不适合用于稀有气体!
化学键(chemical bond)是指分子或晶体内相邻原子(或离子)间强烈的相互作用。
(2)同一主族元素最外层电子数相同,因此随着电子层数的增加,原子越容易失电子,从上到下金属性递增,非金属性递减。
5最高价氧化物和水化物的酸碱性
元素的金属性越强,其最高价氧化物的水化物的碱性越强;元素的非金属性越强,最高价氧化物的水化物的酸性越强。
6非金属气态氢化物
元素非金属性越强,气态氢化物越稳定。同周期非金属元素的非金属性越强,其气态氢化物水溶液一般酸性越强;同主族非金属元素的非金属性越强,其气态氢化物水溶液的酸性越弱。
2、能从微观的角度来解释宏观化学现象,进一步发展想象能力。
2、通过化学能与热能的相互转变,理解“能量守恒定律”,初步建立起科学的能量观,
加深对化学在解决能源问题中重要作用的认识。
重点难点:
1.化学能与热能的内在联系及相互转变。
2.从本质上理解化学反应中能量的变化,从而建立起科学的能量变化观。
[总结]
2。化学能与热能化学能与电能反应速率及限度:
用眼睛不能直接观察到反应中的热量变化,那么,你将采取哪些简单易行的办法
化学反应中的能量变化经常表现为热量的变化,有的放热,有的吸热。1、中和反应都是放热反应。
2、三个反应的化学方程式虽然不同,反应物也不同,但本质是相同的,都是氢离
子与氢氧根离子反应生成水的反应,属于中和反应。由于三个反应中氢离子与氢氧根离子的量都相等,生成水的量也相等,所以放出的热量也相等。
例如,在水分子H2O中2个氢原子和1个氧原子通过化学键结合成水分子。化学键有3种极限类型,即离子键、共价键和金属键。离子键是由异性电荷产生的吸引作用,例如氯和钠以离子键结合成NaCl。共价键是两个或几个原子通过共用电子对产生的吸引作用,典型的共价键是两个原子借吸引一对成键电子而形成的。例如,两个氢核同时吸引一对电子,形成稳定的氢分子。金属键则是使金属原子结合在一起的相互作用,可以看成是高度离域的共价键。定位于两个原子之间的化学键称为定域键。由多个原子共有电子形成的多中心键称为离域键。除此以外,还有过渡类型的化学键:由于粒子对电子吸引力大小的不同,使键电子偏向一方的共价键称为极性键,由一方提供成键电子的化学键称为配位键。极性键的两端极限是离子键和非极性键,离域键的两端极限是定域键和金属键。